• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溶膠—凝膠法尺寸選擇性合成ZnO納米顆粒及其光催化性能

    2014-10-23 12:03:14袁慧敏呂林林李亞萍錢東
    關(guān)鍵詞:分散性光催化

    袁慧敏+呂林林+李亞萍+錢東

    摘要在溶膠凝膠合成過程中,分別利用超聲波處理ZnO溶膠、加水至溶膠中煮沸、加庚烷至溶膠中、蒸發(fā)除去部分溶劑等簡單的沉淀方法制備了10 nm以下不同尺寸的ZnO顆粒.在60 ℃下通過超聲波處理ZnO溶膠可得到高質(zhì)量的ZnO納米顆粒,顆粒粒徑為6.2±1.5 nm,標(biāo)準(zhǔn)偏差為8%.同時,基于作者以前的發(fā)現(xiàn),提出了在該溶膠凝膠法中新的ZnO形成機(jī)理.在光催化降解甲基橙過程中,納米ZnO不同的顆粒尺寸及團(tuán)聚情況導(dǎo)致其光催化活性有所差異,具有較小粒徑和團(tuán)聚較輕的ZnO納米顆粒顯示出較高的光催化活性.

    關(guān)鍵詞ZnO納米顆粒;沉淀;溶膠凝膠法;顆粒尺寸;分散性;光催化

    The properties of ZnO nanocrystals are highly dependent on their sizes and agglomeration situations. The synthesis of ZnO nanocrystals with controllable sizes and less agglomerations is still one of the most challenging and urgent topics.

    It is well known that a facile precipitation method is an operative way to synthesize ZnO nanocrystals with different sizes. Hoyer et al[11] precipitated ZnO nanoparticles through the addition of water to the boiling colloidal ZnO solution. Meulenkamp[2] achieved this by using alkanes, e.g., heptane, to precipitate ZnO nanoparticles. In our previous paper[12], we found that sonicating the colloidal ZnO solution could also precipitate ZnO nanoparticles without using any solvents. Inevitably, these different methods for the precipitations of ZnO nanoparticles have effects on the sizes, polydispersities and agglomerations of ZnO nanoparticles.

    Herein, we prepared ZnO nanoparticles with different sizes by diverse facile precipitation methods during a solgel synthesis procedure and investigated the influences of these precipitation methods on the sizes, polydispersities and agglomerations of ZnO nanoparticles. Meanwhile, their photocatalytic properties were also studied and a new mechanism for the formation of ZnO nanocrystals via the solgel route was proposed based on our previous findings.

    1Experimental

    1.1Syntheses of colloidal ZnO solution

    The synthesis of colloidal ZnO solution was similar to the methods described by Meulenkamp[2] and in our previous paper[13]. A 2.86 g (13 mmol) amount of Zn(Ac)2·2H2O was placed in 130 mL of absolute ethanol, and then the mixture was heated to dissolve Zn(Ac)2·2H2O under magnetic stirring. When Zn(Ac)2·2H2O was dissolved completely, the Zn2+containing solution obtained was diluted to 130 mL by the addition of absolute ethanol and cooled to 0 ℃. 0.754 g of LiOH·H2O (18 mmol) was dissolved in 130 mL of absolute ethanol at room temperature under magnetic stirring. The hydroxidecontaining solution was then added dropwise into the Zn2+containing solution at 0 ℃ under stirring. The sol obtained was the mixture of ZnO colloid and an intermediate of hydroxy double salt Zn5(OH)8(Ac)2·2H2O (ZnHDS). The hydroxy double salt could easily transform into ZnO phase through sonicating or heating[13].

    1.2Precipitation of ZnO nanoparticles

    Different methods were employed to treat the colloidal ZnO solution obtained until white precipitates were formed: (1) sonicating the colloidal ZnO solution by an ultrasonic cleaner at 60 ℃ to give sample A, (2) adding 1 mL of water to 50 mL of the colloidal ZnO solution and then boiling it to result in sample B, (3) sonicating the colloidal ZnO solution for 20 min at 0 ℃ to ensure the transformation of the hydroxy double salt intermediate into ZnO phase and then adding heptane to it to lead to sample C, and (4) removing part of the solvent by distillation to produce sample D.

    1.3Characterization of Xray powder diffraction (XRD) and transmission electron microscopy (TEM)

    The XRD patterns of the asprecipitated ZnO nanoparticles were characterized by a RigakuDMax rA 12 kW diffractometer with CuKα radiation (λ=1.54056 ) at an operation voltage and current of 40 kV and 300 mA, respectively. TEM measurements were performed on a JEM2010 microscope operated at an acceleration voltage of 200 kV.

