王蓉
摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤1
關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯
中圖分類號O29文獻標識碼A文章編號10002537(2014)04007705
體液免疫是一種以B淋巴細胞產(chǎn)生抗體來達到保護目的的免疫機制, 對于瘧疾等一些傳染病,體液免疫比細胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.
2平衡點的存在性分析
3全局穩(wěn)定性
4數(shù)值模擬
5結(jié)論
參考文獻:
[1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.
[2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.
[3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.
[4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.
[5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.
[6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.
[7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.
[8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.
[9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗
[10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.
[11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.
[12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.
[13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.
[14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.
摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤1
關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯
中圖分類號O29文獻標識碼A文章編號10002537(2014)04007705
體液免疫是一種以B淋巴細胞產(chǎn)生抗體來達到保護目的的免疫機制, 對于瘧疾等一些傳染病,體液免疫比細胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.
2平衡點的存在性分析
3全局穩(wěn)定性
4數(shù)值模擬
5結(jié)論
參考文獻:
[1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.
[2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.
[3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.
[4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.
[5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.
[6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.
[7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.
[8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.
[9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗
[10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.
[11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.
[12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.
[13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.
[14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.
摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤1
關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯
中圖分類號O29文獻標識碼A文章編號10002537(2014)04007705
體液免疫是一種以B淋巴細胞產(chǎn)生抗體來達到保護目的的免疫機制, 對于瘧疾等一些傳染病,體液免疫比細胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.
2平衡點的存在性分析
3全局穩(wěn)定性
4數(shù)值模擬
5結(jié)論
參考文獻:
[1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.
[2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.
[3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.
[4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.
[5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.
[6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.
[7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.
[8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.
[9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗
[10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.
[11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.
[12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.
[13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.
[14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.