• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯氧化程度對(duì)Ni(OH)2贗電容性能的影響

    2014-10-18 05:27:44賀園園張晉江趙健偉
    物理化學(xué)學(xué)報(bào) 2014年2期
    關(guān)鍵詞:劉建華化工學(xué)院物理化學(xué)

    賀園園 張晉江 趙健偉

    (南京大學(xué)化學(xué)化工學(xué)院,生命分析化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京 210008)

    1 Introduction

    The energy of chemical battery is stored by Faradic charge transfer,which is produced by electrochemical reaction.Chemical battery has many shortcomings,for example,short service life,narrow temperature range,and environmental pollution.1Compared with charge storage capacity of conventional capacitors and rechargeable chemical battery,supercapacitor is higher.It has many characteristics such as high rate and efficiency of charge/discharge,no pollution,long service life,wide temperature range,and high security.2According to the different energy storage mechanisms,supercapacitor can be divided into three categories:(1)electrochemical double-layer capacitors(EDLCs),energy storage by adsorbing anions and cations;(2)pseudocapacitor,energy storage through the rapid surface redox reaction;(3)asymmetric supercapacitor.3

    Pseudocapacitor is also known as Faradic supercapacitor.The energy storage is completed by an innovative redox-mediated strategy.The quick reversible redox reaction aroused by redox mediator can efficiently enhance the ionic conductivity and pseudocapacitance.4,5Various materials such as transition metal oxides,metal hydroxides,and polymeric materials have been explored for pseudocapacitor application.6-8Among them,nickel hydroxide is a promising candidate for pseudocapacitors owing to well-defined electrochemical redox activity,high specific capacitance,low cost,and availability of various morphologies.9Yang et al.10reported a electrodeposited α-Ni(OH)2film with a porous-wrinkle structure and ultrahigh capacitance.

    Ni(OH)2/graphene has attracted extensive interest as a pseudocapacitor material over the past decade.The stable electrochemical property and large surface area of Ni(OH)2enable it to form layered structure with large interlayer spacing.11-17Oxidation degree of graphene substrates would affect the pseudocapacitance and rate capability of composite materials.18Accordingly,a better conductive system built with well dispersed Ni(OH)2particles and highly conducting graphene sheets can significantly improve supercapacitive behavior.Many researchers19-21considered the large amount of oxygen-containing functional groups on reduced graphene oxide sheet(rGNOs)such as hydroxyl,carbonyl,epoxyl and lactone groups might be attributed to the pseudocapacitance of many metal materials.

    However,the reason why oxygen-containing functional groups on rGNOs can improve the characteristics of Ni(OH)2as pseudocapacitor is not yet clear,so we aim to investigate the interaction between oxided defects on rGNOs and Ni(OH)2in atomic scale using density functional theory(DFT)method and analyze the influence of the reduction degree of rGNOs on Ni(OH)2when it is applied as pseudocapacitor material.On the other hand,in order to testify the theoretical results,we also develop a new method to deposite Ni(OH)2on rGNOs substrate and characterize it with modern analytical techniques such as cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS).

    2 Computational method

    Fig.1 shows the models of graphene sheet(GS)and rGNOs with different oxidation degrees.The carbonyl,epoxyl,and hydroxyl groups are anchored on the adjacent C atoms of rGNOs,respectively,in Fig.1(b,c,d).All these geometric structures were optimized at B3LYP level with 6-31G*basic set except Ni at LANL2DZ using the Gaussian 03 software.23,24

    3 Experimental

    Graphite(Sinopharm Chemicals Reagent Co.,Ltd.,China)was used as received.Na2SO4,Ni(NO3)2,KOH,and H2SO4(95%)(Sinopharm Chemicals Reagent Co.,Ltd.,China)were all of analytical grade purity.Doubly distilled water was used throughout the experiments.Scheme 1 shows the preparation flow of Ni(OH)2nanoparticles/rGNOs.Graphene oxide(GO)was synthesized through a modified Hummers?method.25Graphene oxide sheets(GNOs)were attained by ultrasonically dispersing 50 mg graphitic oxide in 100 mL deionized water for 2 h.GNOs modified electrode(2 cm2in area)was prepared by soaking nickel foam in 0.05%(w)GNOs solution for 4 h through a simple self-assemble process.26-28

    Fig.1 Models of(a)GS,(b)rGNOs with two carbonyl groups,(c)rGNOs with two epoxyl group,and(d)rGNOs with two hydroxyl groups

