• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    毛毛蟲圖的r次冪的最小斜秩

    2014-10-23 12:22:44沈小玲
    關鍵詞:奇數(shù)正整數(shù)毛毛蟲

    沈小玲

    摘要圖的最小斜秩問題是確定圖的所有斜對稱矩陣在域F上的秩的最小值.利用構造矩陣和零強迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設毛毛蟲Tn有n個節(jié)點,n和r都是正整數(shù),r是奇數(shù),那么

    1預備知識

    2主要結論

    參考文獻:

    [1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.

    [2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.

    [3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.

    [4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.

    [5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.

    [6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.

    [7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.

    [8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.

    [9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗

    [10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.

    [11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.

    [12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.

    摘要圖的最小斜秩問題是確定圖的所有斜對稱矩陣在域F上的秩的最小值.利用構造矩陣和零強迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設毛毛蟲Tn有n個節(jié)點,n和r都是正整數(shù),r是奇數(shù),那么

    1預備知識

    2主要結論

    參考文獻:

    [1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.

    [2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.

    [3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.

    [4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.

    [5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.

    [6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.

    [7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.

    [8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.

    [9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗

    [10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.

    [11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.

    [12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.

    摘要圖的最小斜秩問題是確定圖的所有斜對稱矩陣在域F上的秩的最小值.利用構造矩陣和零強迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設毛毛蟲Tn有n個節(jié)點,n和r都是正整數(shù),r是奇數(shù),那么

    1預備知識

    2主要結論

    參考文獻:

    [1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.

    [2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.

    [3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.

    [4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.

    [5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.

    [6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.

    [7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.

    [8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.

    [9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗

    [10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.

    [11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.

    [12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.

    猜你喜歡
    奇數(shù)正整數(shù)毛毛蟲
    毛毛蟲,動起來
    好餓的毛毛蟲
    奇數(shù)湊20
    奇數(shù)與偶數(shù)
    毛毛蟲和蠶
    關于奇數(shù)階二元子集的分離序列
    被k(2≤k≤16)整除的正整數(shù)的特征
    可愛的毛毛蟲
    周期數(shù)列中的常見結論及應用*
    方程xy=yx+1的全部正整數(shù)解
    唐海县| 基隆市| 合肥市| 大厂| 咸宁市| 商都县| 银川市| 格尔木市| 尉氏县| 抚远县| 安西县| 汝阳县| 江源县| 桂东县| 抚顺市| 改则县| 日土县| 阜新| 靖江市| 白河县| 大化| 志丹县| 商洛市| 太和县| 湟中县| 黄梅县| 南开区| 甘泉县| 依安县| 太康县| 容城县| 扶沟县| 望谟县| 滨海县| 伊宁市| 来凤县| 五指山市| 镇江市| 凤阳县| 荆州市| 同心县|