• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter estimation and reliable fault detection of electric motors

    2014-12-07 08:00:01DusanPROGOVACLeYiWANGGeorgeYIN
    Control Theory and Technology 2014年2期

    Dusan PROGOVAC,Le Yi WANG,George YIN

    1.Delphi Corporation,3000 University Drive,Auburn Hills,MI 48326,U.S.A.;

    2.Department of Electrical and Computer Engineering,Wayne State University,Detroit,MI 48202,U.S.A.;

    3.Department of Mathematics,Wayne State University,Detroit,MI 48202,U.S.A.

    Parameter estimation and reliable fault detection of electric motors

    Dusan PROGOVAC1,Le Yi WANG2?,George YIN3

    1.Delphi Corporation,3000 University Drive,Auburn Hills,MI 48326,U.S.A.;

    2.Department of Electrical and Computer Engineering,Wayne State University,Detroit,MI 48202,U.S.A.;

    3.Department of Mathematics,Wayne State University,Detroit,MI 48202,U.S.A.

    Accurate model identification and fault detection are necessary for reliable motor control.Motor-characterizing parameters experience substantial changes due to aging,motor operating conditions,and faults.Consequently,motor parameters must be estimated accurately and reliably during operation.Based on enhanced model structures of electric motors that accommodate both normal and faulty modes,this paper introduces bias-corrected least-squares(LS)estimation algorithms that incorporate functions for correcting estimation bias,forgetting factors for capturing sudden faults,and recursive structures for efficient real-time implementation.Permanent magnet motors are used as a benchmark type for concrete algorithm development and evaluation.Algorithms are presented,their properties are established,and their accuracy and robustness are evaluated by simulation case studies under both normal operations and inter-turn winding faults.Implementation issues from different motor control schemes are also discussed.

    Electric machine;Parameter estimation;Fault detection;Brushless direct current(BLDC)motor;Bias correction;Forgetting factor

    1 Introduction

    This paper introduces new methods for accurate parameter estimation and reliable fault detection of inverter powered electric motors.Brushless direct current(BLDC)and permanent magnet alternate current(PMAC)motors are used as a benchmark platform to develop our methods.Electric motors are essential parts of electric and hybrid vehicle powertrains[1-3]and other diversified industrial applications[4].Accurate model identification and fault detection are necessary for reliable motor control[5].Motor-characterizing parameters experience substantial changes or sudden jumps due to aging,motor operating conditions,or faults[6,7].Consequently,motor parameters must be estimated ac-curately during operation,leading to a system identification problem[8,9].

    This paper employs 3-phase motors as a platform to develop algorithms for identifying motor parameters during normal operations and detecting stator winding faults.To facilitate this study,an enhanced model of 3-phase permanent magnet(PM)motors is developed that accommodates both normal and faulty operating conditions.Due to high measurement noise,motor parameter estimation is a challenging problem.Both motor inputs and outputs are corrupted by noise,leading to an errors-in-variables identification(EIV)problem[10].An EIV structure is known to introduce identification bias[11].Motor faults entail sudden jumps in motor dynamics.To diagnose the faults promptly,identification algorithms must achieve a good balance between fast fault detection(which prefers a short data window),and noise attenuation(which is achieved by averaging,preferably over a large data window).Also,motor controller frameworks are pre-designed and must be accommodated in system identification.

    This paper introduces an enhanced least-squares(LS)estimation algorithm that incorporates a function for correcting estimation bias,a forgetting factor for capturing sudden faults,and a recursive structure for efficient real-time implementation.Algorithms are presented,their properties are established,and their accuracy and robustness are evaluated by simulation case studies under both normal operations and inter-turn winding faults.One contribution of this paper is the development of new bias correction algorithms with forgetting factors in a recursive structure.Traditionally,bias correction in an EIV problem was treated by modified correction terms,instrumental methods,or prediction error methods[10-12].The issues of estimation bias and its correction for battery model identification and state-of-charge estimation were discussed in our earlier papers[13,14],without consideration of forgetting factors and the corresponding recursive algorithms.

    The rest of the paper is organized into the following sections.Section 2 establishes enhanced model structures for three-phase balanced PM motors in normal and faulty conditions.Identification algorithms are introduced in Section 3.In Section 4,bias-corrected LS algorithms are presented and their bias correction capabilities are established.Section 5 discusses practical aspects of motor estimation,involving different motor control schemes.Reliability of parameter estimation under these schemes is studied.For fast diagnosis of faults,system identification must balance speed and accuracy.Section 6 introduces forgetting factors into our bias correction algorithms.Recursive algorithms are derived.Section 7 concentrates on inter-turn fault diagnosis.Basic algorithms are introduced and evaluated by case studies.Section 8 highlights the main findings of this paper and points out some worthy open problems.Some preliminary ideas of this paper were reported in[15].

    2 Enhanced PM motor models under normal operation and faulty conditions

    This section describes models of surface mounted PM motors.For working principles,types,mechanisms,and control systems of PM motors,we refer the reader to[4,6]for details.Exploration on modeling and diagnosis of surface mounted PM machines can be found in[5,7,16-18].In this paper,we introduce an enhanced model for PM motors in normal and faulty conditions.The three-phase balanced stator windings under normal operating conditions are illustrated in Fig.1.Under a balanced construction,all phases have the same parameters and are symmetric.

    Fig.1 Three phase stator winding.

    We start with models of healthy stator windings;see Fig.1,in which the windings are assumed to be sinusoidally distributed.1It should be emphasized that the model structures are also valid under other types of flux linkages and back electromotive force(EMF),such as trapezoidal types.Since the stator windings are balanced,without loss of generality,we use phase a as a generic phase.The state equation for healthy stator windings is

    wherevais the phase-a winding terminal voltage(V),iais the phase-a current(A),Ris the phase-a resistance(Ω),and λais the total phase-a flux linkage(Wb).Under the assumption of magnetic linearity and infinite permeability of iron,the flux linkage is related to the phase current and magnetic coupling byHere,Lis the phase-a inductance(H),Mis the stator phase crossinductance(H),λMis the stator/rotor magnetic coupling flux linkage(Wb),fis the electric angular speed of the rotor(Hz),and typically δa=0(rad)(δb=-2π/3 and δc=2π/3).