    Scheme 1 Preparation flow of Ni(OH)2nanoparticles/rGNOs

    All electrochemical measurements were carried out in a three-electrode experimental setup.Platinum wire electrode and saturated calomel electrode(SCE)were used as the counter and reference electrodes,respectively.All electrochemical measurements were carried out in 3%(w)KOH aqueous electrolyte by using CHI660B(Shanghai Chenhua Apparatus,China)and PGSTAT30(Autolab,EchoChemie,Netherlands)electrochemical workstations.The mass of the deposited Ni(OH)2was measured from the mass difference before and after electrochemical deposition by means of a micro-balance(Sartorius BT125D)with an accuracy of 0.01 mg.The morphology of the sample was observed by a scanning electron microscope Model S-4800(SEM,Hitachi,Japan)and a high-resolution transmission electron microscope Model JEM-2100(HRTEM,Jeol,Japan).

    4 Results and discussion

    The optimized geometry is shown in Fig.2a.We can see that Ni(OH)2bridges the gap between two adjacent C atoms and the GS remains planar conformation.The distance between Ni(OH)2and the GS surface is 0.248 nm.The adsorption energy is 12.57 kJ·mol-1.From the structure and the small adsorption energy we can predict that there is little chemical adsorption between Ni(OH)2and GS,and GS will have little effect on the electronic properties of Ni(OH)2.

    Fig.2 Geometric structures of(a)GS,(b)rGNOs with two carbonyl groups,(c)rGNOs with two epoxyl groups,and(d)rGNOs with two hydroxyl groups after absorbing Ni(OH)2optimized at 6-31G*level except Ni at LANL2DZ,via DFT method

    When two carbonyl groups are anchored on the adjacent C atoms in rGNOs,Ni(OH)2bridges the gap between the two adjacent O atoms of the carbonyl groups(Fig.2b).Variations of the atomic distances for rGNOs with two carbonyl groups before and after adsorbing Ni(OH)2are listed in Table 1.The Ni―O and C―O bonds become longer and the distance between Ni(OH)2and the carbonyl group on rGNOs with two carbonyl groups(Ni-O1)is 0.197 nm.It means that Ni(OH)2is closer to rGNOs with two carbonyl groups compared with GS.The adsorption energy is-131.02 kJ·mol-1,which indicates that the adsorption between Ni(OH)2and rGNOs with two carbonyl groups is very strong under the influence of complexation interaction between the Ni atom in Ni(OH)2and O atom in carbonyl group.

    When the two carbonyl groups are reduced to be an epoxyl group,the distance between the Ni atom in Ni(OH)2and the O1 atom in epoxyl group is 0.205 nm,a littler longer than that in rGNOs with two carbonyl groups(Fig.2c).The adsorption energy is-131.03 kJ·mol-1.It shows that the complexation interaction exists between the Ni atom in Ni(OH)2and O atom in epoxy group,although it is weaker than that between Ni(OH)2and rGNOs with two carbonyl groups.

    But when the epoxyl group is reduced to two hydroxyl groups,the Ni―O and C―O bonds become longer and the distance between the Ni atom in Ni(OH)2and O atom in one of the hydroxyl groups changes to be 0.197 nm that is equivalent to that in rGNOs with an carbonyl group(Fig.2d).The adsorption energy has dropped to be-131.11 kJ·mol-1and it is the lowest value in the systems containing rGNOs with different extents of oxidation.We can get the conclusion that the complexation interaction between Ni(OH)2and oxidation defects on rGNOs becomes stronger whenthe reduction degree of the oxidation defects on rGNOs increases.The electron transfer between Ni(OH)2and rGNOs is promoted by the strong complexation interaction.Hence the interfacial resistance of Ni(OH)2/rGNOs decreases and Ni(OH)2shows more pseudocapacitance characteristics.

    Table 1 Variations of the atomic distances for rGNOs before and after adsorbing Ni(OH)2

    We further analyze the charge distribution over GS and rGNOs before and after adsorbing Ni(OH)2.Charge distribution over GS changes little after adsorbing Ni(OH)2.The net charge of Ni(OH)2is-0.205e,which means that electrons transfer from Ni(OH)2to graphene are not effective.Then we list the charge variations on every atom in rGNOs and Ni(OH)2in Table 2 in detail.When Ni(OH)2is adsorbed with the two carbonyl or epoxy groups on rGNOs,the net charges of Ni(OH)2are-0.380e and-0.388e,respectively.However,when Ni(OH)2is adsorbed with the two hydroxyl groups on rGNOs,the positive charge of C atoms in rGNOs increases and the net charge on Ni(OH)2is-0.462e.Electrons transfer from rGNOs substrate to Ni(OH)2through hydroxyl groups,which makes Ni(OH)2negative and even increases the oxidation activity of Ni(OH)2.

