• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compensation for observed coupling effect in measuring angular deformation of ship hull by laser gyroscope units

    2014-10-24 02:21:28YANGYuntaoWANGXingshuHUANGZongshengWUWei
    關(guān)鍵詞:組合體角速度船體

    YANG Yun-tao, WANG Xing-shu, HUANG Zong-sheng, WU Wei

    (College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)

    Compensation for observed coupling effect in measuring angular deformation of ship hull by laser gyroscope units

    YANG Yun-tao, WANG Xing-shu, HUANG Zong-sheng, WU Wei

    (College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)

    Angular deformation of ship hull is a main alignment error source in transfer alignment and must be accurately calibrated by measurement equipment. By using two laser gyroscope units (LGUs), the angular deformation of ship hull is calculated by attitude matching method. But the observation coupling effect induced by the cross correlation of dynamic deformation and angular rate of ship motion leads to inaccuracy results of optimal estimation. The observation coupling effect cannot be measured by the attitude matching method, and must be measured by other instruments. According to angular rate matching method, the observed coupling effect is studied, and a bias error which causing angular deformation is obtained. It is shown that the bias error can be modulated by angular rate of ship motion. By compensating the angular rate measured by LGUs, the coupling effect is reduced, and high-accuracy alignment results can be achieved. Simulations validates that it is the coupling effect that leads to inaccuracy evaluation of static deformation.

    angular deformation measurement; attitude matching; observation coupling effect; static deformation; laser gyroscope unit

    Angular deformation measurement[1]of ship hull structure are commonly applied to scientific instrumentation vehicles[2]and other naval warships[3-4]. On these large sized vehicles, there are fitted with some peripheral apparatus such as radar antennas, optic systems, etc. Angular orientation of coordinate frame of the subsystems located in different positions and at a distance from the central Master Inertial Navigation System (MINS) can be misaligned with the MINS due to manufacturing tolerance and installation inaccuracies. If there are no flexible body deformations, the alignment errors are referred to as static deformation. In addition, the structure of ship being not completely rigid will flex and deform in response to force of sea waves and also due to solar heating, giving rise to deformation changing with time. So the dynamic deformation and quasi-static deformation are defined as two components of angular deformation. The measurement of angular deformation become urgent and necessary in order to maintain a unified attitude reference of all locations or equipment onboard the entire ship[5]. This is essential when transfer alignment[6-7]is to be carried out for a weapon system on a military vehicle or even to prevent possible damage or destruction on a transport ship due to the changing cargo situation.

    In the paper [8], only based on ring laser gyroscope unit (LGU), an angular rate matching method is derived and represents the relationship of two groups of measuring angular rates respectively when the deformation angles are assumed to be small. The dynamic deformation of ship structure is approximated as second order Gauss-Markov process, thus a linear Kalman filter[9]can be used to estimate angular deformations. Considering that quasi-static deformation is changing slowly with time, it is seen as irregular and nonstationary process and only represented as random walk process with unit root in z-transformation[10]. Moreover, the paper [11] derived another attitude matching method with higher signal to noise ratio (SNR) than that of angular rate matching method.

    But unfortunately, although improvements of angular deformation models and inertial measurement matching methods are much more, the accuracy of optimal estimation is barely satisfied. The reference [12] analyzed an observed coupling effect, which denotes cross correlation of dynamic deformation and angular rate of ship motion by means of structural dynamics.

    In this paper, we derived the error function of angular rate matching method. By analyzing the expectation of error function, we can get the reason of observed coupling effect. In Section 1, angular rate matching and attitude matching methods based on body coordinate frame are re-described and a Kalman filter for estimating angular deformation is applied. Section 2 gives detailed explanation of observed coupling effect emergence. In Section 3, a compensation method for observed coupling effect is derived. Then some simulations are done and some conclusions are finally given in Section 4.

    1 Inertial measurement matching methods

    1.1 Angular rate matching method

    Ship borne angular deformation measurement based on LGU directly measures angular rate, so angular rate matching method can be derived according to projection theorem. According to differential equation of rotating vector quaternion, angular rate matching method can be derived as below:

    Seen from (1), the equation (2) is an approximation formula when assumingis small according to projection theorem.

    Appling small angle approximations in (1), angular rate matching method is given by

    In equation (3), there are two variable vectors and, in whichcan be seen as intermediate variable and determined by modellingthrough linear Kalman filter.