    Assume that there is no saliency,i.e.,the air gap between the rotor and the stator is constant.Then,the stator inductance is constant and does not depend on the relative rotor position.It follows from(1)that

    This can be written compactly as

    whereIis the identity matrix,and

    with

    Within this frame,when the stator is subject to a winding fault,model(3)is perturbed.We will use the phase-a fault as a benchmark case in our derivations,see Fig.2.Detection algorithms for phase-b and phase-c faults are similar.

    Suppose that the original number of turns of phase a isNafor whichNasturns are shorted.Denote μ=Nas/Na,the ratio of faulty turns.It is noted that the fault introduces a fault currentifthrough the bypass branch of resistanceRfin Fig.2.Fault diagnosis is built on the following enhanced model which captures inter-turn faults with bypass resistance.Here,we assume that the healthy motor model has been identified with model parametersR,L,M,λMestimated.Fault detection aims to identify additional parameters that represent inter-turn faults.From Fig.2,such parameters include μ andRf.

    Fig.2 Three phase stator windings with a bypass fault in phase a.

    Following the same principles as before,under a fault of 0<μ<1 in phase a with resistanceRf,the model(3)is perturbed to

    wherevfis the voltage cross the faulty turns.By eliminatingvf,we obtain

    The first equation implies

    which,after substituting into the fourth equation,leads to

    It is interesting to note that this relationship betweenvfandvais independent of the valueL.

    Now,using(6)to eliminateifin the first three equations in(4)results in

    These can be compactly expressed as

    whereHandgare defined before,andG1=(R,0,0)′,G2=(L,M,M)′.

    Next,we discretize(7)for implementation of algorithms on a computer.Suppose that the sampling interval is τ.LetThen,(7)is discretized to

    where we have

    This paper investigates motor parameter estimation under normal operating conditions and fault detection.Simulation models will be used to schedule a fault appearance.Starting with a normal operation,a fault is then simulated in phase a at a certain time.Our enhanced model is then used to represent the voltagecurrent profiles after the fault.These will be covered in the subsequent sections.

    3 Identification algorithms

    3.1 Regression models for system identification

    The healthy motor model(3)contains four parametersR,L,Mand λM.For system identification,we rewrite(3)in the form of

    It is noted that the dimensions areθ∈R4.Also,although physically it is more convenient to view the phase voltages as the input and the currents as the output for the motor models,for system identification we follow(11)to viewvkas the output andikas the input.As a result,in the sebsequent discussions,output noises will refer to voltage measurement noises and input noises will be current measurement noises.

    3.2 Algorithms

    Due to measurement errors and disturbances,observations are corrupted by noisesCurrent measurement noises introduce a perturbation on the regressorConsequently,the regression relationship that utilizes measured values isk.Here,ekis due to noises on the voltage and δkis induced from the current measurement noises.

    Assumption 1The joint vector sequence{[εk,ek]}is stationary and strongly ergodic(in the sense of convergence with probability one(w.p.1))such thatand that both{[εk,ek]}andare ergodic.That is,0,w.p.1 aswhereSis a nonnegative definite matrix w.p.1 asN→∞.Here,E(.)denotes the expectation.

    Note that the noises are zero mean,but we do not need the sequences{εk}and{ek}to be independent or uncorrelated.A sufficient condition to ensure the ergodicity in the above assumption is that the underlying sequence is a stationary φ-mixing sequence,which is a sequence whose remote past and distant future are asymptotically independent.The well-known results[19,p.488]then yield that[εk,ek]and{[εk,ek][εk,ek]′}are strongly ergodic.

    AfterNobservations,denote

    We illustrate our basic algorithms with the following example.

    Example 2A PM motor has the following true parameters:R=2.8750Ω,L=0.0064H,M=-0.0021H,λM=0.1750Wb.This model is simulated on a Matlab platform.The sampling frequency is 100kHz or equivalently the sampling interval is τ=0.01ms.The applied voltage profiles are balanced three-phase sinusoid waveforms of peak value 500V and frequency 60Hz.The simulation is run for a total 2000 sampling points.The output(voltage)is corrupted by noise,which is a Gaussian i.i.d.(independent and identically distributed)process of zero mean and standard deviation σv=20V.The LS algorithm(12)is applied.Fig.3 demonstrates the parameter estimation error trajectories.The error is defined as‖θN-θ‖where‖.‖is the Euclidean norm.In this case,estimation is quite accurate.

    We demonstrate in Section 4 that if the input is also subject to measurement noise,this algorithm will introduce identification bias,namely,parameter estimates will converge to values different from the true value.

    Fig.3 Estimation error trajectories with output noise only.

    4 Identification bias and correction

    4.1 Errors-in-variables identification and estimation bias

    ProofThis follows from

    This completes the proof.

    Fig.4 Impact of input measurement noise on estimation bias.

    4.2 Bias correction by modified LS algorithms

    Identification bias can be corrected if Σ andBare known.Algorithm(12)is now modified to

    Theorem 5Under the assumptions of Theorem 3,the estimates in(13)satisfy θN→ θ,w.p.1 asN→ ∞.

    ProofBy the strong law of large numbers,asN→∞,

    This completes the proof.

    The modified LS algorithm(13)can be recursified for real-time computational efficiency.The following recursive algorithm was introduced in[13].

    Theorem 6[13] The estimates θNin(13)can be updated recursively as

    Example 7Continuing the study from Example 4,we note that when the input noise exists and bias correction method is not applied,at the exit point(N=2000)the norm of the estimation error is 2.486(a sample result in simulation).Now we apply our bias correction algorithm,the estimation error at the exit point is reduced to 0.0061.