    The quantum chemical calculations above indicate that Ni(OH)2takes negative charges when it is adsorbed on rGNOs.The asymmetric electron transfer pathway from rGNOs to Ni(OH)2promotes the rectifying effect of Ni(OH)2.The negative charge on Ni(OH)2makes it easier for Ni(OH)2to be oxidized to NiOOH with higher reactivity by improving the efficiency of electron transfer.The discharge potential of Ni(OH)2/rGNOs will shift positive and the charge/discharge rate tends to be consistent.As a result,the oxygen-containing groups on rGNOs help to enhance the pseudocapacitance characteristic of Ni(OH)2.

    In order to verify this mechanism supposed above,we study the morphology of Ni(OH)2particles electrochemically deposited on rGNOs with different reduction degrees(Fig.3).Ni(OH)2particles are deposited at-0.7 V in 0.1 mol·L-1Ni(NO3)2solution for 1000 s with potentiostatic method on rGNOs that have been reduced in 0.5 mol·L-1Na2SO4solution at-0.9 V for 3000 and 6000 s,respectively,in advance.When rGNOs are electrochemically reduced for different time,functional group densities on surface of them also change.Morphology of Ni(OH)2deposited on GNOs is greatly different from that deposited on rGNOs.Ni(OH)2particles with larger diameter on GNOs are readily aggregated.In contrast,the Ni(OH)2particles with smaller diameter are homogeneously dispersed on surface of rGNOs.Furthermore,the Ni(OH)2particles have a smaller diameter and more uniform dispersion when the reduction time of rGNOs becomes longer.

    Fig.4(a,c,e)shows the SEM,TEM,and HRTEM images of Ni(OH)2electrochemically deposited on bare nickel foam in 0.1 mol·L-1Ni(NO3)2solution at-0.7 V for 1000 s.They depict the disorderly aggregated morphology of Ni(OH)2that is loose and porous.Fig.4(b,d,f)shows the SEM,TEM,and HRTEM images of Ni(OH)2electrochemically deposited on rGNOs that have been reduced for 6000 s at the same condition as above.It can be observed that the plate-like Ni(OH)2particles are densely anchored on the surface of rGNOs.More-over,Ni(OH)2particles deposited on rGNOs have smaller diameter and their distribution is more uniform than that deposited on graphene.29They provide larger specific surface area and higher capacity utilization.

    Table 2 Charge changes(e)of rGNOs after adsorbing Ni(OH)2

    Fig.3 Transmission electron microscope(TEM)images of Ni(OH)2particles electrodeposited on GNOs(a),rGNOs electrochemical reduced for 3000 s(b),and 6000s(c)

    Fig.4 Scanning electron microscope(SEM)(a),TEM(c),high-resolution transmission electron microscope(HRTEM)(e)images of Ni(OH)2clusters deposited on bare nickel foam and SEM(b),TEM(d),HRTEM(f)images of Ni(OH)2nanoparticles deposited on rGNOs surface

    The electrodeposition process of Ni(OH)2film can be expressed as follows:30,31

    When rGNOs are applied as electrochemical deposition substrates,the Ni2+ions are absorbed on rGNOs surface and probably combine with the oxidation defects on rGNOs under the influence of strong chemical adsorption.Ni(OH)2particles are slowly formed on rGNOs during electrochemical reduction.The strong adsorption between Ni(OH)2and oxidation defects on rGNOs makes Ni(OH)2particles be anchored on rGNOs firmly.

