• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic optimization for multi-agent systems with external disturbances

    2014-12-07 08:00:09XinghuWANGPengYIYiguangHONG
    Control Theory and Technology 2014年2期

    Xinghu WANG,Peng YI,Yiguang HONG

    Key Laboratory of Systems and Control,Institute of Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    Dynamic optimization for multi-agent systems with external disturbances

    Xinghu WANG?,Peng YI,Yiguang HONG

    Key Laboratory of Systems and Control,Institute of Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    This paper studies the dynamic optimization problem for multi-agent systems in the presence of external disturbances.Different from the existing distributed optimization results,we formulate an optimization problem of continuous-time multi-agent systems with time-varying disturbance generated by an exosystem.Based on internal model and Lyapunov-based method,a distributed design is proposed to achieve the optimization.Finally,an example is given to illustrate the proposed optimization design.

    Distributed optimization;Multi-agent systems;Disturbance rejection;Internal model

    1 Introduction

    The coordination of multi-agent systems has been studied increasingly with many significant results on consensus and formation for the past decade.In recent years,distributed optimization has attracted much attention to seek an optimal solution for multi-agent systems[1,2].Although most results on distributed optimization were based on discrete-time models,one of emerging topics on distributed optimization is how to design continuous-time systems to achieve the optimization[3-5].The convergence analysis was provided for a continuous-time algorithm with fixed undirected graph in[4],while a continuous-time dynamics was proposed for optimal computation of convex intersection with uniformly jointly strongly connected communication graph in[3].Moreover,a continuous-time system for the positive constrained optimization problem was investigated in[5],and a continuous optimization problem was studied with discrete-time communication in[6].The results show the advantages to employ continuous-time models for optimization:i)It is easy to study the case when practical systems such as robots are the agents to search the optimal solution in real time.ii)Many advanced control techniques can be usedto facilitate the analysis of convergence rate and disturbance rejection,and moreover,overcome the diminishing step-size problem in discrete-time algorithm.

    In fact,more and more attention has been paid to multi-agent systems with disturbances.In reality,agents have to face various(environmental)disturbances.One of the effective methods was developed based on internal model principle from the viewpoint of output regulation[7].Also,distributed output regulation was studied[8-10]for multi-agent systems to track an active leader and/or reject a modeled disturbance.

    The objective of this paper is to study the distributed optimization of continuous-time multi-agent systems with rejecting external disturbances.The motivation is as follows:i)the considered agents need to be equipped with disturbance rejection control scheme when they achieve their optimization in a region with disturbance;ii)the research is a combination of the new results of distributed optimization and distributed output regulation,which may provide a unified way to treat consensus,disturbance rejection,and distributed optimization in some sense.The contribution of the paper can be summarized as follows:

    ?We first give a problem formulation for the distributed optimization with rejecting the external disturbances during the optimization process;

    ?We employ the internal model technique to provide effective distributed protocol to achieve the exact optimization in the presence of external disturbances.

    This paper is organized as follows.In Section 2,we formulate the dynamic optimization problem with rejecting external disturbances.Then,in Section 3,we present the main result of the paper,along with an illustrative example.In Section 4,some concluding remarks are given.

    2 Preliminaries and formulation

    In this section,we recall some preliminaries of graph theory and convex optimization,and then formulate our problem.

    DenoteInas thenXnidentity matrix,1Nas the vector ofNentries equal to 1,and?as the matrix Kronecker product.Rndenotesn-dimensional Euclidean space.Moreover,for vectorsx1,...,xm,denote

    Let us introduce some concepts related to convex functions[11].A differentiable functionf:Rn→R is strictly convex ifforx≠y∈Rn,andfis am-strongly convex(m>0)ifforA functiong:Rn→Rnis Lipschitz with constantM>0,or simplyM-Lipschitz if

    Graph theory has been widely used for multi-agent control[12].A weighted digraph is described by a triplet G={V,?,A}where V={1,2,...,N}is the node set,??VXV is the edge set(without self-loops),andis the weighted adjacency matrix ofNXN.An edge of G is denoted by an ordered pair of nodes(j,i)∈? withjbeing a neighbor ofi.A directed path of G is an ordered sequence of distinct nodes in V such that any consecutive nodes in the sequence correspond to an edge of G.G is called strongly connected if there exists a directed path fromitojfor any two nodesi,j∈V.A is a nonnegative matrix withaij>0 if(j,i)∈ ?,i,j∈ V.The weighted in-degree and weighted out-degree of a nodeiare defined bydigraph is weight-balanced if for each nodei,The Laplacian matrix is L=D-A withNote that L1N=0.A digraph is weight-balanced if and only if