    5 Case studies on parameter estimation and implementation considerations

    Practical motors involve certain physical system structures,nonlinearities,auxiliary driving circuits,and time delays.This section includes some more realistic simulation studies that accommodate further motor details.

    Two types of stator construction are common for PM machines:sinusoidal winding distribution for permanent magnet synchronous machines(PMSM)and concentrated winding for BLDC motors.In the first case,the back EMF is sinusoidal.The back EMF under concentrated winding is trapezoidal.One important difference between these two types is that synchronous machines have continuous currents through all windings(180-degree current leads).In contrast,BLDC machines will have 'square' currents with 120-degree leads.Consequently,for each winding there is a time interval when there is no current through a particular winding.

    Typical PM configurations include the six-step controlled PM motor shown in Fig.5,the filed-oriented control(FOC),and the self-controlled system.In the six-step motor,its inverter has six signal levels and requires the lowest closed-loop bandwidth.Sensor delay is a critical parameter because it results in model mismatch.The FOC motor directly controls the stator rotating magnetic field on the rotating frame to provide maximal torque generation and to ensure smoothness of rotor movements.The self-controlled operation is a simplified FOC that employs a stator-based coordinate frame.It is simple in construction,but requires high bandwidths,generates more noise,and is less smooth in rotor movements than the other two types[18].

    We now present simulation studies for stator winding parameter identification under normal operating conditions.The motor is a six-step controlled motor with sinusoid state winding.The motor true parameters are the same as in Example 2.In this case,R,L,Mand λMare to be estimated under a closed-loop configuration.The model sampling time is 0.1ms.A total of 10000 data points are used in this study.Due to PWM control circuits,the driving voltages' profiles are no longer sinusoid waveforms.The phase current waveforms are also quite different.These are shown in Fig.6.

    Fig.5 Six-step controlled PM motor.

    Fig.6 Phase voltage and current profiles.

    To understand further the impact of current measurement noises,we compare two cases:1)Only voltage(output in system identification)measurements have noises;2)both voltage and current measurements are subject to noises.The least-squares algorithm(12)is applied.In the first case,only the output(voltage)is corrupted by noise,which is a sequence of Gaussian i.i.d.random variables with zero mean and standard deviation σv=50V.Estimates are shown in Fig.7.The top plot shows that when no input noise exists,the LS algorithm generates highly accurate estimates.When an input noise is added to the current measurements,which is a Gaussian i.i.d.sequence with zero mean and standard deviation σi=10A,the bottom plot illustrates that the parameter estimation has a bias,which is about 2.1,or a relative estimation error 72%.This is a persistent bias that does not decrease with an increase in data size.

    Fig.7 Impact of input measurement noise on estimation bias.

    The bias correction algorithm(13)is then applied.The estimated parameter values at the exit point are listed in Table 1.The norm of the estimation error is 0.011,or a relative error 0.3826%.

    Table 1 Estimates from bias-corrected LS algorithm.

    6 Fast tracking and forgetting factors

    whereWN=diag{λN,λN-1,...,λ,1}.When λ=1,it is reduced to the un-weighted LS algorithm.When λ is close to 0,only most recent data are used in estimating parameters.λ is called a 'forgetting factor'.There is a key trade-off in selecting λ.If λ is close to 1,then historical data remain heavily weighted.Consequently,fault detection will be slow.On the other hand,if λ is small,the fault detection will be faster,but noise attenuation capability will be compromised,which follows from the laws of large numbers[19].

    LetThen,(14)can be written as

    whose solution can be obtained by the LS result withYNreplaced byQNYNand ΦNbyQNΦN,as

    When both input and output noises are taken into consideration,(15)becomes

    However,when input noises cause bias in LS estimates,(16)will be subject to bias as well.We note that,which implies.As a result,On the other hand,

    We should point out that since 0<λ<1,the factorin(13)is no longer needed here.We now derive a recursive algorithm for(17).LetandBy stationarity,these quantities do not depend onN.

    Theorem 8Given a forgetting factor 0<λ≤1,the bias-corrected LS estimate θNwith forgetting factor λ in(17)can be updated recursively as

    ProofFrom(17),On the other hand,

    Let.Then,

    By the matrix inversion lemma

    Moreover,

    Define.Then,

    Finally,

    This completes the proof.

    7 Diagnosis of stator winding faults

    7.1 Inter-turn fault

    Fig.8 shows rotor speed trajectories for a six-step controlled motor when an inter-turn fault happens in phase a att=2s with fault bypass resistanceRf=100Ω.It is noted that when a fault happens the closed-loop regulation has difficulty in maintaining the required rotor speed if the leakage insulation is close to a short circuit.We will present a new detection algorithm which can detect such a fault with accuracy.

    Fig.8 Six-step controlled motor with a winding fault at t=2s,Rf=100 Ω.

    7.2 Estimation of κ

    The estimation algorithms under normal operating conditions provide nominal values of balanced stator winding parameters.In this section,we concentrate on fault detection.Fault detection methods for multi-phase electrical motors can take advantage of balanced phase designs.Since all phases are symmetric,faults will alter parameter values and create an imbalanced condition between any pair of phases that can be used for detecting and isolating faults.Stator winding faults can spread quickly.Without prompt detection and protective actions,the condition can deteriorate rapidly.As aresult,it is extremely important that fault detection is fast,which creates a challenging situation for designing identification algorithms.Rotor speed fluctuations can be affected by both faults and load variations.As a result,fault detection and isolation from rotor speed fluctuations are not reliable in the majority of practical situations.

    wherezkand ψkcan be easily derived from(8).For computation ofzkand ψk,we point out that the inverse ofHcan be explicitly computed as

    It is apparent that all previous algorithms remain viable,withykreplaced byzkand φkby ψk.As a result,we will not spell out the details here.To distinguish from the previous expressions,we will express the bias correction algorithm as

    Note that the correction terms ξ andbare scalars,and the inverse is changed to a division here.