    For exploring its potential applications,Ni(OH)2/rGNOs composite is used as the electroactive material for pseudocapacitor electrode and characterized by cyclic voltammetry(CV).Fig.5 shows the CV curves of Ni(OH)2composited on GS and rGNOs reduced in 0.5 mol·L-1Na2SO4solution at-0.9 V for 3000 and 6000 s,respectively,in advance.The potential window is 0-0.55 V32and the scan rate is 10 mV·s-1in 3%(w)KOH solution.The anodic peak is due to the oxidation of Ni(OH)2to NiOOH,and the cathodic peak is for the reverse process.Oxidation peaks of Ni(OH)2/GS and Ni(OH)2/rGNOs are both observed from 0.30 V.When the reduction time increases,the reduction degree of rGNOs also increases.The redox peaks of Ni(OH)2/rGNOs reduced for 6000 s are smoother and more rectangular shaped than that reduced for 3000 s,which illustrates the lower contact resistance of Ni(OH)2/rGNOs that have been reduced for 6000 s.33,34

    Fig.5 CV curves of Ni(OH)2composited on GS and rGNOs reduced for 3000 and 6000 s in 3%(w)KOH solution

    Fig.6 shows the CV curves of Ni(OH)2electrode at different scan rates on different substrates in 3%(w)KOH solution.The CV slope of Ni(OH)2/rGNOs is larger than that of Ni(OH)2at 0.30-0.35 V,which indicates that the Ni(OH)2/rGNOs has faster oxidation rate and smaller interfacial resistance.They are caused by the strong chemical interaction between Ni(OH)2and the functional groups on rGNOs and the electron transfer between nanoparticles is more efficient.

    It is also observed that the redox peaks of Ni(OH)2/rGNOs are smoother and more rectangular shaped than Ni(OH)2on bare nickel foam,which illustrates the lower contact resistance of Ni(OH)2/rGNOs.33,34The wider redox peaks and higher peak current density of Ni(OH)2/rGNOs are due to the excellent dispersion of Ni(OH)2nanoparticles on rGNOs,which promotes the diffusion of reactant molecules in bulk solution and thus improves the material utilization.When rGNOs is applied as electrochemical disposition substrate,the redox peaks shift lit-tle with the increase of scan rate,which demonstrates the higher reactivity of Ni(OH)2/rGNOs.It is caused by the increase of electric double layer(EDL),since the EDL of rGNOs is much larger than that of bare nickel foam.

    Fig.6 CV curves of Ni(OH)2electrode at different scan rates in 3%(w)KOH solution

    The specific mass capacitances(SC)at different scan rates can be calculated according to the Eq.(3):

    where m is the mass of the electroactive materials Ni(OH)2and ν is the scan rate.The capacitances under different scan rates are shown in Fig.7.SC of Ni(OH)2/rGNOs is 1591 F·g-1at 5 mV·s-1,while the value of Ni(OH)2on bare nickel foam is 656 F·g-1.Besides,at a higher scan rate of 100 mV·s-1,Ni(OH)2/rGNOs has a specific capacitance retaining 49%of that at 5 mV·s-1,whereas the value is 41%for bare nickel substrate.It proves the higher utilization and electrochemical activity of Ni(OH)2on rGNOs.Buglione et al.35observed that graphite microparticles showed a capacitance of 0.88 F·g-1and electrochemical reduction of GO leaded to a capacitance to 4.99 F·g-1.Although SC of rGNOs has increased dramatically,it is still so small to be neglected comparing to that of Ni(OH)2/rGNOs.The electric double-layer capacitance is influenced by the chemical adsorption between Ni(OH)2and rGNOs,it is impossible to measure the electric double-layer capacitance of rGNOs separately through experimental measurements.Therefore,the contribution from rGNOs can not be quantitatively assessed in the specific capacitance calculation.It is believed that the layered structure of composites with high surface area and the positive synergy effect between Ni(OH)2and rGNOs might enhance the capacitive performance.36As discussed above,the Ni(OH)2/rGNOs electrode exhibits good capacity retention and capacitive property,indicating that Ni(OH)2/rGNOs has the potential of being used as the electrode material of pseudocapacitor.

    Fig.7 Specific capacitances of Ni(OH)2electrode at different scan rates on different substrates in 3%(w)KOH solution

    To further investigate the influence of such rGNOs substrate on electrolyte diffusion,electrochemical impedance spectroscopy(EIS)of the prepared Ni(OH)2/rGNOs is explored.Fig.8 shows the Nyquist plots of the prepared Ni(OH)2and Ni(OH)2/rGNOs at the potential of 0.0 V(a)and 0.5 V(b)with a frequency range from 105to 0.01 Hz in 3%(w)KOH aqueous.The equivalent series resistance(ESR),which measures the conductivity of an electrode material,has been obtained from the tangential intersection of the corresponding Nyquist plots on Z?-axis.37