    It is time to formulate our problem.Consider a network ofNagents with interaction topology described by a digraph G.Agentiis endowed with a local cost functionfi:Rn→R and a dynamics

    wherexi∈Rnis its state,uiis its optimization protocol,anddi(t)is the local disturbance governed by the following exosystem:

    whereis the exosystem state.It is assumed that all eigenvalues ofS∈RpXpare distinct lying on the imaginary axis,which means the boundedness of the disturbances.

    The global cost functionf:Rn→R is defined as a sum of the local cost functions as usual[1]:

    The aim of this paper is to design a protocoluiof the following form:

    whereis the gradient information of agenti,andis the exchanged information with its neighbors,such that the multi-agent system(10)with(3)solves the following optimization problem

    by drivingxitox?.

    Remark 1The above problem can be referred to as the dynamic optimization problem with external disturbances in order to achieve the exact optimization in a distributed way.When the disturbances disappear,the problem discussed in this paper becomes the traditional distributed optimization problem in the continuous-time setup(referring to[3,4]).On the other hand,if we do not assign the cost functions to the agent network,the consensus problem with external disturbances can be solved with the help of distributed output regulation[8-10].Therefore,this problem provides a general framework somehow for the distributed optimization and distributed output regulation.

    To proceed further,we introduce two basic conditions for the solvability of the problem,which was also used in[6].

    Condition 1The digraph G is strongly connected and weight-balanced.

    Remark 2Define

    Under Condition 1,it is known[12]that 0 is the single eigenvalue of matrices L and Sym(L).Moreover,there is a matrixR∈RNX(N-1)withsuch that

    for a positive real number λ0.

    Condition 2Fori=1,...,N,the local cost functionfiismi-strongly convex and differentiable,and its gradient isMi-Lipschitz on Rn.DenotemT=min{m1,...,mN}andMT=max{M1,...,MN}.

    3 Main result

    In this section,we propose a distributed optimization design to achieve the exact optimization with disturbance rejection.Three subsections are given for the algorithm design,optimization analysis,and simulation.

    3.1 Algorithm design

    Due to the disturbancedi(t),existing results on distributed optimization are not applicable.To deal with the problem,we first make some transformation.Letbe the minimal polynomial ofSand τi=(τi1,...,τin)with

    Define two matrices

    By a direct computation,it can be seen that τijsatisfies

    which implies

    Since the pair(Ψ,Φ)is observable,there exists a matrixGsuch thatF=Φ+GΨ is Hurwitz.Thus,for agenti,an internal-model-based optimization protocol can be constructed as

    Obviously,the proposed optimization protocol consists of three terms:the gradient-based optimization term to drive the agents to the optimization point,the consensus term for all agents to achieve the same point,and the internal model term to compensate the disturbancedi(t)asymptotically(referring to Chapter 6 of[7]for more details on internal model design).

    for initial conditionsvi(0)∈Rnwith

    The above observation is useful in analysis of the equilibrium point.Therefore,in this paper,we always set the initial conditionsvi(0)satisfying(9)by simply takingvi(0)=0 fori=1,...,N.

    By addinguito the dynamics(1),we obtain the following closed-loop system:

    To compensate the disturbances asymptotically,the termmust vanish asymptotically.Performing a transformationgives

    Then,system(10)with the last equation replaced by(11)can be rewritten in the following compact form:

    Remark 4Suppose that system(12)has an equilibrium point at(xo,vo,ˉηo).Then,(xo,vo,ˉηo)satisfies

    3.2 Optimization analysis

    Here,we prove the convergence of the proposed optimization design based on Lyapunov function.

    To this end,we first define the following variables to obtain a standard stability problem:

    In the new coordinate,

    where

    It is time to show our main result.

    Theorem 1Under Conditions 1 and 2,there exist two constants α and β >0 such that algorithm(7)solves the distributed optimization problem in the presence of the disturbances.