    Example 9We first examine the bias from measurement noises.From the regressor expression in(18),the voltage measurement noises will cause estimation bias.We evaluate estimation biases on κ by applying i.i.d.Gaussian measurement noises of zero mean but different variances.σvis the standard deviation of the voltage measurement noise,and σiis the standard deviation of the current measurement noise.Table 2 illustrates estimation errors when noise variances increase.The sampling interval is 10ms,the estimation data length is 10000,μ=0.5(50%inter-turn fault),Rf=10,L=0.0064,M=-0.0021,R=2.8750.Apparently,the estimation biases are quite significant.

    Table 2 Estimation errors on κ without bias correction.

    Example 10In comparison,if the bias-corrected estimation algorithm(19)is applied,the estimation accuracy can be significantly improved.This is shown in Table 3 under the same simulation conditions.Since the noises are i.i.d.,b=0.Hence,the bias correction is based on ξ.

    Table 3 Estimation errors on κ with bias correction.

    7.3 Fast fault detection with forgetting factor

    One critical requirement for fast fault detection is to make the identification algorithms rely more heavily on the recent data.As discussed in Section 6,this can be achieved by employing forgetting factors.To illustrate the impact of forgetting factors on the speed of fault detection,we select different values of λ and show the corresponding trajectories of estimates in tracking κ af-ter a fault occurrence in Fig.9.It is clear that to achieve fast tracking capability,a relatively small λ should be selected.

    Fig.9 Estimation of κ under different forgetting factor λ.

    7.4 Statistics for ξ and b

    The bias correction algorithm(19)relies on the knowledge of ξ andbto devise correction actions.In practical applications,such covariance values may not be availablea priori.As a result,they need to be estimated also.We now present an estimation scheme for ξ andb.For simplicity,we assume that all sensor noises are Gaussian i.i.d.random variables.

    The identification equation for κ isZN= ΨNκ.We assume that the three-phase motor model is known.Hence ΨNis known.The measurement equations areSubstituting these equations in ΨN,we obtainThe bias correction term is the limitwhich can be used to estimate ξ.

    8 Conclusions

    Parameter identification for three-phase motors is a difficult task due to measurement noise.The methodology introduced in this paper enhances the traditional LS algorithms with integrated bias removal and forgetting factors.By relating winding faults to changes in a characterizing variable,fault detection is explored in the identification framework.In addition,by exploiting the symmetry of phases in balanced PM stator windings,we introduce a ratio test to isolate faults with fast response and convergence.We demonstrate that our bias removal algorithms can significantly improve fault detection reliability when measurement noises are present.A related topic is control algorithms for running a three-phase motor when only two phases are functional.Combined with our fault detection algorithms,this joint diagnosis and control strategy can potentially provide robustness in motor operations when faults occur.

    [1]J.Larminie,J.Lowry.Electric Vehicle Technology Explained.2nd ed.New York:John Wiley&Sons,2012.

    [2]C.Mi,A.Masrur,D.Gao.Hybrid Electric Vehicles:Principles and Applications with Practical Perspectives.New York:John Wiley&Sons,2011.

    [3]Robert Bosch GmbH.Bosch Automotive Handbook.8th ed.New York:John Wiley&Sons,2011.

    [4]B.S.Guru,H.R.Hiziroglu.Electric Machinery and Transformers.New York:Oxford University Press,2001.

    [5]J.Chiasson.Modeling and High-Performance Control of Electric Machines.New York:John Willey&Sons,2005.

    [6]A.E.Fitzgerald,C.Kingsley Jr.,S.D.Umans.Electric Machinery.6th ed.Berkshire:McGraw-Hill Science/Engineering/Math,2002.

    [7]P.Arumugam,T.Hamiti,C.Brunson,et al.Analysis of vertical strip wound fault-tolerant permanent magnet synchronous machines.IEEE Transactions on Industrial Electronics,2013,61(3):1158-1168.

    [8]T.Soderstom,P.Stoica.System Identification.Englewood Cliffs:Printice Hall,1989.

    [9]L.Ljung.System Identification:Theory for the User.Englewood Cliffs:Prentice-Hall,1987.

    [10]P.Stoica,T.S?derst?m,V.ˇSimonyt˙e.Study of a bias-free least squares parameter estimator.IEEE Proceedings-Control Theory and Applications,1995,142(1):1-6.

    [11]T.S?derst?m,W.Zheng,P.Stoica.Comments on"On a leastsquares based algorithm for identification of stochastic linear systems".IEEE Transaction on Signal Processing,1999,47(5):1395-1396.

    [12]M.Hong,T.S?derst?m,W.Zheng.Accuracy analysis of bias-eliminating laeast-squares estimates for errors-in-variables systems.Automatica,2007,43(9):1590-1596.

    [13]M.Sitterly,L.Wang,G.Yin,et al.Enhanced identification of battery models for real-time battery management.IEEE Transactions on Sustainable Energy,2011,2(3):300-308.

    [14]L.Liu,L.Wang,Z.Chen,et al.Integrated system identification and state-of-charge estimation of battery systems.IEEE Transactions on Energy Conversion,2013,28(1):12-23.

    [15]D.Progovac,L.Wang,G.Yin.System identification for fault diagnosis of permanent magnet machines and its applications to inter-turn fault detection.IEEE Transportation Electrification Conference and Expo(ITEC),Piscataway:IEEE,2013:DOI 10.1109/ITEC.2013.6573486.

    [16]L.Romeral,J.C.Urresty,J.R.R.Ruiz,et al.Modeling of surface-mounted permanent magnet synchronous motors with stator winding interturn faults,IEEE Transactions on Industrial Electronics,2011,58(5):1576-1585.