    In generally,a sharp increase of the imaginary part of EIS at lower frequency is due to capacitive behavior of the cell,where a semicircular loop at higher frequencies is due to charge-transfer resistance.The semicircle diameter of Ni(OH)2at high frequency has been reduced notably after modifying by rGNOs,indicating that the electron transport is greatly accelerated by the strong adsorption between Ni(OH)2and rGNOs.38In the inset of Fig.8a,ESR of Ni(OH)2and Ni(OH)2/rGNOs are found to be ~1.63 and 1.40 Ω,respectively,clearly suggesting the higher conductivity of Ni(OH)2/rGNOs.However,there is no straight lines on both of the EIS of Ni(OH)2and Ni(OH)2/rGNOs at lower frequency region at 0.0 V and the EIS of Ni(OH)2/rGNOs shows remarkable linear at low frequency region at 0.5 V.The linear part represents Warburg impedance resistance controlled by proton diffusion,finally reflecting concentration polarization impedance.The results demonstrate that at the potential of 0.0 V,the material rGNOs has only limited benefit to Ni(OH)2in improving its pseudocapacitor performance,whereas impedance spectroscopy of Ni(OH)2/rGNOs performed a typical capacitance characteristic.39

    In the low frequency region,the capacitance(C)can be defined as the combination of real(C')and imaginary(C'')parts of the capacitance.40,41

    Fig.8 Nyquist plots for Ni(OH)2and Ni(OH)2/rGNOs at potentials of 0.0 V(a)and 0.5 V(b)

    where C'corresponds to the capacitance measured under low frequency alternating current conditions and C''is directly proportional to resistance and corresponds to losses in the form of energy dispersion.The real capacitance(C′)decreases as the frequency increases,and at high frequency,the capacitance value is nearly to zero.C'of the capacitance at 0.5 V is over 20 times of that at 0.0 V,which further illustrates the pseudocapacitance of Ni(OH)2(Fig.9).Capacitance of Ni(OH)2electrode increases by nearly 10 times when it is deposited on rGNOs substrate.This incremental capacitance is mainly the electric double-layer capacitance of Ni(OH)2/rGNOs,which is mostly attributed by large surface area of rGNOs substrate.

    There are two reasons for rGNOs substrate′s effect upon the pseudocapacitance enhancement of Ni(OH)2.The unique structure of Ni(OH)2/rGNOs can increase the utilization of Ni(OH)2greatly.As shown in TEM images,Ni(OH)2nanoparticles dispersed on rGNOs can increase surface area of the electrode and further contact more electrolyte solution.In addition,the theoretical result that the strong adsorption energy between rGNOs and Ni(OH)2calculated above can be applied to explain the higher capacitance and lower resistance of Ni(OH)2/rGNOs,as it can make the electron transfer between rGNOs and Ni(OH)2easier.The variations of the atomic distances and charge distributions for rGNOs after adsorbing Ni(OH)2also contribute to decreasing the interface resistance between Ni(OH)2and rGNOs.

    Fig.9 Real(C')part variation of the capacitance for Ni(OH)2and Ni(OH)2/rGNOs with the frequency at 0.0 V(a)and 0.5 V(b)

    5 Conclusions

    In conclusion,the adsorption energy between rGNOs with hydroxyl groups and Ni(OH)2is the highest in the rGNOs with all oxidation degrees and the atomic distance between rGNOs with hydroxyl groups and Ni(OH)2is also the shortest.The charge distribution demonstrates that rGNOs with different oxidation degrees can improve the efficiency of electron transfer between rGNOs and Ni(OH)2.All these factors can enhance the pseudocapacitor characteristic of Ni(OH)2.We further synthesized Ni(OH)2nanoparticles about 5 nm in size and dispersed them on rGNOs substrate uniformly using the potentiostatic electrodeposition method.The specific mass capacitance of Ni(OH)2/rGNOs is 1591 F·g-1at 5 mV·s-1,2.5 times of that of the Ni(OH)2on bare nickel foam.The higher conductivity of Ni(OH)2/rGNOs also indicates that Ni(OH)2/rGNOs had the potential of being used as the electrode material of pseudocapacitor.