    ProofRecalling Remark 4,to obtain the conclusion,it is sufficient to show that there are two constantsα,β >0 such that the equilibrium pointof system(15)is exponentially stable.

    For this purpose,we first perform the following transformation to simplify system(15)

    whereTis defined by

    withRspecified in Remark 2.Denote χ =(χ1,χ2:N),? =(?1,?2:N),where χ1,?1∈ Rnand χ2:N,?2:N∈ R(N-1)n.Then,from(15),we have

    Similar to[6],we take the following Lyapunov function candidate:

    with γ>0 to be determined.It can be verified that

    Under Condition 2,we obtain

    for a positive real number?0.

    Take the following Lyapunov function candidate for the whole system

    Then,we have

    Taking α and β satisfying

    gives

    By Theorem 4.10 of[13],

    Remark 5Note that the constructed Lyapunov functionVin(21)is independent of the interaction digraph.Hence,following a similar proof as in Theorem 1,the above result can be extended to switching case when the switching digraph G keeps strongly connected and weighted-balanced,with its adjacency matrix A piecewise constant between switchings.

    3.3 Example

    It is easy to see that the local cost functionfiismistrongly convex and its gradient isMi-Lipschitz on R with real numbersmi,Mi>0 fori=1,...,5,which implies Condition 2.The network topology is shown in Fig.1.We set all edge weights to be 1,which verifies Condition 1.The disturbance in agent dynamics is given bywhich can be generated by system(2)with

    Fig.1 Interaction topology for the network.

    Here,we set ω=1.Then,system(5)is given with

    Figs.2 and 3 show that the state of each agent converges to the exact optimization pointx?=0.49.Moreover,a larger value of β results in faster convergence,which is consistent with the disturbance-free case discussed in[6].

    Fig.2 Performance of(7)with α =1,β =1.

    Fig.3 Performance of(7)with α =1,β =5.

    4 Conclusions

    The dynamic optimization problem with external disturbances has been studied in this paper.First,a new problem formulation was given to achieve the distributed optimization with disturbance rejection.Then,an internal-model-based algorithm was proposed to solve the problem.To our knowledge,this is the first effort to study the distributed optimization with external disturbance signals,and more complicated problems are still under investigation.

    [1]A.Nedic,A.Ozdaglar.Distributed subgradient methods for multi-agent optimization.IEEE Transactions on Automatic Control,2009,54(1):48-61.

    [2]Y.Lou,G.Shi,K.H.Johansson,et al.Reaching optimal consensus for multi-agent systems based on approximate projection.Proceedings of the 10th World Congress on Intelligent Control and Automation.Beijing:IEEE,2012:2794-2800.

    [3]G.Shi,K.H.Johansson,Y.Hong.Reaching an optimal consensus:dynamical systems that compute intersections of convex sets.IEEE Transactions on Automatic Control,2013,58(3):610-622.

    [4]J.Wang,N.Elia.A control perspective for centralized and distributed convex optimization.Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference.Orlando:IEEE,2011:3800-3805.

    [5]K.Kvaternik,L.Pavel.A continuous-time decentralized optimization scheme with positivity constraints.Proceedings of the 51st IEEE Conference on Decision and Control,Maui:IEEE,2012:6801-6807.

    [6]S.Kia,J.Cort'es,S.Mart'?nez.Distributed convex optimization via continuous-time coordinate alorithms with discrete-time communication.arXiv:1401.4432.2014:http://arxiv.org/pdf/1401.4432v2.pdf.

    [7]J.Huang.Nonlinear Output Regulation:Theory and Applications.Philadelphia:SIAM,2004.

    [8]Y.Hong,X.Wang,Z.Jiang.Distributed output regulation of leader-follower multi-agent systems.International Journal of Robust and Nonlinear Control,2013,23(1):48-66.

    [9]X.Wang,Y.Hong,J.Huang,et al.A distributed control approach to a robust output regulation problem for multi-agent linear systems.IEEE Transactions on Automatic Control,2010,55(12):2891-2895.

    [10]Y.Su,Y.Hong,J.Huang.A general result on the robust cooperative output regulation for linear uncertain multi-agent systems.IEEE Transactions on Automatic Control,2013,58(5):1275-1280.