    [17]B.M.Ebrahimi,J.Faiz,M.J.Roshtkhari.Static-,dynamic-,and mixed-eccentricity fault diagnoses in permanent-magnet synchronous motors.IEEE Transactions on Industrial Electronics,2009,56(11):4727-4739.

    [18]D.W.Novotni,T.A.Lipo.Vector Control and Dynamics of AC Drives.New York:Oxford University Press,1996.

    [19]S.Karlin,H.M.Taylor.A First Course in Stochastic Processes.2nd ed.New York:The Academic Press,1975.

    12 November 2013;revised 15 January 2014;accepted 21 February 2014

    DOI10.1007/s11768-014-0178-y

    ?Corresponding author.

    E-mail:lywang@wayne.edu.Tel.:+313-577-4715;fax:+313-577-1101.

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Dusan PROGOVACreceived the B.S.degree in Electrical Engineering in 1988 and his M.S.degree in Mathematics in 1987 all from University of Southern California,Los Angeles.Since 1988,he has been working as Senior Engineering Specialist for General Dynamics Land System,Senior Project Engineer for TRW,Project Design Engineer at Ford Motor Company,and Software Engineer at Delphi Corporation.He also worked as Associate Lecturer for Department of Mathematics,University of Wisconsin at Milwaukee.His research interests are in the areas of information complexity,system identification,detection of abrupt changes,fault detection and vehicle powertrain control systems.He presented his papers at several conferences and he has been Program Committee Member for International Conferences.E-mail:dusan.progovac@delphi.com.

    Le Yi WANGreceived the Ph.D.degree in Electrical Engineering from McGill University,Montreal,Canada,in1990.Since1990,he has been with Wayne State University,Detroit,Michigan,where he is currently a professor in the Department of Electrical and Computer Engineering.His research interests are in the areas of complexity and information,system identification,robust control,H∞optimization,time-varying systems,adaptive systems,hybrid and nonlinear systems,information processing and learning,as well as medical,automotive,communications,power systems,and computer applications of control methodologies.He was a keynote speaker in several international conferences.He was an associate editor of the IEEE Transactions on Automatic Control and several other journals,and currently is an associate editor of the Journal of System Sciences and Complexity and Control Theory and Technology.He is a Fellow of IEEE.E-mail:lywang@wayne.edu.

    George YINjoined Wayne State University in 1987 and became a professor in 1996.Working on stochastic systems,he is Chair of SIAM Activity Group in Control and Systems Theory and is one of the Board of Directors of American Automatic Control Council.He was Co-Chair of SIAM Conference on Control&Its Application,2011,Co-Chair of 1996 AMS-SIAM Summer Seminar and 2003 AMS-IMS-SIAM Summer Research Conference,Coorganizer of 2005 IMA Workshop on Wireless Communications.He chaired the SIAM W.T.and Idalia Reid Prize Committee,the SIAG/Control and Systems Theory Prize Committee,and the SIAM SICON Best Paper Prize Committee.He is an associate editor of Control Theory and Technology,SIAM Journal on Control and Optimization,and on the editorial board of many other journals and book series.He was an associate editor of Automatica and IEEE T-AC.He was President of Wayne State University's Academy of Scholars.He is a Fellow of IEEE.Email:gyin@math.wayne.edu.