    (1)Levi,E.;Gofer,Y.;Aurbach,D.Chem.Mater.2010,22,860.doi:10.1021/cm9016497

    (2)Yuan,Y.F.;Xia,X.H.;Wu,J.B.;Yang,J.L.;Chen,Y.B.;Guo,S.Y.Electrochim.Acta 2011,56,2627.doi:10.1016/j.electacta.2010.12.001

    (3)Pang,S.C.;Anderson,M.A.;Chapman,T.W.J.Electrochem.Soc.2000,147,444.doi:10.1149/1.1393216

    (4)Aricò,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.M.;Van Schalkwijk,W.Nature Materials 2005,4,366.doi:10.1038/nmat1368

    (5)Choi,B.G.;Yang,M.;Jung,S.C.;Lee,K.G.;Kim,J.G.;Park,H.;Park,T.J.;Lee,S.B.;Han,Y.K.;Huh,Y.S.ACS Nano 2013,7,2453.doi:10.1021/nn305750s

    (6)Yang,X.F.;Wang,G.C.;Wang,R.Y.;Li,X.W.Electrochim.Acta 2010,55,5414.doi:10.1016/j.electacta.2010.04.067

    (7)Pico,F.;Morales,E.;Fernandez,J.A.;Centeno,T.A.;Iba?ez,J.;Rojas,R.M.;Amarilla,J.M.;Rojo,J.M.Electrochim.Acta 2009,54,2239.doi:10.1016/j.electacta.2008.10.028

    (8)Zhao,D.D.;Bao,S.J.;Zhou,W.J.;Li,H.L.Electrochem.Commun.2007,9,869.doi:10.1016/j.elecom.2006.11.030

    (9)Zhang,L.L.;Xiong,Z.G.;Zhao,X.S.J.Power Sources 2013,222,326.doi:10.1016/j.jpowsour.2012.09.016

    (10)Yang,G.W.;Xu,C.L.;Li,H.L.Chem.Commun.2008,6537.

    (11)Yang,D.N.;Wang,R.M.;He,M.S.;Zhang,J.;Liu,Z.F.J.Phys.Chem.B 2005,109,7654.doi:10.1021/jp050083b

    (12)Xu,L.P.;Ding,Y.S.;Chen,C.H.;Zhao,L.L.;Rimkus,C.Chem.Mater.2008,20,308.doi:10.1021/cm702207w

    (13)Wang,D.B.;Song,C.X.;Hu,Z.S.;Fu,X.J.Phys.Chem.B 2005,109,1125.doi:10.1021/jp046797o

    (14)Chen,X.;Chen,X.H.;Zhang,F.Q.;Yang,Z.;Huang,S.M.J.Power Sources 2013,243,555.doi:10.1016/j.jpowsour.2013.04.076

    (15)Zhao,D.D.;Xu,M.W.;Zhou,W.J.;Zhang,J.;Li,H.L.Electrochim.Acta 2008,53,2699.doi:10.1016/j.electacta.2007.07.053

    (16)Kottegoda,I.R.M.;Idris,N.H.;Lu,L.;Wang,J.Z.;Liu,H.K.Electrochim.Acta 2011,56,5815.doi:10.1016/j.electacta.2011.03.143

    (17)Li,S.M.;Wang,B.;Liu,J.H.;Yu,M.;An,J.W.Acta Phys.-Chim.Sin.2012,28,2754. [李松梅,王 博,劉建華,于 美,安軍偉.物理化學(xué)學(xué)報(bào),2012,28,2754.]doi:10.3866/PKU.WHXB201208292

    (18)Wang,H.L.;Casalongue,H.S.;Liang,Y.Y.;Dai,H.J.J.Am.Chem.Soc.2010,132,7472.doi:10.1021/ja102267j

    (20)Xu,H.B.;Fan,X.Z.;Lu,Y.H.;Zhong,L.A.;Kong,X.F.;Wang,J.Carbon 2010,48,3300.doi:10.1016/j.carbon.2010.04.051

    (21)Fan,X.Z.;Lu,Y.H.;Xu,H.B.;Kong,X.F.;Wang,J.J.Mater.Chem.2011,21,18753.doi:10.1039/c1jm13214h

    (22)Sun,Z.P.;Lu,X.M.Ind.Eng.Chem.Res.2012,51,9973.doi:10.1021/ie202706h

    (23)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision A.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (24)Zhao,J.W.;Liu,H.M.;Ni,W.B.;Guo,Y.;Yin,X.Acta Phys.-Chim.Sin.2009,25,1472.[趙健偉,劉洪梅,倪文彬,郭 彥,尹 星.物理化學(xué)學(xué)報(bào),2009,25,1472.]doi:10.3866/PKU.WHXB20090744

    (25)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80,1339.doi:10.1021/ja01539a017