    [11]R.T.Rockafellar.Convex Analysis.Princeton:Princeton University Press,1972.

    [12]C.Godsil,G.Royle.Algebraic Graph Theory.New York:Springer-Verlag,2001.

    [13]H.K.Khalil.Nonlinear Systems.3rd ed.Upper Saddle River:Prentice Hall,2002.

    18 March 2014;revised 28 March 2014;accepted 28 March 2014

    DOI10.1007/s11768-014-0036-y

    ?Corresponding author.

    E-mail:wxh@amss.ac.cn.Tel.:+86-10-62651449;fax:+86-10-62587343.

    This work was supported by the National Natural Science Foundation of China(Nos.61174071,61333001).

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Xinghu WANGreceived his B.S.and Ph.D.degrees from Shandong University,Weihai,and University of Science and Technology of China in 2007 and 2012,respectively.He is currently a postdoctoral fellow in Academy of Mathematics and Systems Science,Chinese Academy of Sciences.His research interests include nonlinear dynamics and control and multi-agent systems.E-mail:wxh@amss.ac.cn.

    Peng YIreceived his B.S.degree from University of Science and Technology of China in 2011.He is currently a Ph.D.candidate in Academy of Mathematics and Systems Science,Chinese Academy of Sciences.His research interests include distribute optimization and multi-agent systems.E-mail:yipeng@amss.ac.cn.

    Yiguang HONGreceived his B.S.and M.S.degrees from Department of Mechanics,Peking University,China,and Ph.D.degree from Chinese Academy of Sciences(CAS).He is currently a professor in Academy of Mathematics and Systems Science,CAS.His research interests include nonlinear dynamics and control,multi-agent systems,distributed optimization,and reliability of software and communication systems.E-mail:yghong@iss.ac.cn.