    少妇的逼水好多| 女生性感内裤真人,穿戴方法视频| av天堂中文字幕网| 亚洲无线观看免费| 亚洲国产欧美网| 国产亚洲精品av在线| 天堂av国产一区二区熟女人妻| 无人区码免费观看不卡| 成年免费大片在线观看| 日本黄色片子视频| av片东京热男人的天堂| 免费在线观看成人毛片| 国产69精品久久久久777片 | 757午夜福利合集在线观看| 亚洲av五月六月丁香网| 激情在线观看视频在线高清| 日本成人三级电影网站| 色哟哟哟哟哟哟| 一区二区三区高清视频在线| 国产精品影院久久| 婷婷精品国产亚洲av在线| 久久久久亚洲av毛片大全| av天堂在线播放| 亚洲国产精品sss在线观看| 美女午夜性视频免费| 国产蜜桃级精品一区二区三区| 欧美黄色片欧美黄色片| 国产高清视频在线观看网站| 九色成人免费人妻av| 十八禁网站免费在线| 国产精品九九99| 国产午夜精品久久久久久| 亚洲熟妇熟女久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲18禁久久av| 亚洲国产欧洲综合997久久,| 宅男免费午夜| 欧美黑人欧美精品刺激| 久久精品国产清高在天天线| 五月玫瑰六月丁香| 视频区欧美日本亚洲| 噜噜噜噜噜久久久久久91| 亚洲av熟女| 免费看十八禁软件| 国产成人aa在线观看| 免费看日本二区| 欧美另类亚洲清纯唯美| 99久久精品一区二区三区| 在线国产一区二区在线| 在线观看舔阴道视频| 成人永久免费在线观看视频| 757午夜福利合集在线观看| 一级黄色大片毛片| 小说图片视频综合网站| 全区人妻精品视频| 久久久久久九九精品二区国产| 嫩草影视91久久| 日韩欧美精品v在线| 久久亚洲精品不卡| 美女黄网站色视频| 波多野结衣高清作品| 淫秽高清视频在线观看| 九九热线精品视视频播放| 最近视频中文字幕2019在线8| 亚洲性夜色夜夜综合| 18禁美女被吸乳视频| 18美女黄网站色大片免费观看| 色精品久久人妻99蜜桃| 国产精品美女特级片免费视频播放器 | 国产高清有码在线观看视频| 国产成人精品久久二区二区91| 99久久无色码亚洲精品果冻| 日日干狠狠操夜夜爽| 日日干狠狠操夜夜爽| 亚洲五月天丁香| 十八禁人妻一区二区| 国产成人aa在线观看| 真人一进一出gif抽搐免费| 欧美成狂野欧美在线观看| 男女之事视频高清在线观看| 国产精品一及| 国产精品九九99| 欧美xxxx黑人xx丫x性爽| 三级毛片av免费| 非洲黑人性xxxx精品又粗又长| 精品99又大又爽又粗少妇毛片 | 波多野结衣巨乳人妻| 国产亚洲精品一区二区www| 啦啦啦韩国在线观看视频| 成人永久免费在线观看视频| 亚洲精品在线观看二区| av在线蜜桃| 老熟妇仑乱视频hdxx| 12—13女人毛片做爰片一| 老汉色∧v一级毛片| 国产精品久久久久久亚洲av鲁大| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久久久亚洲av鲁大| 人人妻,人人澡人人爽秒播| 久久欧美精品欧美久久欧美| 五月伊人婷婷丁香| 一进一出好大好爽视频| 久久天堂一区二区三区四区| 床上黄色一级片| 欧美一区二区国产精品久久精品| 亚洲精品粉嫩美女一区| 久久精品影院6| 国产精品自产拍在线观看55亚洲| 亚洲无线在线观看| 国产黄色小视频在线观看| 国产精品久久视频播放| 女警被强在线播放| 成年免费大片在线观看| www.精华液| 天堂av国产一区二区熟女人妻| 国产精品一区二区三区四区免费观看 | 欧美日韩乱码在线| 嫩草影院入口| 国产成人一区二区三区免费视频网站| 99久国产av精品| 成人亚洲精品av一区二区| 国产 一区 欧美 日韩| 免费观看精品视频网站| 黑人欧美特级aaaaaa片| 国产成+人综合+亚洲专区| 熟女电影av网| 欧美一区二区精品小视频在线| www日本黄色视频网| 亚洲激情在线av| 99re在线观看精品视频| 1024香蕉在线观看| 黄片小视频在线播放| 91麻豆精品激情在线观看国产| 亚洲激情在线av| 九色成人免费人妻av| 久久中文字幕一级| 黄色视频,在线免费观看| 国产成人精品无人区| 天天躁日日操中文字幕| 国产精品久久视频播放| 日本一二三区视频观看| 午夜激情福利司机影院| 国产成人啪精品午夜网站| 亚洲天堂国产精品一区在线| 真人做人爱边吃奶动态| 在线观看免费视频日本深夜| 亚洲美女黄片视频| 黄色女人牲交| 午夜福利免费观看在线| 亚洲国产精品成人综合色| 亚洲人成电影免费在线| 人妻久久中文字幕网| 国内精品久久久久精免费| 欧美乱色亚洲激情| 精品国产超薄肉色丝袜足j| 国产又色又爽无遮挡免费看| 日本精品一区二区三区蜜桃| 成人午夜高清在线视频| 在线免费观看不下载黄p国产 | 中文在线观看免费www的网站| 午夜精品一区二区三区免费看| 日韩精品中文字幕看吧| 成人av一区二区三区在线看| 国产一区在线观看成人免费| www日本黄色视频网| 色综合站精品国产| 亚洲五月天丁香| 中出人妻视频一区二区| 国产av麻豆久久久久久久| 老司机深夜福利视频在线观看| 国内精品美女久久久久久| 男女做爰动态图高潮gif福利片| 女生性感内裤真人,穿戴方法视频| 午夜福利在线观看吧| 亚洲色图 男人天堂 中文字幕| 18禁黄网站禁片午夜丰满| 日本三级黄在线观看| 中文字幕av在线有码专区| 欧美乱码精品一区二区三区| 色老头精品视频在线观看| 国产精品一区二区精品视频观看| 国产伦一二天堂av在线观看| 女同久久另类99精品国产91| 国产乱人视频| 亚洲美女视频黄频| a级毛片a级免费在线| 亚洲七黄色美女视频| av视频在线观看入口| 日本免费a在线| 欧美色视频一区免费| 99国产精品一区二区蜜桃av| av女优亚洲男人天堂 | 国产av在哪里看| 特级一级黄色大片| 亚洲成人免费电影在线观看| 国产男靠女视频免费网站| 在线免费观看的www视频| 欧美一区二区国产精品久久精品| 色精品久久人妻99蜜桃| 久久久久九九精品影院| 午夜激情欧美在线| 亚洲精品乱码久久久v下载方式 | 亚洲天堂国产精品一区在线| 91九色精品人成在线观看| 亚洲人成网站在线播放欧美日韩| 男人舔奶头视频| 99re在线观看精品视频| 日韩三级视频一区二区三区| 