    1.2 Attitude matching method on body coordinate frame

    Attitude matching method based on local geographical coordinate system needs initial alignment provided by MINS, but in fact, the goal of attitude matching method for angular deformation measurement is transfer alignment, which also needs precise angular deformation. So it is obviously contradictory. Described by use of directional cosine matrix (DCM), attitude transition from master coordinate to slave coordinate is derived by[10]:

    By applying small angle approximations, differential equation of (4) is represented as

    Where Z and A are DCMs defined by the reference[11].

    Comparing equation (5) with (3), initial attitude erroris considered. While considering gyro's measurement error, equation (5) becomes[10]:

    1.3 Linear Kalman filter structure

    Based on attitude matching method described by (6), an optimal filter can be built. By the reference [10], angular deformation are modelled and studied.

    Angular deformations comprises of static deformation and dynamic deformation, so they can be modelled respectively as random process with unit root in z-transformation and second order Gauss-Markov random process as below[13-14].

    Moreover, gyro's measurement error consists of two components, which are bias error and random walk error. The first component approximates a constant value and second component approximates white noise.

    Fig. 1 Structures of Kalman filtering using attitude matching method for estimating angular deformations

    According to equations (7)~(10), a linear Kalman filter is built, in which state vectors are presented as below:

    By applying optimal estimation of Kalman filter, Fig.1 shows that angular deformation can be consecutively evaluated.

    2 Observed coupling effect

    The results of Kalman filtering for estimating angular deformation is optimal, and good models are very important. According to angular rate method (3), the error function is given by

    Because Kalman filter is an optimal filter in least square criterion, the residual error of observation Z in eq. (6) approximates statistically Gaussian probability distribution with expectation of zeros. The expectation of (13) is

    When equation (14) is statistically right, observed coupling effect will be emerged. In other words, angular rate of ship motion and dynamic deformation are cross correlated statistically.

    Derive error inequality of (12) as (15):

    Inequality (15) is representation of piece wise stationary random process approximation. Where cond(.) denotes condition number and equation solvability. From (15) some inferences are obtained.

    And measurement function is given by (19).

    A Kalman filter for estimating coupling angle vector is set up as Fig.2.

    Fig.2 Schematic diagram of Kalman filtering for estimating error angular deformation

    3 Compensation for observed coupling effect

    4 Simulation experiments

    Two simulations are done. The first simulation is estimating error angular deformation by Kalman filtering based on attitude matching method. Before and after compensating observed coupling effect, alignment errors are compared in the second simulation.

    Fig.3 Schematic diagram of estimating error angular deformation for validating observed coupling effect

    4.1 Simulation System Setup

    Angular rate of ship motions induced by force of sea waves is approximated as a simplified second order Gauss-Markov process, and can be generated through an AR (auto regressive) filter with colored noise driven.

    The auto correlation function of second order Gauss-Markov process of ship angular motions is represented as:

    Where ξ denotes x, y or z axis,αξand βξare the variance, damping factor, and circular frequency respectively.

    Tab.1 Parameters of AR (2) models of ship attitude

    Tab.2 Parameters of AR (2) models of ship borne angular deformation

    Tab.3 Parameters of gyroscopes’ noises

    For validating the emergence of observed coupling effect, we must assume ship-borne attitude motions and angular deformations have same colored noise driven through AR (2) models. Considering that angular rate of ship motions and angular deformations are possibly cross correlated, we defined three groups of observed coupling effect conditions as below.

    After that, we applied compensation algorithm (21) to observed angular rate of ship motions, then compared alignment errors with each other.

    In addition, the static deformation is constant without consideration of slow varying quasi-static deformations.

    4.2 Results and Analysis

    The simulation results of three groups of observed coupling effect are shown in Fig.4. The first column diagrams showed that estimated alignment errors of attitude matching method through a linear Kalman filter, and in the second column diagrams coupling angles are evaluated by another Kalman filtering as described as Fig.3. The last column diagrams are estimated alignment errors of Kalman filtering after compensation for observed coupling effect.

    The (I-1), (II-1) and (III-1) diagrams in Fig.4 validated that observed coupling effect caused bias error of static deformation, and different cross correlations have fewer bias error in pitch and roll axis coordinates, but have larger bias error in yaw axis coordinate. This indirectly verified that ship angular motions modulate amplitude of coupling angles. The (I-2), (II-2) and (III-2) diagrams in Fig.4 showed that if we can acquire accurate dynamic deformation, coupling angles induced by observed coupling effect are determined precisely as Fig.3. After compensating angular rate of ship motions for estimated coupling angles above, alignment errors are much smaller than before compensation as shown as the (I-3), (II-3) and (III-3) diagrams in Fig.4.