    1.4Photocatalytical degradation of methyl orange

    A 0.20 g amount of the sample A, B, C or D was put into 150 mL of methyl orange solution with a concentration of 20 mg/L. Prior to the irradiation, the suspension was sonicated for 20 min, magnetically stirred in a dark condition for 30 min to establish an adsorption/desorption equilibrium, and then put into a selfassembly reactor. The irradiation resource of the photocatalytic reactor was four 40 W UV lamps set in parallel from the suspension 〖HJ2mm〗surface of 20 cm with a maximum emission at ca. 365 nm. Samples were taken from the reaction suspension at a 20 min interval. The upper lucid liquid obtained after centrifugal separation was analyzed by a UV─Vis spectroscopy.

    2Results and discussion

    2.1XRD analysis of samples

    〖TPS97.TIF;S;Z2;Y1,Y#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.1〖STBZ〗〖WTBZ〗〖ZK(〗XRD patterns of the asprepared samples AD〖ZK)〗

    〖TS)〗

    The XRD patterns of the asprepared samples are shown in Fig.1. The reflections recorded can be indexed to hexagonal ZnO (JCPDS 361451). The peaks are overlapped, which are caused by linebroadening because of the small crystal size. Average crystal sizes for the samples A, B, C and D, estimated by XRD using the Scherrer formula for the (102) reflection, are 6.5, 7.7, 4.7 and 6.4 nm, respectively.

    〖STHZ〗〖WTHZ〗2.2Size distribution and agglomeration situation of samples〖ST〗〖WT〗

    The TEM images and corresponding size histograms of the samples A, B, C and D are presented in Figs. 25, respectively, and the size distributions analyzed from the normal curves and agglomeration situations are listed in Tab.1.

    〖DZ(85mm,85mmK0〗

    〖TPS98.TIF;S*2,BP#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.2〖STBZ〗〖WTBZ〗〖ZK(〗TEM image and particle size distribution for the sample A precipitated by sonicating the colloidal ZnO solution〖ZK)〗

    〖TS)〗

    〖TPS99.TIF;S+3.5mm,BP#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.3〖STBZ〗〖WTBZ〗〖ZK(〗TEM image and particle size distribution for the sample B precipitated by adding water to the colloidal ZnO solution and then boiling it〖ZK)〗

    〖TS)〗

    〖DZ)〗

    〖DZ(85mm,85mmK0〗

    〖TPS100.TIF;S*2,BP#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.4〖STBZ〗〖WTBZ〗〖ZK(〗TEM image and particle size distribution for the sample C precipitated by the addition of heptane to the colloidal ZnO solution〖ZK)〗

    〖TS)〗

    〖TPS101.TIF;S+2.5mm,BP#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.5〖STBZ〗〖WTBZ〗〖ZK(〗TEM image and particle size distribution for the sample D precipitated by evaporating part solvent of the colloidal ZnO solution〖ZK)〗

    〖TS)〗

    〖DZ)〗

    〖KH-1D〗

    〖HJ1.5mm〗〖JZ〗〖WT5"HZ〗〖STHZ〗Tab.1 Size distributions and agglomeration situations of samples A, B, C and D analyzed from their TEM images〖HT5"SS〗

    〖BG(!〗

    〖BHDFG4.5mm,WK30mm,WK40mm,WK50mm,WKW〗

    Samplediameter/nmstandard deviation/%agglomeration situation

    〖BHD〗A6.2±1.58less

    〖BHDW〗B7.4±2.613serious

    〖BH〗C4.6±1.512medium

    〖BH〗D6.6±1.910medium

    〖BG)F〗

    〖HJ1.55mm〗

    Mean diameters of the samples A, B, C and D determined by TEM are 6.2, 7.4, 4.6 and 6.6 nm, respectively, which are in good agreement with the average crystal sizes estimated by XRD. It is well known that the sonochemical synthesis has become a routine method for preparing a wide variety of nanostructured materials[12,14], which is based on the acoustic cavitation resulting from the continuous formation, growth and implosive collapse of bubbles in a liquid. The sample A was precipitated by sonicating the colloidal ZnO solution at 60 ℃, and the ZnO nanoparticles obtained had a rather narrow size distribution with a particle diameter of 6.2±1.5 nm, standard deviation of about 8%, and less agglomeration. The sample B was precipitated through adding 1 mL of water to 50 mL of the colloidal ZnO solution and then boiling it, which gave a particle size of 7.4±2.6 nm, standard deviation of ca. 13%, and serious agglomeration. This may be because that water and heating could accelerate the particle growth, and water could increase the particle agglomeration, which are also confirmed by the samples C and D. The sample C, which was precipitated by adding heptane to the colloidal ZnO solution at 0 ℃, had a particle size of 4.6±1.5 nm, standard deviation of around 12%, and medium agglomeration. However, the TEM image of the sample C is blurred, which could be attributed to the less crystallinity resulting from the low temperature treatment of the colloidal ZnO solution. The polydispersity, mean diameter and agglomeration degree of the sample D decreased in comparison with the sample B probably due to the fact that no water was added to the colloidal ZnO solution produced during the solgel synthesis of ZnO nanoparticles.