    亚洲精品,欧美精品| 99久国产av精品国产电影| 亚洲性久久影院| 免费观看精品视频网站| 男女那种视频在线观看| 丝袜喷水一区| 日日摸夜夜添夜夜添av毛片| av在线蜜桃| 插逼视频在线观看| 网址你懂的国产日韩在线| 18+在线观看网站| 又黄又爽又刺激的免费视频.| 一级黄片播放器| 两个人视频免费观看高清| 麻豆国产97在线/欧美| 亚洲精品色激情综合| 天天躁日日操中文字幕| 亚洲精品国产av蜜桃| 亚洲精品一二三| 身体一侧抽搐| 亚洲国产欧美在线一区| 成人无遮挡网站| 久久草成人影院| 在线播放无遮挡| 永久网站在线| 2021天堂中文幕一二区在线观| 中文在线观看免费www的网站| 超碰av人人做人人爽久久| 色综合站精品国产| 日韩成人av中文字幕在线观看| 春色校园在线视频观看| 精品久久久久久成人av| 大又大粗又爽又黄少妇毛片口| 男女那种视频在线观看| 久久久久久久久中文| 免费大片黄手机在线观看| 亚洲色图av天堂| 国产女主播在线喷水免费视频网站 | 中文字幕免费在线视频6| 精品99又大又爽又粗少妇毛片| 99热这里只有是精品50| 亚洲人成网站在线播| 成人欧美大片| 少妇熟女aⅴ在线视频| 中文天堂在线官网| 看非洲黑人一级黄片| 国产伦精品一区二区三区视频9| 在线观看一区二区三区| 国产精品无大码| 亚洲国产av新网站| 美女黄网站色视频| av在线天堂中文字幕| 日本欧美国产在线视频| 啦啦啦啦在线视频资源| 国产成人精品一,二区| 亚洲无线观看免费| 免费观看在线日韩| 亚洲美女视频黄频| 久久久精品94久久精品| 国产亚洲精品久久久com| 特大巨黑吊av在线直播| 国产 一区 欧美 日韩| 青春草视频在线免费观看| 国产色婷婷99| 国产成人精品福利久久| 夜夜看夜夜爽夜夜摸| 人人妻人人澡欧美一区二区| 色吧在线观看| av在线播放精品| a级毛色黄片| 亚洲av中文字字幕乱码综合| h日本视频在线播放| 国产精品综合久久久久久久免费| 精华霜和精华液先用哪个| 99热网站在线观看| 狂野欧美激情性xxxx在线观看| 好男人视频免费观看在线| 老司机影院成人| 欧美日韩亚洲高清精品| 国产成人午夜福利电影在线观看| 99视频精品全部免费 在线| 免费看a级黄色片| 亚洲国产av新网站| 激情 狠狠 欧美| 国产精品精品国产色婷婷| 国精品久久久久久国模美| 日韩欧美精品免费久久| 水蜜桃什么品种好| 国产 一区 欧美 日韩| kizo精华| 亚洲成人av在线免费| 免费高清在线观看视频在线观看| 亚洲av男天堂| 有码 亚洲区| 卡戴珊不雅视频在线播放| 秋霞在线观看毛片| 国产午夜精品一二区理论片| 亚洲国产精品sss在线观看| a级毛片免费高清观看在线播放| 国产淫片久久久久久久久| 国产精品麻豆人妻色哟哟久久 | 在线观看免费高清a一片| 别揉我奶头 嗯啊视频| 国产高清不卡午夜福利| 又大又黄又爽视频免费| 婷婷色综合www| 免费人成在线观看视频色| 男女啪啪激烈高潮av片| 一区二区三区四区激情视频| 中文字幕制服av| 国产午夜精品一二区理论片| 中文欧美无线码| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 夜夜看夜夜爽夜夜摸| 又粗又硬又长又爽又黄的视频| 亚洲成人久久爱视频| 日韩电影二区| 亚洲精品亚洲一区二区| 在线观看美女被高潮喷水网站| 中文字幕制服av| 色网站视频免费| 日韩欧美三级三区| 99热6这里只有精品| 99久久精品一区二区三区| 国产永久视频网站| 少妇裸体淫交视频免费看高清| 国产一级毛片在线| 九九在线视频观看精品| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 精品一区二区三区人妻视频| 欧美一区二区亚洲| 日日啪夜夜爽| 天天躁夜夜躁狠狠久久av| 青青草视频在线视频观看| 亚洲一区高清亚洲精品| 欧美区成人在线视频| 精品国产三级普通话版| 日本一二三区视频观看| 亚洲人成网站高清观看| 91av网一区二区| 亚洲欧美日韩卡通动漫| 可以在线观看毛片的网站| 国产女主播在线喷水免费视频网站 | 99久国产av精品| 久久久久国产网址| 亚洲伊人久久精品综合| 99热全是精品| 人人妻人人澡人人爽人人夜夜 | 18禁动态无遮挡网站| 亚洲色图av天堂| 爱豆传媒免费全集在线观看| 午夜激情欧美在线| 亚洲在线观看片| av网站免费在线观看视频 | 久久久a久久爽久久v久久| 身体一侧抽搐| 日日摸夜夜添夜夜爱| av黄色大香蕉| 久久精品人妻少妇| 两个人视频免费观看高清| 极品少妇高潮喷水抽搐| freevideosex欧美| 久久6这里有精品| 极品少妇高潮喷水抽搐| 汤姆久久久久久久影院中文字幕 | 日本一本二区三区精品| 91aial.com中文字幕在线观看| av卡一久久| 国产大屁股一区二区在线视频| 大话2 男鬼变身卡| 18禁在线播放成人免费| 欧美97在线视频| 亚洲精品视频女| 久久久久久久午夜电影| 久久久久久久久久久丰满| 国产成人精品久久久久久| 精品久久久久久久久av| 91精品国产九色| 久久久久久久久久人人人人人人| 国产视频首页在线观看| 天堂影院成人在线观看| 午夜福利在线在线| 日本欧美国产在线视频| 国产精品.