    5 Conclusion

    A linear Kalman filter for evaluating coupling angle based on angular rate matching method is proposed. According to acquire accurate dynamic deformation, coupling angles are determined. Simulation results validated that cross correlation of angular rate of ship motions and angular deformations can result in estimated bias error of static deformation through a Kalman filter based on attitude matching method, especially alignment error of yawing is much larger because of modulation of ship angular motions. According to estimated coupling angles, we can compensate angular rate of ship motions and thus get more accurate alignment results of Kalman filtering based on attitude matching method.

    Observed coupling effect in attitude matching method cannot be measured by LGU, thus we don’t acquire more accurate alignment results with bias error. Compensation for observed coupling effect is essential and indispensible.

    Fig.4 Comparison of alignment errors among three groups of observed coupling effect conditions

    [1] Hutcheson L D. Ship flexure measurement[R]. CA: Naval Weapon Center, Report AD A06349, Aug., 1975.

    [2] Wang G, Pran K, Sagvolden G, Havsgard G B, et al. Ship hull structure monitoring using fibre optic sensors[J]. Smart Materials and Structures, 2001, 10(3): 472-478.

    [3] Shoals P G, Brunner D E. Dynamic ship flexure measurement program[R]. Report A047040, Naval Ship Weapon Systems Engineering Station Port Hueneme, CA, 1973.

    [4] Kain J E, Cloutier J R. Rapid transfer alignment for tactical weapon applications[C]//Proc. AIAA Conf. Guidance, Navigation and Control. Boston, USA, 1989: 1290-1300.

    [5] Day D L, Arrud J. Impact of structural flexure on precision tracking[J]. Naval Engineers J., 1999, 111(3): 133-138.

    [6] Sun F, Guo C J, Gao W, Li B. A new inertial measurement method of ship dynamic deformation[C]//Conf. Mechatronics and Automation. Harbin, China, 2007: 3407-3412.

    [7] Joon L, Lim Y C. Transfer alignment considering measurement time delay and ship body flexure[J]. J. Mechanical Science and Technology, 2009, 23(1): 195-203.

    [8] Mochalov A V, Kazantsev A V. Use of ring laser units for measurement of the moving object deformation[C]// Proceeding of the SPIE. 2002, Vol.4680: 85-92.

    [9] Schnider A M. Kalman filter formulations for transfer alignment of strapdown inertial units[J]. Navigation, 1983, 30(1): 72-89.

    [10] ZhENG Jia-xing, QIN Shi-qiao, WANG Xing-shu. Ship hull angular deformation measurement taking slowvarying quasi-static component into account[J]. Journal of Chinese Inertial Technology, 2011(1): 6-10.

    [11] ZHENG Jia-xing, QIN Shi-qiao, WANG Xing-shu, HUANG Zong-sheng. Attitude matching method for ship deformation measurement[J]. Journal of Chinese Inertial Technology, 2010, 18(2): 175-180.

    [12] WU Wei, QIN Shi-qiao, CHEN Sheng. Coupling influence of ship dynamic flexure on high accuracy transfer alignment[J]. Int. J. Modelling, Identification, and Control, 2013, 19 (7): 224-234.

    [13] WU Wei, ChEN Sheng, QIN Shi-qiao. Online estimation of ship dynamic flexure model parameters for transfer alignment[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1666-1678.

    [14] WU Wei, QIN Shi-qiao, CHEN Sheng. Determination of dynamic flexure model parameters for ship angular deformation measurement[C]//Proc. UKACC Control 2012. Cardiff, UK, 2012: 964-969.

    1005-6734(2014)05-0561-06

    10.13695/j.cnki.12-1222/o3.2014.05.001

    激光陀螺組合體測(cè)量船體角形變中觀測(cè)耦合效應(yīng)的補(bǔ)償

    楊云濤,王省書,黃宗升,吳 偉
    (國(guó)防科學(xué)技術(shù)大學(xué) 光電科學(xué)與工程學(xué)院,長(zhǎng)沙 410073)