    2.3Mechanism for the formation of ZnO nanocrystals

    There are some controversies about the mechanism for the formation of ZnO nanocrystals during the solgel synthesis[13]. In Spanhel and Andersons procedure for the preparation of ZnO, they mentioned an organometallic Zn precursor, containing acetic acid derivatives, produced by refluxing an ethanolic Zn(Ac)2·2H2O solution before the addition of LiOH·H2O [1]. Later, Spanhel et al [15] attributed the organometallic Zn precursor to Zn10O4(Ac)12. However, the precursor was identified to be Zn4O(Ac)6 by Briois et al [16]. In our previous publications[1213], we reported that a hydroxy double salt Zn5(OH)8(Ac)2·2H2O (ZnHDS) intermediate is formed and could directly transform into a ZnO phase in an acetatecontaining solution during the present solgel synthesis of ZnO nanocrystals described above. Therefore, the mechanism for the formation of ZnO nanocrystals in the acetatecontaining solution could roughly be described as:

    4Zn(Ac)2 + H2O → Zn4O(Ac)6 + 2HAc〖JY〗(1)

    5Zn4O(Ac)6 + 22LiOH + 5H2O→ 4Zn5(OH)8(Ac)2 + 22LiAc〖JY〗(2)

    Zn5(OH)8(Ac)2 + 2LiOH5ZnO + 2LiAc + 5H2O〖JY〗(3)

    HAc + LiOH → LiAc + H2O〖JY〗(4)

    In Eq.1 the precursor with probable formula of Zn4O(Ac)6 is formed by the prehydrolysis of the ethanolic Zn(Ac)2·2H2O solution. The ZnHDS intermediate is present after the addition of LiOH·H2O into the ethanolic Zn4O(Ac)6 precursor solution in Eq.2. In Eq.3, the ZnHDS intermediate transforms into ZnO particles by further hydrolysis and the ZnO phase can also transform back to the ZnHDS phase through the dissolution/reprecipitation of ZnO nanoparticles, and a neutralization reaction between acetic acid (HAc) and LiOH exists in Eq.4.

    2.4Photocatalytic activities of samples

    〖TPS102.TIF;%115%115;S*2;Z1,Y#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.6〖STBZ〗〖WTBZ〗〖ZK(〗Photocatalytic degradation of methyl orange in the presence of the samples AD〖ZK)〗

    〖TS)〗

    Fig.6 exhibits the photocatalytic degradation of methyl orange in the presence of the samples A, B, C and D. After irradiating for 120 min, the degradation rates of methyl orange are 896%, 64.6%, 91.1% and 78.0% for the samples A, B, C and D, respectively. The photocatalytic activities of samples A and C are comparable, being better than the sample D, while the sample B is the worst. The samples A and C have higher photocatalytic activities may be due to their smaller particle sizes and less agglomerations, while the introduction of water and boiling for the sample B leading to the particle growth and serious agglomeration may account for the lowest photocatalytic activity.

    〖HJ1.7mm〗

    3Conclusions

    〖KH-1〗

    ZnO nanoparticles with different sizes less than 10 nm have been successfully synthesized by diverse facile precipitation methods via a solgel route. Different precipitation methods have evident effects on the sizes, polydispersities and agglomerations of ZnO nanoparticles. ZnO nanoparticles, precipitated by sonicating the colloidal ZnO solution at 60 ℃ (sample A), adding water to the colloidal ZnO solution and then boiling it (sample B), adding heptane to the colloidal ZnO solution (sample C), and evaporating part solvent of the colloidal ZnO solution (sample D), have particle diameters of 6.2±1.5, 7.4±2.6, 4.6±1.5 and 6.6±1.9 nm with standard deviations of about 8%, 13%, 12% and 10%, respectively. The agglomeration situation for the sample A is the least, and that for the sample B is the most serious. In the photocatalytic degradation of methyl orange, the samples A and C have the comparably better activities, which can be attributed to their smaller particle sizes and less agglomerations, while the introduction of water and boiling for the sample B leading to the particle growth and serious agglomeration may account for its lowest photocatalytic activity.

    〖WT〗〖HS2〗〖WT5HZ〗References:〖WTBZ〗

    [1]〖ZK(#〗SPANHEL L, ANDERSON M A. Semiconductor clusters in the solgel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloid [J]. J Am Chem Soc, 1991,113(8):28262833.

    [2]MEULENKAMP E A. Synthesis and growth of ZnO nanoparticles [J]. J Phys Chem B, 1998,102(29):55665572.

    [3]ZHANG L Y, YIN L W, WANG C X, et al. Solgel growth of hexagonal faceted zno prism quantum dots with polar surfaces for enhanced photocatalytic activity [J]. ACS Appl Mater Interfaces, 2010,2 (6):17691773.

    [4]LI Y, LIU C S. Hydro/solvothermal synthesis of ZnO crystallite with particular morphology [J]. Trans Nonferrous Met Soc China, 2009,19(2):399403.

    [5]HU X L, MASUDA Y, OHJI T, et al. Micropatterning of ZnO nanoarrays by forced hydrolysis of anhydrous zinc acetate [J]. Langmuir, 2008,24 (14):76147617.

