• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    關(guān)于有界線性算子的幾個(gè)不等式

    2014-10-23 12:23:51黃介武

    黃介武

    摘要通過利用一個(gè)算子恒等式和關(guān)于多個(gè)算子的Bohr不等式,得到了關(guān)于有界線性算子的幾個(gè)不等式,所得結(jié)果是同行前期結(jié)果的改進(jìn).同時(shí),通過利用改進(jìn)的幾何算術(shù)平均值不等式,得到了關(guān)于算子幾何均值和算術(shù)均值的一個(gè)不等式,所得結(jié)果推廣了現(xiàn)有的一個(gè)不等式.

    關(guān)鍵詞有界線性算子;Bohr不等式;幾何算術(shù)平均值不等式

    中圖分類號(hào)O15121文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04009204

    1主要結(jié)果

    參考文獻(xiàn):

    [1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.

    [2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.

    [3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.

    [4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.

    [5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.

    [6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.

    [7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.

    [8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.

    [9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.

    [10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.

    [11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.

    摘要通過利用一個(gè)算子恒等式和關(guān)于多個(gè)算子的Bohr不等式,得到了關(guān)于有界線性算子的幾個(gè)不等式,所得結(jié)果是同行前期結(jié)果的改進(jìn).同時(shí),通過利用改進(jìn)的幾何算術(shù)平均值不等式,得到了關(guān)于算子幾何均值和算術(shù)均值的一個(gè)不等式,所得結(jié)果推廣了現(xiàn)有的一個(gè)不等式.

    關(guān)鍵詞有界線性算子;Bohr不等式;幾何算術(shù)平均值不等式

    中圖分類號(hào)O15121文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04009204

    1主要結(jié)果

    參考文獻(xiàn):

    [1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.

    [2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.

    [3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.

    [4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.

    [5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.

    [6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.

    [7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.

    [8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.

    [9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.

    [10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.

    [11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.

    摘要通過利用一個(gè)算子恒等式和關(guān)于多個(gè)算子的Bohr不等式,得到了關(guān)于有界線性算子的幾個(gè)不等式,所得結(jié)果是同行前期結(jié)果的改進(jìn).同時(shí),通過利用改進(jìn)的幾何算術(shù)平均值不等式,得到了關(guān)于算子幾何均值和算術(shù)均值的一個(gè)不等式,所得結(jié)果推廣了現(xiàn)有的一個(gè)不等式.

    關(guān)鍵詞有界線性算子;Bohr不等式;幾何算術(shù)平均值不等式

    中圖分類號(hào)O15121文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04009204

    1主要結(jié)果

    參考文獻(xiàn):

    [1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.

    [2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.

    [3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.

    [4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.

    [5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.

    [6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.

    [7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.

    [8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.

    [9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.

    [10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.

    [11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.

    平乐县| 将乐县| 杂多县| 新昌县| 岚皋县| 五河县| 昔阳县| 常山县| 凭祥市| 东山县| 子洲县| 绥滨县| 金阳县| 灯塔市| 钟祥市| 库尔勒市| 思茅市| 灵山县| 嘉鱼县| 陇西县| 确山县| 东丽区| 镇原县| 灵山县| 扶余县| 洪泽县| 北海市| 梨树县| 错那县| 石门县| 荔浦县| 滦南县| 伊川县| 噶尔县| 饶阳县| 云龙县| 镇坪县| 衡阳市| 潞城市| 丁青县| 高州市|