久久久| 亚洲18禁久久av| 欧美xxxx性猛交bbbb| 91狼人影院| 亚洲怡红院男人天堂| 国产精品美女特级片免费视频播放器| h日本视频在线播放| 精品久久久久久久久av| 国产在视频线在精品| 亚洲av中文av极速乱| 一个人观看的视频www高清免费观看| 一级爰片在线观看| 最新中文字幕久久久久| 非洲黑人性xxxx精品又粗又长| 一个人看的www免费观看视频| 一级a做视频免费观看| 一级av片app| 免费观看av网站的网址| 最近中文字幕高清免费大全6| 久久久久久久亚洲中文字幕| 婷婷色综合大香蕉| 能在线免费观看的黄片| 国产男女超爽视频在线观看| 久久久久久国产a免费观看| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 国精品久久久久久国模美| 免费少妇av软件| 蜜臀久久99精品久久宅男| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| 久久99精品国语久久久| 午夜老司机福利剧场| 欧美日本视频| 免费不卡的大黄色大毛片视频在线观看 | 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 精品人妻熟女av久视频| 亚洲成色77777| 亚洲内射少妇av| 国产精品久久久久久久久免| 国产一级毛片七仙女欲春2| 狂野欧美激情性xxxx在线观看| 亚洲美女搞黄在线观看| 亚洲真实伦在线观看| 免费看美女性在线毛片视频| 国产精品麻豆人妻色哟哟久久 | 国产精品伦人一区二区| 男女边摸边吃奶| 男女视频在线观看网站免费| 可以在线观看毛片的网站| 精品国产三级普通话版| 久久草成人影院| 大话2 男鬼变身卡| 能在线免费看毛片的网站| 日韩在线高清观看一区二区三区| 国产成年人精品一区二区| 成人二区视频| 国产高潮美女av| 成人午夜高清在线视频| 久久久久久久久中文| 亚洲av.av天堂| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠久久av| 欧美xxxx黑人xx丫x性爽| 国产伦理片在线播放av一区| 97在线视频观看| 亚洲美女搞黄在线观看| 91av网一区二区| 人妻少妇偷人精品九色| 在线天堂最新版资源| 欧美一区二区亚洲| 免费看不卡的av| 99热网站在线观看| 亚洲美女搞黄在线观看| 久久国产乱子免费精品| 亚洲精品成人av观看孕妇| 九九在线视频观看精品| 日本免费a在线| 日韩欧美国产在线观看| 2021天堂中文幕一二区在线观| 国产在视频线精品| 亚洲在久久综合| 国产精品人妻久久久影院| 国产亚洲一区二区精品| 1000部很黄的大片| 丝袜美腿在线中文| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区三区四区久久| 国产精品蜜桃在线观看| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 搞女人的毛片| 欧美另类一区| 成人美女网站在线观看视频| 日韩伦理黄色片| 三级毛片av免费| 成人亚洲欧美一区二区av| 日韩强制内射视频| 亚洲人成网站高清观看| 精品久久久久久电影网| 亚洲精品国产av蜜桃| 亚洲精品自拍成人| 国语对白做爰xxxⅹ性视频网站| 中文资源天堂在线| 日韩三级伦理在线观看| 中文字幕亚洲精品专区| 久久99精品国语久久久| 国产精品一区www在线观看| 三级经典国产精品| 淫秽高清视频在线观看| 亚洲人成网站高清观看| 欧美bdsm另类| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 国产精品国产三级国产av玫瑰| 亚洲精品国产av蜜桃| av播播在线观看一区| 亚洲国产色片| 免费观看av网站的网址| 丝袜美腿在线中文| 特级一级黄色大片| 国国产精品蜜臀av免费| 天堂网av新在线| av免费观看日本| 乱系列少妇在线播放| 九九在线视频观看精品| 在线观看免费高清a一片| 中文资源天堂在线| 亚洲欧洲日产国产| 亚洲三级黄色毛片| 亚洲av.av天堂| 欧美成人午夜免费资源| 国产爱豆传媒在线观看| 精品欧美国产一区二区三| 美女脱内裤让男人舔精品视频| 综合色丁香网| 80岁老熟妇乱子伦牲交| 日韩av免费高清视频| av黄色大香蕉| www.