    [6]ZHONG J B, XU B, FENG F M, et al. Fabrication and photocatalytic activity of ZnO prepared by different precipitants using paralled flaw precipitation method [J]. Mater Lett, 2011,65(12):19951997.

    [7]FAN X M, ZHOU Z W, WANG J, et al. Morphology and optical properties of tetrapodlike zinc oxide whiskers synthesized via equilibrium gas expanding method [J]. Trans Nonferrous Met Soc China, 2011,21(9):20562060.

    [8]SARKAR D, TIKKU S, THAPAR V, et al. Formation of zinc oxide nanoparticles of different shapes in waterinoil microemulsion [J]. Colloids Surf A, 2011,381(13):123129.

    [9]TSUZUKI T, MCCORMICK P G. ZnO nanoparticles synthesised by mechanochemical processing [J]. Scripta Mater, 2001,44(89):17311734.〖ZK)〗

    [10]〖ZK(#〗REDMOND G, OKEEFFE A, BURGESS C, et al. Determination of the flatband potential of transparent nanocrystalline zinc oxide films [J]. J Phys Chem, 1993,97(42):1108111086.

    [11]HOYER P, EICHBERGER R, WELLER H. Spectroelectrochemical investigations of nanocrystalline ZnO films [J]. Ber BunsenGes Phys Chem, 1993,97(4):630635.

    [12]QIAN D, JIANG J Z, HANSEN P L. Preparation of ZnO nanocrystals via ultrasonic irradiation [J]. Chem Commun, 2003,3(9):10781079.

    [13]QIAN D, GERWARD L, JIANG J Z. Comment on “Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the solgel route”[J]. J Phys Chem B, 2004,108(39):1543415435.

    [8]SARKAR D, TIKKU S, THAPAR V, et al. Formation of zinc oxide nanoparticles of different shapes in waterinoil microemulsion [J]. Colloids Surf A, 2011,381(13):123129.

    [9]TSUZUKI T, MCCORMICK P G. ZnO nanoparticles synthesised by mechanochemical processing [J]. Scripta Mater, 2001,44(89):17311734.〖ZK)〗

    [10]〖ZK(#〗REDMOND G, OKEEFFE A, BURGESS C, et al. Determination of the flatband potential of transparent nanocrystalline zinc oxide films [J]. J Phys Chem, 1993,97(42):1108111086.

    [11]HOYER P, EICHBERGER R, WELLER H. Spectroelectrochemical investigations of nanocrystalline ZnO films [J]. Ber BunsenGes Phys Chem, 1993,97(4):630635.

    [12]QIAN D, JIANG J Z, HANSEN P L. Preparation of ZnO nanocrystals via ultrasonic irradiation [J]. Chem Commun, 2003,3(9):10781079.

    [13]QIAN D, GERWARD L, JIANG J Z. Comment on “Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the solgel route”[J]. J Phys Chem B, 2004,108(39):1543415435.

    [8]SARKAR D, TIKKU S, THAPAR V, et al. Formation of zinc oxide nanoparticles of different shapes in waterinoil microemulsion [J]. Colloids Surf A, 2011,381(13):123129.

    [9]TSUZUKI T, MCCORMICK P G. ZnO nanoparticles synthesised by mechanochemical processing [J]. Scripta Mater, 2001,44(89):17311734.〖ZK)〗

    [10]〖ZK(#〗REDMOND G, OKEEFFE A, BURGESS C, et al. Determination of the flatband potential of transparent nanocrystalline zinc oxide films [J]. J Phys Chem, 1993,97(42):1108111086.

    [11]HOYER P, EICHBERGER R, WELLER H. Spectroelectrochemical investigations of nanocrystalline ZnO films [J]. Ber BunsenGes Phys Chem, 1993,97(4):630635.

    [12]QIAN D, JIANG J Z, HANSEN P L. Preparation of ZnO nanocrystals via ultrasonic irradiation [J]. Chem Commun, 2003,3(9):10781079.

    [13]QIAN D, GERWARD L, JIANG J Z. Comment on “Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the solgel route”[J]. J Phys Chem B, 2004,108(39):1543415435.