免费人成视频x8x8入口观看| 亚洲成av人片免费观看| 最新在线观看一区二区三区| 精品一区二区三区av网在线观看| 亚洲成av人片在线播放无| 小说图片视频综合网站| 久久久久久九九精品二区国产| 久久99热这里只有精品18| 久久香蕉国产精品| 国产黄色小视频在线观看| 老司机午夜十八禁免费视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区字幕在线| 嫩草影视91久久| 欧美黑人欧美精品刺激| 嫁个100分男人电影在线观看| 狂野欧美激情性xxxx| 精品一区二区三区av网在线观看| 亚洲欧美日韩东京热| 一进一出抽搐gif免费好疼| 一级a爱片免费观看的视频| 亚洲av免费在线观看| 欧美zozozo另类| 别揉我奶头~嗯~啊~动态视频| 亚洲精品乱码久久久v下载方式 | 少妇的丰满在线观看| 久久久久久久久免费视频了| 国产精品98久久久久久宅男小说| 无遮挡黄片免费观看| www.999成人在线观看| 欧美xxxx黑人xx丫x性爽| 性欧美人与动物交配| 亚洲av片天天在线观看| 亚洲电影在线观看av| 免费电影在线观看免费观看| 久久天躁狠狠躁夜夜2o2o| 首页视频小说图片口味搜索| 国产精品一区二区免费欧美| 亚洲国产精品合色在线| 午夜免费成人在线视频| 一个人免费在线观看的高清视频| 禁无遮挡网站| 制服人妻中文乱码| 夜夜看夜夜爽夜夜摸| 亚洲av免费在线观看| 在线观看午夜福利视频| www.精华液| 网址你懂的国产日韩在线| 91av网一区二区| 免费观看人在逋| 亚洲人成伊人成综合网2020| 99国产精品99久久久久| 大型黄色视频在线免费观看| 免费高清视频大片| 香蕉国产在线看| 亚洲在线观看片| 国产精品国产高清国产av| 91av网一区二区| 舔av片在线| 久久久久性生活片| 小蜜桃在线观看免费完整版高清| 1000部很黄的大片| 日韩欧美三级三区| 亚洲国产精品成人综合色| 精品午夜福利视频在线观看一区| 免费看光身美女| 天天躁狠狠躁夜夜躁狠狠躁| av在线天堂中文字幕| 精品熟女少妇八av免费久了| 欧美中文综合在线视频| 曰老女人黄片| 美女免费视频网站| 男女视频在线观看网站免费| 精品99又大又爽又粗少妇毛片 | 手机成人av网站| 久久久久亚洲av毛片大全| 嫩草影院精品99| 亚洲人成电影免费在线| 看片在线看免费视频| 此物有八面人人有两片| 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看成人毛片| 亚洲专区字幕在线| www日本黄色视频网| 午夜福利视频1000在线观看| 法律面前人人平等表现在哪些方面| 免费在线观看视频国产中文字幕亚洲| 婷婷精品国产亚洲av在线| 美女黄网站色视频| 欧美成狂野欧美在线观看| 欧美乱码精品一区二区三区| 国产精品久久久av美女十八| 九色成人免费人妻av| 很黄的视频免费| 欧美乱色亚洲激情| 一a级毛片在线观看| 视频区欧美日本亚洲| 99久久精品国产亚洲精品| 精品国内亚洲2022精品成人| 麻豆成人av在线观看| 国产主播在线观看一区二区| 午夜免费激情av| 级片在线观看| 亚洲国产高清在线一区二区三| 国产成人精品无人区| 又爽又黄无遮挡网站| 老司机在亚洲福利影院| 亚洲国产精品999在线| 久久久久久大精品| 黄色片一级片一级黄色片| 亚洲午夜理论影院| 中文字幕人成人乱码亚洲影| 岛国在线免费视频观看| 色尼玛亚洲综合影院| 黄色成人免费大全| 亚洲熟妇熟女久久| 首页视频小说图片口味搜索| 手机成人av网站| 亚洲激情在线av| 亚洲人成电影免费在线| 国产高清三级在线| 日韩中文字幕欧美一区二区| 哪里可以看免费的av片| 美女cb高潮喷水在线观看 | 午夜日韩欧美国产| 久久中文字幕一级| 97超级碰碰碰精品色视频在线观看| 国产精品野战在线观看| 久久久久亚洲av毛片大全| 舔av片在线| 91麻豆av在线| 少妇的逼水好多| 啦啦啦免费观看视频1| 久久天躁狠狠躁夜夜2o2o| 日本一本二区三区精品| 国产精品久久久久久亚洲av鲁大| 久久久久久久精品吃奶| 久久久久精品国产欧美久久久| 久久精品91蜜桃| 最近视频中文字幕2019在线8| 亚洲国产中文字幕在线视频| 两个人的视频大全免费| 亚洲九九香蕉| 亚洲一区高清亚洲精品| 男女那种视频在线观看| 岛国在线观看网站| 又粗又爽又猛毛片免费看| 成年女人永久免费观看视频| 亚洲国产中文字幕在线视频| 亚洲国产高清在线一区二区三| 老汉色av国产亚洲站长工具| tocl精华| 国产精品永久免费网站| 欧美三级亚洲精品| 亚洲精品在线观看二区| 热99在线观看视频| 精品乱码久久久久久99久播| 欧美成人性av电影在线观看| 欧美日韩一级在线毛片| 成人鲁丝片一二三区免费| 国产在线精品亚洲第一网站| 97超级碰碰碰精品色视频在线观看| 一进一出抽搐动态| 一个人免费在线观看电影 | 黄片大片在线免费观看| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| 女生性感内裤真人,穿戴方法视频| 蜜桃久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 国内精品一区二区在线观看| 亚洲国产看品久久| 一本一本综合久久| 亚洲无线观看免费| 黄片小视频在线播放| e午夜精品久久久久久久| 香蕉久久夜色| 在线永久观看黄色视频| 亚洲精品久久国产高清桃花| 日日夜夜操网爽| 男人舔女人下体高潮全视频| 午夜精品久久久久久毛片777| 国产欧美日韩精品一区二区| av国产免费在线观看| 免费观看的影片在线观看| 国产激情欧美一区二区| 国产精品av视频在线免费观看| 757午夜福利合集在线观看| 国产精品香港三级国产av潘金莲| 真人一进一出gif抽搐免费| 韩国av一区二区三区四区| 久久婷婷人人爽人人干人人爱| 可以在线观看的亚洲视频| 国产精品一区二区精品视频观看| 亚洲av成人av| 少妇的丰满在线观看| 九九在线视频观看精品| 女生性感内裤真人,穿戴方法视频| 91麻豆av在线| 亚洲国产高清在线一区二区三| 亚洲av电影在线进入| 国产高清videossex| 国产一区二区在线av高清观看| 