    船體角形變是傳遞對(duì)準(zhǔn)中的主要誤差源,需要依靠測(cè)量?jī)x器精確標(biāo)定。根據(jù)姿態(tài)匹配方法使用兩套激光陀螺組合體可以計(jì)算角形變。但是動(dòng)態(tài)形變和船體運(yùn)動(dòng)角速度的交叉相關(guān)的觀測(cè)耦合效應(yīng)導(dǎo)致角形變的最優(yōu)估計(jì)結(jié)果不準(zhǔn)確,并且通過(guò)姿態(tài)匹配方法這種觀測(cè)耦合效應(yīng)是不能被準(zhǔn)確測(cè)量的,需要結(jié)合其它角形變的測(cè)量信息進(jìn)行計(jì)算?;诮撬俣绕ヅ浞椒?,研究了觀測(cè)耦合效應(yīng),并得出其導(dǎo)致角形變估計(jì)的偏置誤差,且受船體運(yùn)動(dòng)角速度調(diào)制的結(jié)論。通過(guò)補(bǔ)償激光陀螺組合體測(cè)量的角速度,降低了觀測(cè)耦合效應(yīng),得到了高精度的對(duì)準(zhǔn)結(jié)果。仿真結(jié)果表明觀測(cè)耦合效應(yīng)主要導(dǎo)致了靜態(tài)形變估計(jì)精度的不準(zhǔn)確。

    角形變測(cè)量;姿態(tài)匹配;觀測(cè)耦合效應(yīng);靜態(tài)形變;激光陀螺組合體;

    U666.1

    A

    2014-04-20;

    2014-08-14

    國(guó)家自然科學(xué)基金項(xiàng)目(11172323)