色视频.com| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆| 免费看日本二区| 91午夜精品亚洲一区二区三区| 国产亚洲精品久久久com| 在线a可以看的网站| 嫩草影院新地址| 日韩成人伦理影院| 乱人视频在线观看| 在线观看人妻少妇| 亚州av有码| 午夜久久久久精精品| 精品久久久久久久久亚洲| 秋霞在线观看毛片| 免费看a级黄色片| 99热全是精品| 久久99蜜桃精品久久| 久久国内精品自在自线图片| 美女脱内裤让男人舔精品视频| 性插视频无遮挡在线免费观看| 伊人久久精品亚洲午夜| 欧美激情在线99| 国产精品不卡视频一区二区| 欧美一区二区亚洲| 一个人看视频在线观看www免费| 亚洲欧洲日产国产| 久久久欧美国产精品| 亚州av有码| 真实男女啪啪啪动态图| 免费av毛片视频| 中文字幕免费在线视频6| 婷婷色综合大香蕉| 内地一区二区视频在线| www.色视频.com| 久久久久久久久久久丰满| 搡女人真爽免费视频火全软件| 成人亚洲精品av一区二区| 久久99精品国语久久久| 国产精品伦人一区二区| 男女下面进入的视频免费午夜| 韩国高清视频一区二区三区| 国产黄频视频在线观看| 国产精品久久久久久久久免| 国内揄拍国产精品人妻在线| 欧美高清性xxxxhd video| 五月伊人婷婷丁香| 欧美 日韩 精品 国产| 国产av在哪里看| 久久人人爽人人片av| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 男人舔奶头视频| 秋霞在线观看毛片| 国产精品无大码| 国产一级毛片在线| 国内揄拍国产精品人妻在线| 国产在视频线在精品| 99久久中文字幕三级久久日本| 色尼玛亚洲综合影院| www.色视频.com| 国产亚洲av片在线观看秒播厂 | 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| 久久久久久久国产电影| 国产伦精品一区二区三区视频9| 久久久久久久久久久丰满| 99热网站在线观看| 欧美97在线视频| 精品久久久久久久久av| 国产精品不卡视频一区二区| 久久精品久久精品一区二区三区| 国产精品一区二区三区四区免费观看| 91精品伊人久久大香线蕉| 欧美不卡视频在线免费观看| 国语对白做爰xxxⅹ性视频网站| 高清午夜精品一区二区三区| 精品一区二区三区视频在线| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| 中文欧美无线码| 91精品国产九色| 最新中文字幕久久久久| 在线观看人妻少妇| 精品久久久久久久久av| 日日摸夜夜添夜夜添av毛片| 久久97久久精品| 国产精品一区二区三区四区免费观看| 一级毛片我不卡| 国产有黄有色有爽视频| 好男人在线观看高清免费视频| 久久午夜福利片| 老司机影院毛片| 春色校园在线视频观看| 你懂的网址亚洲精品在线观看| 禁无遮挡网站| av网站免费在线观看视频 | 大话2 男鬼变身卡| 午夜激情欧美在线| 日本午夜av视频| 亚洲av电影不卡..在线观看| 久久久久久久久大av| 午夜精品一区二区三区免费看| 久久久国产一区二区| 欧美变态另类bdsm刘玥| 一级毛片久久久久久久久女| 网址你懂的国产日韩在线| 国语对白做爰xxxⅹ性视频网站| 精品一区二区三区人妻视频| 麻豆乱淫一区二区| 少妇丰满av| 日本三级黄在线观看| 97超视频在线观看视频| 欧美变态另类bdsm刘玥| 啦啦啦中文免费视频观看日本| 网址你懂的国产日韩在线| 国产在视频线精品| 久久精品人妻少妇| 如何舔出高潮| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美潮喷喷水| 亚洲av电影在线观看一区二区三区 | 人妻制服诱惑在线中文字幕| 18禁在线无遮挡免费观看视频| 欧美三级亚洲精品| 欧美xxxx性猛交bbbb| 国产真实伦视频高清在线观看| 亚洲美女搞黄在线观看| 亚洲国产欧美在线一区| 国产精品不卡视频一区二区| 91精品伊人久久大香线蕉| 日本-黄色视频高清免费观看| 久久久久精品性色| 深夜a级毛片| 久久久久久久久久久丰满| 777米奇影视久久| 亚洲精华国产精华液的使用体验| 