    猜你喜歡
    分散性光催化
    攪拌對聚羧酸減水劑分散性的影響
    納米SiO2粉體在水泥液相中的分散性
    土體分散性綜合判別方法探討*
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    山西省任莊水庫筑壩土料分散性試驗研究
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    爆轟法合成納米TiO2及其光催化性能
    sPS/PBA-aPS共混體系的相容性及分散性研究
    中國塑料(2016年4期)2016-06-27 06:33:40
    可見光光催化降解在有機(jī)污染防治中的應(yīng)用
    一種高分散性的廢舊氟橡膠膠粉的制備方法
    9191精品国产免费久久| 国产成人精品在线电影| 香蕉国产在线看| 久久久国产一区二区| 色综合婷婷激情| 亚洲三区欧美一区| 亚洲第一青青草原| 视频在线观看一区二区三区| 精品午夜福利视频在线观看一区| av国产精品久久久久影院| 少妇 在线观看| 国产在线一区二区三区精| 99热只有精品国产| 欧美乱妇无乱码| 多毛熟女@视频| 国产成+人综合+亚洲专区| 国产精品1区2区在线观看. | 欧美久久黑人一区二区| 国产精品1区2区在线观看. | 国产成人av教育| 黄片播放在线免费| 欧美日韩黄片免| 国产蜜桃级精品一区二区三区 | 欧美不卡视频在线免费观看 | 岛国毛片在线播放| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 午夜两性在线视频| 欧美老熟妇乱子伦牲交| 在线观看免费日韩欧美大片| 人人澡人人妻人| 久久国产精品影院| 久久天堂一区二区三区四区| 日韩大码丰满熟妇| 亚洲在线自拍视频| 久久婷婷成人综合色麻豆| 国产不卡av网站在线观看| 国产精品久久久久久人妻精品电影| 在线观看日韩欧美| 美女福利国产在线| 国产精品影院久久| 久久中文字幕一级| 大码成人一级视频| 一边摸一边抽搐一进一出视频| 久久久久久人人人人人| 天天添夜夜摸| 亚洲精品乱久久久久久| 亚洲午夜精品一区,二区,三区| www.自偷自拍.com| 精品国产一区二区三区久久久樱花| 美女 人体艺术 gogo| 人人澡人人妻人| 国产精品亚洲一级av第二区| 亚洲视频免费观看视频| 高清毛片免费观看视频网站 | 久久午夜综合久久蜜桃| 日本黄色视频三级网站网址 | 看免费av毛片| 韩国精品一区二区三区| 国产精品自产拍在线观看55亚洲 | 国产亚洲精品第一综合不卡| 黄频高清免费视频| 亚洲精品国产一区二区精华液| 成人精品一区二区免费| 在线视频色国产色| 国产精品久久久久久人妻精品电影| 在线av久久热| 美女国产高潮福利片在线看| 国产精品国产av在线观看| 亚洲黑人精品在线| 国产aⅴ精品一区二区三区波| 757午夜福利合集在线观看| av中文乱码字幕在线| 一个人免费在线观看的高清视频| 国产麻豆69| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线| 久久久国产精品麻豆| 99热国产这里只有精品6| 人妻丰满熟妇av一区二区三区 | 天天添夜夜摸| 高清av免费在线| 岛国在线观看网站| 欧美午夜高清在线| 亚洲熟女精品中文字幕| 久久久久视频综合| 成人18禁高潮啪啪吃奶动态图| 午夜福利在线观看吧| 亚洲av日韩精品久久久久久密| 亚洲国产精品合色在线| 午夜激情av网站| 午夜视频精品福利| 国产亚洲精品第一综合不卡| 亚洲av日韩精品久久久久久密| 高清黄色对白视频在线免费看| 18在线观看网站| 操美女的视频在线观看| 国产激情久久老熟女| 国产成人免费无遮挡视频| 不卡av一区二区三区| 亚洲国产欧美日韩在线播放| 国产亚洲精品第一综合不卡| 天堂动漫精品| 一个人免费在线观看的高清视频| 久久国产精品大桥未久av| 最近最新免费中文字幕在线| 一级作爱视频免费观看| 欧美丝袜亚洲另类 | 老熟妇乱子伦视频在线观看| 午夜免费观看网址| 欧美日韩一级在线毛片| 美国免费a级毛片| 波多野结衣av一区二区av| 久久99一区二区三区| 多毛熟女@视频| 黄网站色视频无遮挡免费观看| 亚洲第一青青草原| 国产亚洲欧美98| 757午夜福利合集在线观看| 两个人免费观看高清视频| 久久精品成人免费网站| 怎么达到女性高潮| 天天躁狠狠躁夜夜躁狠狠躁| 18在线观看网站| 免费在线观看日本一区| 午夜福利视频在线观看免费| 亚洲av欧美aⅴ国产| 正在播放国产对白刺激| 伊人久久大香线蕉亚洲五| 亚洲人成77777在线视频| 精品久久蜜臀av无| 亚洲欧美日韩另类电影网站| 十八禁网站免费在线| 18禁黄网站禁片午夜丰满| 国产成+人综合+亚洲专区| 国产高清激情床上av| 