    楊云濤(1984—),男,博士研究生,從事光電儀器與測(cè)控技術(shù)研究。E-mail:legend08fda@126.com

    聯(lián) 系 人:王省書(1963—),女,教授,博士生導(dǎo)師。E-mail:gfkdwxs@163.com

    猜你喜歡
    組合體角速度船體
    SpaceX公司超重-星艦組合體首飛異常情況初步分析
    船體行駛過(guò)程中的壓力監(jiān)測(cè)方法
    空間站組合體3D展示產(chǎn)品
    “拆”解組合體求積問(wèn)題
    圓周運(yùn)動(dòng)角速度測(cè)量方法賞析
    半捷聯(lián)雷達(dá)導(dǎo)引頭視線角速度提取
    焊接殘余應(yīng)力對(duì)船體結(jié)構(gòu)疲勞強(qiáng)度的影響分析
    焊接(2015年9期)2015-07-18 11:03:51
    基于構(gòu)架點(diǎn)頭角速度的軌道垂向長(zhǎng)波不平順在線檢測(cè)
    赴美軍“仁慈”號(hào)醫(yī)院船駐船體會(huì)
    水下爆炸氣泡作用下船體總縱強(qiáng)度估算方法
    亚洲专区中文字幕在线| 我的老师免费观看完整版| 日本五十路高清| 国产精品久久久久久精品电影| 久久久久久国产a免费观看| 丝袜美腿在线中文| 欧美3d第一页| 啦啦啦韩国在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 最好的美女福利视频网| 中文字幕熟女人妻在线| xxxwww97欧美| 搡老熟女国产l中国老女人| 在线天堂最新版资源| 少妇被粗大猛烈的视频| 国产高清有码在线观看视频| 蜜桃亚洲精品一区二区三区| 国产精品亚洲美女久久久| 欧美+亚洲+日韩+国产| 国产91精品成人一区二区三区| 女人十人毛片免费观看3o分钟| 久久99热6这里只有精品| 成人欧美大片| 国内少妇人妻偷人精品xxx网站| 亚洲,欧美精品.| 美女高潮喷水抽搐中文字幕| 桃红色精品国产亚洲av| 国产大屁股一区二区在线视频| 久久久久免费精品人妻一区二区| 人人妻人人澡欧美一区二区| 深爱激情五月婷婷| 一级黄片播放器| 国产成人a区在线观看| 三级男女做爰猛烈吃奶摸视频| 男女下面进入的视频免费午夜| 欧美一区二区亚洲| 一级av片app| 久久久久久久久中文| 在线观看av片永久免费下载| 成人特级av手机在线观看| 真人一进一出gif抽搐免费| 直男gayav资源| 天天一区二区日本电影三级| 一a级毛片在线观看| 精品免费久久久久久久清纯| 午夜福利成人在线免费观看| 亚洲欧美日韩东京热| 国产精品久久久久久亚洲av鲁大| 亚洲性夜色夜夜综合| 三级毛片av免费| 国产色婷婷99| 国产午夜福利久久久久久| 国产精品一及| 99久久无色码亚洲精品果冻| 欧美国产日韩亚洲一区| 亚洲色图av天堂| 亚洲片人在线观看| www.www免费av| 一本精品99久久精品77| 女同久久另类99精品国产91| 久久婷婷人人爽人人干人人爱| 观看免费一级毛片| 在线a可以看的网站| 国产不卡一卡二| 久久6这里有精品| 欧美日韩亚洲国产一区二区在线观看| 国产视频一区二区在线看| 高清日韩中文字幕在线| 1024手机看黄色片| 人妻丰满熟妇av一区二区三区| 久久香蕉精品热| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 91麻豆av在线| 亚洲色图av天堂| 一区福利在线观看| 欧美成人a在线观看| 极品教师在线视频| 欧美激情久久久久久爽电影| 午夜a级毛片| 男女视频在线观看网站免费| 精品人妻一区二区三区麻豆 | 69人妻影院| 免费看日本二区| 少妇熟女aⅴ在线视频| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 精品久久久久久久久久免费视频| 此物有八面人人有两片| 国产黄色小视频在线观看| 极品教师在线视频| 亚洲精品在线美女| 国产精品日韩av在线免费观看| 国产美女午夜福利| 内射极品少妇av片p| 欧美在线黄色| 十八禁人妻一区二区| 十八禁国产超污无遮挡网站| 亚洲精品亚洲一区二区| 亚洲七黄色美女视频| 精品久久久久久成人av| 身体一侧抽搐| 在线观看美女被高潮喷水网站 | 91久久精品电影网| 综合色av麻豆| 蜜桃久久精品国产亚洲av| 亚洲专区国产一区二区| 精品久久国产蜜桃| 一级黄片播放器| 久久精品国产亚洲av涩爱 | 国产综合懂色| 91久久精品电影网| 一个人免费在线观看电影| 欧美高清成人免费视频www| 一本久久中文字幕| 国产成人av教育| 怎么达到女性高潮| 永久网站在线| 亚洲狠狠婷婷综合久久图片| 桃色一区二区三区在线观看| 少妇熟女aⅴ在线视频| 精品人妻视频免费看| 欧美zozozo另类| 男人狂女人下面高潮的视频| 