久久精品国产99精品国产亚洲性色| 成人特级黄色片久久久久久久| 偷拍熟女少妇极品色| 高清在线国产一区| 999久久久国产精品视频| 亚洲精品中文字幕一二三四区| 啦啦啦观看免费观看视频高清| 又粗又爽又猛毛片免费看| 欧美xxxx黑人xx丫x性爽| 99国产精品99久久久久| 一区福利在线观看| 女警被强在线播放| 变态另类成人亚洲欧美熟女| a级毛片a级免费在线| 国产久久久一区二区三区| 欧美又色又爽又黄视频| 一本久久中文字幕| 免费在线观看视频国产中文字幕亚洲| www.999成人在线观看| 国产激情久久老熟女| 亚洲中文字幕日韩| 91av网站免费观看| 久久久久久人人人人人| 亚洲精品色激情综合| 国产单亲对白刺激| 人妻夜夜爽99麻豆av| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 成人特级黄色片久久久久久久| 性色av乱码一区二区三区2| 中文字幕久久专区| 久久久成人免费电影| 亚洲第一欧美日韩一区二区三区| 日韩免费av在线播放| 俺也久久电影网| 手机成人av网站| 国产伦人伦偷精品视频| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 特大巨黑吊av在线直播| 好男人电影高清在线观看| 亚洲精华国产精华精| 在线观看舔阴道视频| 一二三四社区在线视频社区8| 成年免费大片在线观看| 中文亚洲av片在线观看爽| 少妇裸体淫交视频免费看高清| 夜夜躁狠狠躁天天躁| 国产精品香港三级国产av潘金莲| 最新在线观看一区二区三区| 久久久久久人人人人人| 一边摸一边抽搐一进一小说| 亚洲一区二区三区不卡视频| 老汉色av国产亚洲站长工具| 亚洲国产中文字幕在线视频| 男女午夜视频在线观看| 亚洲欧美日韩高清专用| 在线a可以看的网站| 日本免费a在线| 国产成人精品久久二区二区免费| 波多野结衣高清作品| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | 久久亚洲真实| 人人妻人人看人人澡| 伊人久久大香线蕉亚洲五| 一本久久中文字幕| 日韩国内少妇激情av| 嫩草影院精品99| 一区二区三区国产精品乱码| 婷婷六月久久综合丁香| 国产日本99.免费观看| 国内精品美女久久久久久| 狠狠狠狠99中文字幕| 久久精品国产综合久久久| 黄片小视频在线播放| 国产精品永久免费网站| 97人妻精品一区二区三区麻豆| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 美女cb高潮喷水在线观看 | 午夜亚洲福利在线播放| 啦啦啦观看免费观看视频高清| 国产伦精品一区二区三区视频9 | 亚洲精华国产精华精| 一个人看视频在线观看www免费 | 性色av乱码一区二区三区2| 国产高清三级在线| 国内揄拍国产精品人妻在线| 国产日本99.免费观看| ponron亚洲| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 精品国产乱码久久久久久男人| 99国产精品99久久久久| 黄色女人牲交| 欧美极品一区二区三区四区| 亚洲国产精品999在线| 午夜福利视频1000在线观看| 久久香蕉精品热| 麻豆av在线久日| 日韩精品中文字幕看吧| 天堂动漫精品| 欧美极品一区二区三区四区| av天堂在线播放| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站 | 变态另类成人亚洲欧美熟女| 成人午夜高清在线视频| 亚洲色图av天堂| 欧美成人一区二区免费高清观看 | 成在线人永久免费视频| 搞女人的毛片| 国产精品九九99| 国产精品永久免费网站| 精品国产三级普通话版| 三级毛片av免费| 18禁观看日本| 偷拍熟女少妇极品色| 啦啦啦韩国在线观看视频| 国产成年人精品一区二区| 欧美大码av| 1024香蕉在线观看| 国产v大片淫在线免费观看| 国产av在哪里看| 99热6这里只有精品| 午夜免费成人在线视频| 99在线视频只有这里精品首页| 99久久久亚洲精品蜜臀av| 久9热在线精品视频| 在线观看免费视频日本深夜| 国产成人影院久久av| 中文亚洲av片在线观看爽| 成人无遮挡网站| 国产成+人综合+亚洲专区| 亚洲18禁久久av| 亚洲天堂国产精品一区在线| www日本黄色视频网| 午夜激情福利司机影院| 色老头精品视频在线观看| 成人特级av手机在线观看| 夜夜躁狠狠躁天天躁| 国产不卡一卡二| 亚洲欧美激情综合另类| 国产爱豆传媒在线观看| 最近在线观看免费完整版| 人妻丰满熟妇av一区二区三区| 亚洲美女视频黄频| 国产又黄又爽又无遮挡在线| 在线观看一区二区三区| 桃色一区二区三区在线观看| 亚洲欧美日韩无卡精品| 免费看日本二区| 国产高清激情床上av| 一本精品99久久精品77| 国产真人三级小视频在线观看| 欧美另类亚洲清纯唯美| 丰满的人妻完整版| xxx96com| 国产成年人精品一区二区| 国产精品一区二区免费欧美| 美女黄网站色视频| 可以在线观看毛片的网站| 久久中文字幕人妻熟女| 日韩精品中文字幕看吧| 欧美xxxx黑人xx丫x性爽| 999久久久精品免费观看国产| 亚洲人成电影免费在线| 男女午夜视频在线观看| 精品99又大又爽又粗少妇毛片 | 黄频高清免费视频| 黄色日韩在线| 欧美乱妇无乱码| 伊人久久大香线蕉亚洲五| 日本黄色片子视频| 国产高清激情床上av| 99热这里只有是精品50| 国产午夜精品久久久久久| 韩国av一区二区三区四区| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线 | 久久久久久九九精品二区国产| 亚洲成a人片在线一区二区| 色噜噜av男人的天堂激情| 午夜福利成人在线免费观看| 欧美午夜高清在线| 亚洲av成人精品一区久久| 欧美日韩中文字幕国产精品一区二区三区| 国产熟女xx| 一个人观看的视频www高清免费观看 | 久久国产精品影院| 国产淫片久久久久久久久 | 欧美乱妇无乱码| 嫩草影视91久久| 欧美另类亚洲清纯唯美| 男女床上黄色一级片免费看| 在线观看舔阴道视频| 岛国在线免费视频观看| 亚洲电影在线观看av| xxxwww97欧美|