    (26)Ramesha,G.K.;Sampath,S.J.Phys.Chem.C 2009,113,7985.doi:10.1021/jp811377n

    (27)Guo,H.L.;Wang,X.F.;Qian,Q.Y.;Wang,F.B.;Xia,X.H.ACS Nano 2009,3,2653.doi:10.1021/nn900227d

    (28)Gao,F.;Qi,X.W.;Cai,X.L.;Wang,Q.X.;Gao,F.;Sun,W.Thin Solid Films 2012,520,5064.doi:10.1016/j.tsf.2012.03.002

    (29)Zhao,C.M.;Wang,X.;Wang,S.M.;Wang,Y.Y.;Zhao,Y.X.;Zheng,W.T.Int.J.Hydrog.Energy 2012,37,11846.doi:10.1016/j.ijhydene.2012.05.138

    (30)Wang,D.H.;Choi,D.W.;Li,J.;Yang,Z.G.;Nie,Z.M.;Kou,R.;Hu,D.H.;Wang,C.M.;Saraf,L.V.;Zhang,J.G.;Aksay,I.A.;Liu,J.ACS Nano 2009,3,907.doi:10.1021/nn900150y

    (31)Corrigan,D.A.;Bendert,R.M.J.Electrochem.Soc.1989,136,723.doi:10.1149/1.2096717

    (32)Kim,S.J.;Park,G.J.;Kim,B.C.;Chung,J.K.;Wallace,G.G.;Park,S.Y.Synthetic Metals 2012,161,2641.

    (33)Gomez,J.;Kalu,E.E.J.Power Sources 2013,230,218.doi:10.1016/j.jpowsour.2012.12.069

    (34)Zhang,W.K.;Wang,L.;Huang,H.;Gan,Y.P.;Wang,C.T.;Tao,X.Y.Electrochim.Acta 2009,54,4760.doi:10.1016/j.electacta.2009.04.008

    (35)Buglione,L.;Chng,E.L.K.;Ambrosi,A.;Sofer,Z.;Pumera,M.Electrochem.Commun.2012,14,5.doi:10.1016/j.elecom.2011.09.013

    (36)Li,L.;He,Y.Q.;Chu,X.F.;Li,Y.M.;Sun,F.F.;Huang,H.Z.Acta Phys.-Chim.Sin.2013,29,1681. [李 樂,賀蘊(yùn)秋,儲(chǔ)曉菲,李一鳴,孫芳芳,黃河洲.物理化學(xué)學(xué)報(bào),2013,29,1681.]doi:10.3866/PKU.WHXB201305223

    (37)Zhang,J.T.;Jiang,J.W.;Zhao,X.S.J.Phys.Chem.C 2011,115,6448.doi:10.1021/jp200724h

    (38)Jagadale,A.D.;Kumbhar,V.S.;Dhawale,D.S.;Lokhande,C.D.Electrochim.Acta 2013,98,32.doi:10.1016/j.electacta.2013.02.094

    (39)Grden,M.;Alsabet,M.;Jerkiewicz,G.ACS Appl.Mater.Interfaces 2012,4,3012.doi:10.1021/am300380m

    (40)Taberna,P.L.;Simon,P.;Fauvarque,J.F.J.Electrochem.Soc.2003,150,A292.

    (41)Chmiola,J.;Yushin,G.;Dash,R.;Gogotsi,Y.J.Power Sources 2006,158,765.doi:10.1016/j.jpowsour.2005.09.008