老熟妇乱子伦视频在线观看| 一进一出好大好爽视频| 日韩欧美三级三区| 欧美黄色淫秽网站| 亚洲欧美日韩东京热| 久久人人精品亚洲av| 久久久久久大精品| 老司机午夜十八禁免费视频| 国语自产精品视频在线第100页| 97人妻精品一区二区三区麻豆| 乱人视频在线观看| 男人狂女人下面高潮的视频| 亚洲第一区二区三区不卡| 久久婷婷人人爽人人干人人爱| 精品久久国产蜜桃| 亚洲精品色激情综合| 久久久国产成人精品二区| 人妻丰满熟妇av一区二区三区| 亚洲av中文字字幕乱码综合| 国产在线精品亚洲第一网站| 免费在线观看日本一区| 少妇的逼水好多| 亚洲av中文字字幕乱码综合| 欧美日韩国产亚洲二区| 精品久久久久久,| 久久精品综合一区二区三区| 美女cb高潮喷水在线观看| 精品午夜福利视频在线观看一区| 久久久久久久久中文| av在线蜜桃| 男女下面进入的视频免费午夜| 国产黄a三级三级三级人| 国产精品久久视频播放| 一本一本综合久久| 中文字幕精品亚洲无线码一区| 欧美中文日本在线观看视频| 国产成人啪精品午夜网站| 欧美国产日韩亚洲一区| 直男gayav资源| 人妻丰满熟妇av一区二区三区| 日韩精品中文字幕看吧| 精品国产亚洲在线| 日韩欧美精品v在线| 国产一区二区激情短视频| 成人性生交大片免费视频hd| 成人欧美大片| 无遮挡黄片免费观看| 一个人免费在线观看电影| 欧美成狂野欧美在线观看| 中文字幕高清在线视频| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 国产精品久久久久久久久免 | 一区二区三区激情视频| 亚洲激情在线av| 午夜免费激情av| 九色国产91popny在线| 九九在线视频观看精品| 久久久久久国产a免费观看| 99精品久久久久人妻精品| 国产精品电影一区二区三区| 身体一侧抽搐| 嫩草影院新地址| 婷婷丁香在线五月| 国产精品久久久久久久电影| 美女高潮喷水抽搐中文字幕| 午夜激情福利司机影院| 成人特级黄色片久久久久久久| 亚洲av美国av| 非洲黑人性xxxx精品又粗又长| 亚洲午夜理论影院| 男女下面进入的视频免费午夜| 久久久久久大精品| 日本一本二区三区精品| 日韩欧美国产一区二区入口| 色综合亚洲欧美另类图片| 成人无遮挡网站| 午夜久久久久精精品| 日本黄色视频三级网站网址| 国产成人福利小说| 男人的好看免费观看在线视频| 免费av观看视频| 亚洲乱码一区二区免费版| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 小说图片视频综合网站| 十八禁网站免费在线| 国产真实乱freesex| 久久久久久久久久成人| 草草在线视频免费看| 色精品久久人妻99蜜桃| 亚洲天堂国产精品一区在线| 久久热精品热| 国内毛片毛片毛片毛片毛片| 日日摸夜夜添夜夜添小说| 久久精品人妻少妇| 免费看美女性在线毛片视频| 色av中文字幕| 亚洲精品在线美女| 久久久精品欧美日韩精品| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 成年女人永久免费观看视频| 99热6这里只有精品| 午夜日韩欧美国产| av国产免费在线观看| 精品欧美国产一区二区三| 免费人成在线观看视频色| 一区福利在线观看| 男插女下体视频免费在线播放| 国产午夜精品论理片| 日韩中字成人| 午夜福利视频1000在线观看| 午夜视频国产福利| 男人舔女人下体高潮全视频| 日本黄色片子视频| 国产精品98久久久久久宅男小说| 波多野结衣高清作品| 热99re8久久精品国产| 日韩欧美在线乱码| 91字幕亚洲| 午夜福利在线观看吧| 天堂网av新在线| 91久久精品电影网| 日本a在线网址| 久久伊人香网站| 男人舔奶头视频| 亚洲av一区综合| 日本三级黄在线观看| 国产精品一区二区性色av| 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利视频在线观看一区| 久久热精品热| 免费人成视频x8x8入口观看| 亚洲欧美日韩高清在线视频| 欧美又色又爽又黄视频| av视频在线观看入口| 亚洲中文日韩欧美视频| 最新中文字幕久久久久| a在线观看视频网站| 成人欧美大片| 日韩欧美精品v在线| 丝袜美腿在线中文| 一本精品99久久精品77| 久久99热这里只有精品18| 18禁裸乳无遮挡免费网站照片| a级一级毛片免费在线观看| 2021天堂中文幕一二区在线观| 国产成年人精品一区二区| 婷婷丁香在线五月| 欧美激情久久久久久爽电影| 日本a在线网址| 亚洲美女搞黄在线观看 | 青草久久国产| 国产探花极品一区二区| 一个人免费在线观看的高清视频| 欧美最黄视频在线播放免费| 天堂动漫精品| 少妇人妻精品综合一区二区 | 欧美成人免费av一区二区三区| 国产精品不卡视频一区二区 | 国产成人福利小说| 国产黄色小视频在线观看| 日本黄色片子视频| 赤兔流量卡办理| 