久久精品成人免费网站| 亚洲欧美日韩高清在线视频| 国产日韩欧美亚洲二区| 18禁裸乳无遮挡免费网站照片 | 精品国产一区二区三区四区第35| 精品免费久久久久久久清纯 | 深夜精品福利| 极品人妻少妇av视频| 日日夜夜操网爽| 日韩欧美国产一区二区入口| av网站免费在线观看视频| 欧美大码av| 中文字幕制服av| 一夜夜www| 黑人猛操日本美女一级片| 亚洲精品在线美女| а√天堂www在线а√下载 | 精品国产一区二区三区久久久樱花| 国产97色在线日韩免费| 亚洲精品在线美女| 狠狠狠狠99中文字幕| 国内久久婷婷六月综合欲色啪| 九色亚洲精品在线播放| 色94色欧美一区二区| 老司机午夜福利在线观看视频| www日本在线高清视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女午夜一区二区三区| 色老头精品视频在线观看| 久久中文看片网| 免费在线观看黄色视频的| 一本综合久久免费| 一二三四社区在线视频社区8| 波多野结衣一区麻豆| 亚洲国产欧美网| 国产又爽黄色视频| 男人的好看免费观看在线视频 | 久久香蕉精品热| 99精品欧美一区二区三区四区| 一区在线观看完整版| 国产精品亚洲av一区麻豆| 9191精品国产免费久久| 涩涩av久久男人的天堂| 一边摸一边抽搐一进一小说 | 亚洲精品美女久久久久99蜜臀| 丝袜人妻中文字幕| 亚洲中文日韩欧美视频| 亚洲少妇的诱惑av| 母亲3免费完整高清在线观看| 精品熟女少妇八av免费久了| 国产乱人伦免费视频| 久热这里只有精品99| 别揉我奶头~嗯~啊~动态视频| 在线观看舔阴道视频| av在线播放免费不卡| 日韩人妻精品一区2区三区| xxx96com| 久久久国产欧美日韩av| 最新的欧美精品一区二区| 在线观看免费高清a一片| 亚洲欧美色中文字幕在线| 超色免费av| 亚洲精品av麻豆狂野| 999久久久精品免费观看国产| 人妻一区二区av| 老司机午夜十八禁免费视频| 9191精品国产免费久久| 亚洲第一青青草原| 美女扒开内裤让男人捅视频| 一区二区三区激情视频| 亚洲熟妇中文字幕五十中出 | 久久精品国产99精品国产亚洲性色 | 国产一区二区三区视频了| 99国产综合亚洲精品| 在线国产一区二区在线| 国产在视频线精品| 久热这里只有精品99| 两性夫妻黄色片| 天天躁日日躁夜夜躁夜夜| 久热这里只有精品99| 免费在线观看黄色视频的| 成年版毛片免费区| 国产午夜精品久久久久久| 国产欧美日韩综合在线一区二区| av网站在线播放免费| 一级a爱视频在线免费观看| 黄片小视频在线播放| 久久香蕉激情| 日韩中文字幕欧美一区二区| 精品国产一区二区三区久久久樱花| 一级片'在线观看视频| 老熟妇乱子伦视频在线观看| 男男h啪啪无遮挡| 精品视频人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 99久久99久久久精品蜜桃| 精品久久久久久,| 后天国语完整版免费观看| 成年人午夜在线观看视频| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美激情在线| 最近最新中文字幕大全免费视频| 精品一区二区三区av网在线观看| 国产日韩欧美亚洲二区| av福利片在线| 妹子高潮喷水视频| 亚洲一码二码三码区别大吗| 欧美乱码精品一区二区三区| 99re6热这里在线精品视频| 操美女的视频在线观看| 亚洲 国产 在线| 午夜福利在线观看吧| 精品久久久精品久久久| 久久精品人人爽人人爽视色| 黑人欧美特级aaaaaa片| 久久亚洲精品不卡| 国产欧美日韩综合在线一区二区| 国产亚洲精品久久久久久毛片 | 制服人妻中文乱码| 国产高清激情床上av| 精品国产一区二区久久| 亚洲欧美激情在线| 国产精品久久视频播放| 老司机深夜福利视频在线观看| 国产免费av片在线观看野外av| tocl精华| 国产视频一区二区在线看| 黑丝袜美女国产一区| 日韩欧美在线二视频 | 午夜老司机福利片| 国产无遮挡羞羞视频在线观看| 视频区欧美日本亚洲| 丰满迷人的少妇在线观看| 国产又爽黄色视频| 久久久久视频综合| 91成人精品电影| 一级作爱视频免费观看| 身体一侧抽搐| 最新的欧美精品一区二区| 色婷婷久久久亚洲欧美| 丝袜美腿诱惑在线| 在线观看舔阴道视频| 捣出白浆h1v1| 精品一区二区三区av网在线观看| 久久精品aⅴ一区二区三区四区| 国产欧美日韩综合在线一区二区| 变态另类成人亚洲欧美熟女 | 国产xxxxx性猛交| 欧美日韩视频精品一区| av免费在线观看网站| 大陆偷拍与自拍| 国产精品一区二区免费欧美| 国产91精品成人一区二区三区| 国产成人av教育| 超碰97精品在线观看| 久久天躁狠狠躁夜夜2o2o| 精品久久久精品久久久| 久久久久国产精品人妻aⅴ院 | 9191精品国产免费久久| 90打野战视频偷拍视频| 脱女人内裤的视频| 精品人妻熟女毛片av久久网站| 在线av久久热| 自线自在国产av| 欧美亚洲 丝袜 人妻 在线| 欧美人与性动交α欧美软件| 亚洲九九香蕉| 精品卡一卡二卡四卡免费| 老汉色av国产亚洲站长工具| 成人18禁高潮啪啪吃奶动态图| 欧美精品高潮呻吟av久久| 国产成人一区二区三区免费视频网站| 国产99白浆流出| 欧美精品人与动牲交sv欧美| 国产精品国产高清国产av | 丰满迷人的少妇在线观看| 午夜福利欧美成人| 久久久久久亚洲精品国产蜜桃av| www.