• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    伴隨飽和感染率和分布時滯并具有體液免疫的病毒感染模型的全局動力學(xué)研究

    2014-10-23 12:19:20王蓉

    王蓉

    摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

    關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

    中圖分類號O29文獻標識碼A文章編號10002537(2014)04007705

    體液免疫是一種以B淋巴細胞產(chǎn)生抗體來達到保護目的的免疫機制, 對于瘧疾等一些傳染病,體液免疫比細胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

    2平衡點的存在性分析

    3全局穩(wěn)定性

    4數(shù)值模擬

    5結(jié)論

    參考文獻:

    [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

    [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

    [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

    [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

    [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

    [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

    [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

    [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

    [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

    [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

    [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

    [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

    [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

    [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

    摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

    關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

    中圖分類號O29文獻標識碼A文章編號10002537(2014)04007705

    體液免疫是一種以B淋巴細胞產(chǎn)生抗體來達到保護目的的免疫機制, 對于瘧疾等一些傳染病,體液免疫比細胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

    2平衡點的存在性分析

    3全局穩(wěn)定性

    4數(shù)值模擬

    5結(jié)論

    參考文獻:

    [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

    [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

    [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

    [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

    [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

    [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

    [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

    [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

    [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

    [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

    [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

    [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

    [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

    [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

    摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

    關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

    中圖分類號O29文獻標識碼A文章編號10002537(2014)04007705

    體液免疫是一種以B淋巴細胞產(chǎn)生抗體來達到保護目的的免疫機制, 對于瘧疾等一些傳染病,體液免疫比細胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

    2平衡點的存在性分析

    3全局穩(wěn)定性

    4數(shù)值模擬

    5結(jié)論

    參考文獻:

    [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

    [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

    [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

    [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

    [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

    [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

    [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

    [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

    [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

    [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

    [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

    [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

    [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

    [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

    蒙自县| 南投市| 福安市| 大竹县| 怀宁县| 万安县| 临城县| 周至县| 湛江市| 沈丘县| 科技| 同江市| 会同县| 保亭| 长岭县| 章丘市| 桑日县| 河南省| 勐海县| 潮安县| 泾川县| 济源市| 壤塘县| 中宁县| 左云县| 正蓝旗| 湖北省| 临高县| 呼图壁县| 西青区| 卢龙县| 安国市| 威宁| 田阳县| 荆门市| 威海市| 桓台县| 大安市| 惠安县| 五台县| 水富县|