亚洲aⅴ乱码一区二区在线播放| 高清午夜精品一区二区三区| 最近的中文字幕免费完整| 中文欧美无线码| av线在线观看网站| 久久人人爽人人爽人人片va| 国产成人一区二区在线| 美女内射精品一级片tv| ponron亚洲| 久久99热6这里只有精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成网站高清观看| 青春草亚洲视频在线观看| 国内精品美女久久久久久| 成年人午夜在线观看视频 | 午夜精品在线福利| 亚洲精品乱码久久久久久按摩| 日本黄色片子视频| 久久久久久伊人网av| 99久久精品一区二区三区| 午夜亚洲福利在线播放| 大陆偷拍与自拍| 五月天丁香电影| 亚洲欧美精品专区久久| 中文在线观看免费www的网站| 夫妻午夜视频| 免费看光身美女| 午夜免费激情av| 欧美精品一区二区大全| 亚洲成人一二三区av| 美女国产视频在线观看| 国产在线男女| av卡一久久| 亚洲精品aⅴ在线观看| 干丝袜人妻中文字幕| 日韩中字成人| 一级爰片在线观看| 超碰av人人做人人爽久久| 在线a可以看的网站| 亚洲欧美一区二区三区国产| 日韩中字成人| 青春草视频在线免费观看| 欧美日韩视频高清一区二区三区二| 99久久九九国产精品国产免费| 禁无遮挡网站| 亚洲自拍偷在线| 亚洲不卡免费看| 亚洲自偷自拍三级| 亚洲在久久综合| 美女cb高潮喷水在线观看| 在线观看av片永久免费下载| 亚洲人成网站在线播| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 80岁老熟妇乱子伦牲交| 亚洲aⅴ乱码一区二区在线播放| 身体一侧抽搐| 极品教师在线视频| 亚洲自偷自拍三级| 一个人看视频在线观看www免费| 春色校园在线视频观看| av播播在线观看一区| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 国产精品99久久久久久久久| 大香蕉97超碰在线| 2021天堂中文幕一二区在线观| 极品少妇高潮喷水抽搐| 亚洲av电影在线观看一区二区三区 | 亚洲电影在线观看av| 天堂俺去俺来也www色官网 | 色视频www国产| 国产精品一及| 午夜免费男女啪啪视频观看| 天美传媒精品一区二区| 精品国产一区二区三区久久久樱花 | 亚洲乱码一区二区免费版| 精品久久久久久成人av| 国国产精品蜜臀av免费| .国产精品久久| 秋霞在线观看毛片| av免费在线看不卡| 97超碰精品成人国产| 久久99热这里只频精品6学生| 日本黄大片高清| 超碰97精品在线观看| 免费电影在线观看免费观看| 国产又色又爽无遮挡免| 成人无遮挡网站| 久久99精品国语久久久| 又黄又爽又刺激的免费视频.| 我要看日韩黄色一级片| 久久久久国产网址| 国产精品久久视频播放| 午夜福利在线观看免费完整高清在| 精品午夜福利在线看| 日韩欧美精品免费久久| 国产成人精品福利久久| 国精品久久久久久国模美| 欧美不卡视频在线免费观看| 国产精品久久视频播放| 国产老妇女一区| 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 禁无遮挡网站| 一区二区三区高清视频在线| 午夜激情福利司机影院| 国产一区二区三区av在线| 亚洲成人一二三区av| 日韩精品有码人妻一区| 国产久久久一区二区三区| 日日撸夜夜添| 乱码一卡2卡4卡精品| 五月玫瑰六月丁香| 人人妻人人看人人澡| 欧美一区二区亚洲| 白带黄色成豆腐渣| 男插女下体视频免费在线播放| 亚洲精品aⅴ在线观看| 久久人人爽人人片av| 亚洲精品日韩av片在线观看| 国产久久久一区二区三区| 爱豆传媒免费全集在线观看| 久久这里有精品视频免费| 欧美性感艳星| 成人高潮视频无遮挡免费网站| videossex国产| 成人毛片60女人毛片免费| 亚洲精品第二区| av播播在线观看一区| 亚洲不卡免费看| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区黑人 | 男人舔奶头视频| 最近最新中文字幕大全电影3| 嫩草影院新地址| 久久精品人妻少妇| 国产色爽女视频免费观看| 国产av国产精品国产| 亚洲精品日韩在线中文字幕| videos熟女内射| 国产高清有码在线观看视频| 亚洲精品自拍成人| 国产一区有黄有色的免费视频 | 中文字幕av在线有码专区| 能在线免费看毛片的网站| 亚洲熟女精品中文字幕| 国产欧美日韩精品一区二区| 日韩欧美精品免费久久| 婷婷色综合大香蕉| 免费av观看视频| 久久久久网色| 亚洲av成人精品一二三区| 国产成人一区二区在线|