自偷自拍.com| 午夜老司机福利片| 日韩欧美国产一区二区入口| x7x7x7水蜜桃| 一级黄色大片毛片| 一边摸一边抽搐一进一小说 | 亚洲人成电影观看| 国产精品99久久99久久久不卡| 国产精品.久久久| 两个人看的免费小视频| 久久久精品免费免费高清| 国产97色在线日韩免费| 午夜福利视频在线观看免费| 国产97色在线日韩免费| 免费看a级黄色片| 亚洲色图 男人天堂 中文字幕| 757午夜福利合集在线观看| 国内毛片毛片毛片毛片毛片| 无限看片的www在线观看| 日本黄色日本黄色录像| av国产精品久久久久影院| 美女高潮喷水抽搐中文字幕| 黑人欧美特级aaaaaa片| 久久天堂一区二区三区四区| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三| x7x7x7水蜜桃| 亚洲伊人色综图| 热99re8久久精品国产| 少妇粗大呻吟视频| 午夜精品久久久久久毛片777| 岛国在线观看网站| 久久亚洲真实| 久久久久国产精品人妻aⅴ院 | 国产精品免费视频内射| 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 午夜福利免费观看在线| 99国产精品99久久久久| 国产在线观看jvid| 美女扒开内裤让男人捅视频| 少妇被粗大的猛进出69影院| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| 国产成人欧美在线观看 | 制服诱惑二区| 女同久久另类99精品国产91| av网站免费在线观看视频| 欧美激情久久久久久爽电影 | 美女午夜性视频免费| 成人国语在线视频| 国产一区有黄有色的免费视频| 久久久精品国产亚洲av高清涩受| 黄色 视频免费看| 狠狠狠狠99中文字幕| 免费日韩欧美在线观看| 亚洲精品美女久久久久99蜜臀| 黑人猛操日本美女一级片| 国产高清激情床上av| 亚洲综合色网址| av在线播放免费不卡| 国产激情久久老熟女| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看 | 正在播放国产对白刺激| 美女高潮喷水抽搐中文字幕| 日日夜夜操网爽| 国产亚洲欧美在线一区二区| 国精品久久久久久国模美| 精品乱码久久久久久99久播| 国产成人av激情在线播放| 国产91精品成人一区二区三区| 国产精品免费大片| 99国产极品粉嫩在线观看| 亚洲成a人片在线一区二区| 午夜福利视频在线观看免费| 校园春色视频在线观看| 巨乳人妻的诱惑在线观看| 亚洲成国产人片在线观看| 在线视频色国产色| 免费av中文字幕在线| 午夜福利一区二区在线看| 国产人伦9x9x在线观看| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 亚洲精品国产精品久久久不卡| 人人妻人人添人人爽欧美一区卜| 久久中文看片网| 免费av中文字幕在线| 久久国产乱子伦精品免费另类| 国产成人av教育| 精品人妻1区二区| 国产精品亚洲av一区麻豆| 在线视频色国产色| 成人18禁在线播放| 精品国产一区二区三区四区第35| 久久久久国产一级毛片高清牌| 极品少妇高潮喷水抽搐| 欧美丝袜亚洲另类 | 黑人巨大精品欧美一区二区mp4| 久久久精品区二区三区| 国产精品一区二区精品视频观看| 久久精品aⅴ一区二区三区四区| 成年人黄色毛片网站| 午夜日韩欧美国产| 久热爱精品视频在线9| 国产男靠女视频免费网站| 欧美日韩视频精品一区| 人人澡人人妻人| 国产野战对白在线观看| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 男女高潮啪啪啪动态图| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 丰满饥渴人妻一区二区三| 亚洲精品中文字幕一二三四区| 国产精品一区二区在线不卡| 午夜免费鲁丝| 美女午夜性视频免费| 亚洲一区高清亚洲精品| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3 | 两性午夜刺激爽爽歪歪视频在线观看 | 黑人欧美特级aaaaaa片| 老司机靠b影院| 