国产免费男女视频| 国产精品影院久久| 久久久久久久午夜电影| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 99热精品在线国产| 日韩欧美国产一区二区入口| 欧美性猛交黑人性爽| 制服丝袜大香蕉在线| 国产欧美日韩一区二区精品| 亚洲不卡免费看| 国产在线男女| 亚洲乱码一区二区免费版| 久久久久国内视频| 少妇的逼水好多| 国内揄拍国产精品人妻在线| 熟女人妻精品中文字幕| 不卡一级毛片| 深爱激情五月婷婷| 国产在线精品亚洲第一网站| 精华霜和精华液先用哪个| 97热精品久久久久久| 色综合婷婷激情| 国产蜜桃级精品一区二区三区| 成人av在线播放网站| 熟妇人妻久久中文字幕3abv| 国产av不卡久久| 在线播放国产精品三级| 亚洲精品在线观看二区| 俺也久久电影网| 亚洲国产日韩欧美精品在线观看| 搡女人真爽免费视频火全软件 | 国产精品不卡视频一区二区 | 高潮久久久久久久久久久不卡| 午夜影院日韩av| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 国产精品日韩av在线免费观看| 老司机福利观看| 国内精品美女久久久久久| 免费看美女性在线毛片视频| 成人美女网站在线观看视频| 一级a爱片免费观看的视频| 国产成人aa在线观看| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 色综合欧美亚洲国产小说| 身体一侧抽搐| 亚洲国产精品成人综合色| 免费人成在线观看视频色| eeuss影院久久| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 88av欧美| 亚洲不卡免费看| 久久精品久久久久久噜噜老黄 | 男人和女人高潮做爰伦理| 国产成+人综合+亚洲专区| 久久久精品欧美日韩精品| 黄色丝袜av网址大全| 亚洲精品在线美女| 欧美黄色片欧美黄色片| 如何舔出高潮| 亚洲 国产 在线| 久久天躁狠狠躁夜夜2o2o| 国产黄片美女视频| 亚洲美女视频黄频| 成人av在线播放网站| 悠悠久久av| 亚洲成av人片免费观看| 欧美最新免费一区二区三区 | 成人美女网站在线观看视频| 久久精品影院6| 脱女人内裤的视频| 成年女人永久免费观看视频| 亚洲午夜理论影院| 一个人免费在线观看电影| 国产成+人综合+亚洲专区| 免费大片18禁| 99国产精品一区二区三区| 黄色视频,在线免费观看| 赤兔流量卡办理| 综合色av麻豆| 久久久久久久久久成人| 国产高清有码在线观看视频| 婷婷精品国产亚洲av| 18美女黄网站色大片免费观看| 免费无遮挡裸体视频| 欧美zozozo另类| 成年版毛片免费区| 十八禁人妻一区二区| 亚洲国产高清在线一区二区三| 亚洲五月婷婷丁香| 一区二区三区高清视频在线| 非洲黑人性xxxx精品又粗又长| 日韩精品青青久久久久久| 国产成人av教育| 亚洲精品亚洲一区二区| 首页视频小说图片口味搜索| 男女下面进入的视频免费午夜| 国产精品久久电影中文字幕| 国产精品免费一区二区三区在线| 淫妇啪啪啪对白视频| 久久精品影院6| 丁香六月欧美| 久久久精品欧美日韩精品| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 久久久久久久久久成人| 国产精品久久久久久人妻精品电影| 免费无遮挡裸体视频| 午夜福利在线观看吧| 在线天堂最新版资源| 久久九九热精品免费| 永久网站在线| 中文字幕精品亚洲无线码一区| 亚洲精品一区av在线观看| 首页视频小说图片口味搜索| 亚洲片人在线观看| 国产色爽女视频免费观看| 欧美精品国产亚洲| 99久久99久久久精品蜜桃| 乱人视频在线观看| 成人国产综合亚洲| 亚洲五月婷婷丁香| 亚洲专区中文字幕在线| 性欧美人与动物交配| 五月伊人婷婷丁香| 日本在线视频免费播放| 十八禁网站免费在线| 看片在线看免费视频| 午夜福利免费观看在线| 精品午夜福利视频在线观看一区| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 日韩人妻高清精品专区| 最近最新免费中文字幕在线| netflix在线观看网站| 十八禁网站免费在线| 成熟少妇高潮喷水视频| 国产免费一级a男人的天堂| 欧美成人性av电影在线观看| 赤兔流量卡办理| 久久中文看片网| 欧美高清性xxxxhd video| 无遮挡黄片免费观看| 日韩 亚洲 欧美在线| 999久久久精品免费观看国产| 免费搜索国产男女视频| 欧美激情国产日韩精品一区| 成人特级av手机在线观看| 亚洲欧美日韩高清在线视频| 欧美一区二区精品小视频在线| 色哟哟哟哟哟哟| 久久亚洲真实| 校园春色视频在线观看| 2021天堂中文幕一二区在线观| 三级毛片av免费| 身体一侧抽搐| 在线观看午夜福利视频| 亚洲av五月六月丁香网| 国产黄色小视频在线观看| 色综合婷婷激情| 