捣出白浆h1v1| 国产亚洲欧美精品永久| 日韩免费av在线播放| 超色免费av| 又黄又粗又硬又大视频| 国产xxxxx性猛交| 1024视频免费在线观看| 正在播放国产对白刺激| 欧美亚洲日本最大视频资源| 少妇裸体淫交视频免费看高清 | 国产av一区二区精品久久| 别揉我奶头~嗯~啊~动态视频| 色老头精品视频在线观看| 香蕉丝袜av| 亚洲精品久久午夜乱码| av视频免费观看在线观看| 亚洲精品乱久久久久久| 韩国精品一区二区三区| 在线观看日韩欧美| 12—13女人毛片做爰片一| 丝袜人妻中文字幕| 亚洲专区国产一区二区| 亚洲黑人精品在线| a级毛片黄视频| 一夜夜www| 高清欧美精品videossex| 成人亚洲精品一区在线观看| 日日夜夜操网爽| 久久久久精品人妻al黑| 亚洲欧美日韩高清在线视频| 亚洲,欧美精品.| 久久久久精品国产欧美久久久| 巨乳人妻的诱惑在线观看| 女人被狂操c到高潮| 国产野战对白在线观看| 99热网站在线观看| 日韩欧美国产一区二区入口| 国产成人av教育| 亚洲av成人不卡在线观看播放网| 欧美成狂野欧美在线观看| 丰满饥渴人妻一区二区三| 国产精品成人在线| 热re99久久精品国产66热6| 老鸭窝网址在线观看| 亚洲专区国产一区二区| 99热国产这里只有精品6| 天天影视国产精品| 黄片播放在线免费| 国产有黄有色有爽视频| 亚洲午夜精品一区,二区,三区| 国产成人影院久久av| 久久久久久人人人人人| 亚洲综合色网址| 高清视频免费观看一区二区| 色综合婷婷激情| 夜夜爽天天搞| 老熟妇仑乱视频hdxx| 女人被狂操c到高潮| 国产91精品成人一区二区三区| 淫妇啪啪啪对白视频| 午夜福利在线免费观看网站| 欧美不卡视频在线免费观看 | 久久热在线av| 久久中文字幕一级| 亚洲成人免费电影在线观看| e午夜精品久久久久久久| 精品国产美女av久久久久小说| 久久人人爽av亚洲精品天堂| 亚洲九九香蕉| 建设人人有责人人尽责人人享有的| tocl精华| 巨乳人妻的诱惑在线观看| 国产激情久久老熟女| 久热这里只有精品99| 法律面前人人平等表现在哪些方面| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| 又大又爽又粗| 久热爱精品视频在线9| 免费人成视频x8x8入口观看| 欧美人与性动交α欧美软件| 亚洲国产精品一区二区三区在线| 美国免费a级毛片| 天天操日日干夜夜撸| 国产视频一区二区在线看| 久9热在线精品视频| 999久久久国产精品视频| 人人妻人人澡人人看| 男人舔女人的私密视频| 日韩大码丰满熟妇| 欧美日韩av久久| cao死你这个sao货| 热99国产精品久久久久久7| 亚洲av日韩在线播放| 国产精品久久久久成人av| 日韩欧美免费精品| av不卡在线播放| 欧美在线一区亚洲| 美女国产高潮福利片在线看| 老鸭窝网址在线观看| 一级黄色大片毛片| 国产精品成人在线| 欧美 日韩 精品 国产| 国产国语露脸激情在线看| 99久久人妻综合| 亚洲精品乱久久久久久| 精品一品国产午夜福利视频| 国产片内射在线| 亚洲,欧美精品.| 99精品在免费线老司机午夜| 成人亚洲精品一区在线观看| 国产亚洲精品一区二区www | 久久热在线av| 日本黄色日本黄色录像| 久久 成人 亚洲| 亚洲人成77777在线视频| 女性被躁到高潮视频| 男人操女人黄网站| 天天影视国产精品| 中文字幕av电影在线播放| 日韩人妻精品一区2区三区| 国产精品影院久久| 精品第一国产精品| 亚洲七黄色美女视频| 老汉色∧v一级毛片| 在线观看免费午夜福利视频| 韩国精品一区二区三区| 首页视频小说图片口味搜索| av在线播放免费不卡| 多毛熟女@视频| 精品视频人人做人人爽| 色尼玛亚洲综合影院| 亚洲视频免费观看视频| xxxhd国产人妻xxx| 一个人免费在线观看的高清视频| 国产成人免费无遮挡视频| 美女高潮到喷水免费观看| 在线观看免费高清a一片| 国产精品.久久久| 精品国产国语对白av| 中文字幕人妻丝袜制服| 99国产精品一区二区三区| 精品免费久久久久久久清纯 | 美女高潮到喷水免费观看| 韩国av一区二区三区四区| 亚洲一码二码三码区别大吗| 麻豆成人av在线观看| 91国产中文字幕| 嫩草影视91久久| 久久久久国产一级毛片高清牌| 美女午夜性视频免费| 国产日韩一区二区三区精品不卡| 欧美黑人欧美精品刺激| 亚洲av片天天在线观看| 精品免费久久久久久久清纯 | 国产成人精品久久二区二区91| 9热在线视频观看99| 91国产中文字幕| 人人妻,人人澡人人爽秒播| 老司机午夜福利在线观看视频| 国产精品香港三级国产av潘金莲| 50天的宝宝边吃奶边哭怎么回事| 成人免费观看视频高清| a级毛片黄视频| 在线观看日韩欧美| av欧美777| 亚洲 欧美一区二区三区| 久久人妻熟女aⅴ|