一a级毛片在线观看| 人妻丰满熟妇av一区二区三区| 一区二区三区高清视频在线| 亚洲aⅴ乱码一区二区在线播放| 高清在线国产一区| 成人三级黄色视频| 午夜福利在线观看吧| 在线观看舔阴道视频| 97人妻精品一区二区三区麻豆| www.www免费av| 欧美激情久久久久久爽电影| 国产欧美日韩精品亚洲av| 国产69精品久久久久777片| 久久热精品热| 国产伦人伦偷精品视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 嫩草影院入口| 欧美最黄视频在线播放免费| 美女黄网站色视频| 午夜精品在线福利| 国产视频一区二区在线看| 免费大片18禁| 在线观看66精品国产| 超碰av人人做人人爽久久| 欧美+日韩+精品| 国产av不卡久久| 亚洲男人的天堂狠狠| 丰满人妻一区二区三区视频av| 99久国产av精品| 国产午夜福利久久久久久| 老司机午夜十八禁免费视频| 91字幕亚洲| 婷婷丁香在线五月| 亚洲精品一区av在线观看| 久9热在线精品视频| 色在线成人网| 日韩 亚洲 欧美在线| 国内精品美女久久久久久| 桃色一区二区三区在线观看| 久久欧美精品欧美久久欧美| 日韩高清综合在线| 嫩草影视91久久| 久久午夜亚洲精品久久| 成年版毛片免费区| 成人性生交大片免费视频hd| 色哟哟哟哟哟哟| 国产精品亚洲av一区麻豆| 国产三级中文精品| 亚洲成人久久爱视频| 亚洲国产精品999在线| 少妇人妻精品综合一区二区 | 亚洲人成网站在线播放欧美日韩| 最近中文字幕高清免费大全6 | 日本在线视频免费播放| 婷婷色综合大香蕉| 成年免费大片在线观看| 搡女人真爽免费视频火全软件 | 麻豆久久精品国产亚洲av| 国产精品久久久久久人妻精品电影| 99热精品在线国产| 狠狠狠狠99中文字幕| 中文资源天堂在线| 亚洲熟妇熟女久久| 好看av亚洲va欧美ⅴa在| 成年女人永久免费观看视频| 亚洲av五月六月丁香网| 午夜亚洲福利在线播放| 免费观看精品视频网站| 国产欧美日韩一区二区三| 欧洲精品卡2卡3卡4卡5卡区| 成年女人永久免费观看视频| 国产精品人妻久久久久久| 亚洲黑人精品在线| 国内精品一区二区在线观看| 久久久精品欧美日韩精品| 国产黄片美女视频| 色播亚洲综合网| 久久热精品热| 精品无人区乱码1区二区| 搡女人真爽免费视频火全软件 | 男女下面进入的视频免费午夜| 成人美女网站在线观看视频| 嫩草影院新地址| 亚洲欧美日韩东京热| 午夜福利视频1000在线观看| 亚洲经典国产精华液单 | 成年女人看的毛片在线观看| 午夜福利视频1000在线观看| 国产av在哪里看| 色播亚洲综合网| 国产乱人视频| 中文字幕免费在线视频6| 亚洲精品亚洲一区二区| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 可以在线观看的亚洲视频| 熟女电影av网| 好男人在线观看高清免费视频| 国产白丝娇喘喷水9色精品| 国产美女午夜福利| 国产伦精品一区二区三区视频9| 精品久久久久久久久久久久久| 国产精品自产拍在线观看55亚洲| 亚洲人成网站在线播| 琪琪午夜伦伦电影理论片6080| 亚洲精品一卡2卡三卡4卡5卡| 国模一区二区三区四区视频| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 丁香欧美五月| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| .国产精品久久| 色播亚洲综合网| 亚洲av成人不卡在线观看播放网| 欧美国产日韩亚洲一区| 黄片小视频在线播放| 欧美绝顶高潮抽搐喷水| 欧美精品国产亚洲| 成年版毛片免费区| aaaaa片日本免费| 自拍偷自拍亚洲精品老妇| 国产又黄又爽又无遮挡在线| 长腿黑丝高跟| 精品福利观看| 69av精品久久久久久| 欧美绝顶高潮抽搐喷水| 好男人在线观看高清免费视频| 亚洲一区二区三区色噜噜| 免费大片18禁| 12—13女人毛片做爰片一| 成人特级黄色片久久久久久久| 欧美一区二区亚洲| 成人亚洲精品av一区二区| 成人av一区二区三区在线看| 国内精品一区二区在线观看| 99久久精品热视频| 麻豆成人午夜福利视频| 99视频精品全部免费 在线| 亚洲五月天丁香| 波多野结衣巨乳人妻| 97超视频在线观看视频| 免费看日本二区| 国产一区二区三区视频了| 18禁在线播放成人免费| 国产av一区在线观看免费| 97碰自拍视频| 久久午夜福利片| 9191精品国产免费久久| 久久久久久久久大av| 午夜精品久久久久久毛片777| 国产视频一区二区在线看| 国产国拍精品亚洲av在线观看| 亚洲精品456在线播放app | av在线天堂中文字幕| 国产 一区 欧美 日韩| 欧美又色又爽又黄视频| 亚洲av不卡在线观看| 日韩欧美精品v在线| bbb黄色大片| 精品国产亚洲在线| 国产一区二区三区在线臀色熟女| 天堂av国产一区二区熟女人妻|