    猜你喜歡
    劉建華化工學(xué)院物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Chemical Concepts from Density Functional Theory
    搟面條
    掉鞭炮
    手影
    Identity-based proxy multi-signature applicable to secure E-transaction delegations①
    精品高清国产在线一区| 人成视频在线观看免费观看| 国产三级在线视频| 久久天堂一区二区三区四区| 一个人观看的视频www高清免费观看 | 一本综合久久免费| 国产高清视频在线播放一区| 一二三四社区在线视频社区8| 日韩人妻精品一区2区三区| 女人被狂操c到高潮| 91老司机精品| 999精品在线视频| 国产一卡二卡三卡精品| 大型av网站在线播放| 国产国语露脸激情在线看| 国产成人av激情在线播放| 国产精品亚洲一级av第二区| 丰满饥渴人妻一区二区三| 侵犯人妻中文字幕一二三四区| 超碰成人久久| 看黄色毛片网站| 校园春色视频在线观看| 国产高清videossex| 丰满人妻熟妇乱又伦精品不卡| 中文字幕色久视频| 99久久综合精品五月天人人| svipshipincom国产片| 性欧美人与动物交配| 成人影院久久| 亚洲精品国产色婷婷电影| 丰满人妻熟妇乱又伦精品不卡| 人妻丰满熟妇av一区二区三区| 窝窝影院91人妻| 好看av亚洲va欧美ⅴa在| 国产熟女xx| 国产高清国产精品国产三级| 狂野欧美激情性xxxx| 国产精品乱码一区二三区的特点 | 国产单亲对白刺激| 亚洲情色 制服丝袜| 欧美性长视频在线观看| 黄网站色视频无遮挡免费观看| 一级毛片精品| 91成年电影在线观看| 黑丝袜美女国产一区| 国产一区二区在线av高清观看| 91麻豆精品激情在线观看国产 | 99精品在免费线老司机午夜| 三上悠亚av全集在线观看| 亚洲精品美女久久久久99蜜臀| 十八禁人妻一区二区| 黄色丝袜av网址大全| 水蜜桃什么品种好| 国产91精品成人一区二区三区| 亚洲五月天丁香| 亚洲男人的天堂狠狠| 国产精品野战在线观看 | 交换朋友夫妻互换小说| 大陆偷拍与自拍| 久久久久久久午夜电影 | 一本综合久久免费| 在线观看66精品国产| 大型黄色视频在线免费观看| 久久久久亚洲av毛片大全| 美女午夜性视频免费| 亚洲片人在线观看| 99精品欧美一区二区三区四区| 90打野战视频偷拍视频| cao死你这个sao货| 免费搜索国产男女视频| 日韩大码丰满熟妇| 99热国产这里只有精品6| 日韩一卡2卡3卡4卡2021年| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区免费欧美| 欧美 亚洲 国产 日韩一| 亚洲国产欧美日韩在线播放| 亚洲片人在线观看| 国产精品一区二区三区四区久久 | av免费在线观看网站| 国产又色又爽无遮挡免费看| 嫁个100分男人电影在线观看| 最新美女视频免费是黄的| 777久久人妻少妇嫩草av网站| 亚洲片人在线观看| 这个男人来自地球电影免费观看| 黄色a级毛片大全视频| 悠悠久久av| 国产黄a三级三级三级人| 国产极品粉嫩免费观看在线| 又黄又粗又硬又大视频| av视频免费观看在线观看| 视频在线观看一区二区三区| 校园春色视频在线观看| 久久精品国产综合久久久| 亚洲精品一卡2卡三卡4卡5卡| 人妻丰满熟妇av一区二区三区| 精品久久蜜臀av无| 多毛熟女@视频| 国产亚洲精品一区二区www| 三上悠亚av全集在线观看| 午夜福利,免费看| 日韩大码丰满熟妇| 久久影院123| 一级黄色大片毛片| 精品一品国产午夜福利视频| 亚洲av熟女| 国产精品偷伦视频观看了| 亚洲精品国产色婷婷电影| 国产乱人伦免费视频| 精品一区二区三卡| 极品教师在线免费播放| aaaaa片日本免费| 国产99久久九九免费精品| 日韩免费高清中文字幕av| 免费在线观看影片大全网站| www.999成人在线观看| 桃红色精品国产亚洲av| 男女高潮啪啪啪动态图| 亚洲午夜精品一区,二区,三区| 一边摸一边做爽爽视频免费| 黄色女人牲交| 电影成人av| 日韩欧美在线二视频| 久久精品国产综合久久久| 每晚都被弄得嗷嗷叫到高潮| 国产主播在线观看一区二区| 91av网站免费观看| www.www免费av| 最新美女视频免费是黄的| 精品一区二区三区视频在线观看免费 | 亚洲精品成人av观看孕妇| 亚洲国产看品久久| a级毛片在线看网站| 国产单亲对白刺激| 又黄又爽又免费观看的视频| 免费少妇av软件| 欧美日韩乱码在线| 日本撒尿小便嘘嘘汇集6| 久久精品国产综合久久久| 波多野结衣高清无吗| 亚洲第一av免费看| 一二三四社区在线视频社区8| 制服诱惑二区| 亚洲精品av麻豆狂野| 亚洲精品中文字幕在线视频| av视频免费观看在线观看| 亚洲一码二码三码区别大吗| 99久久精品国产亚洲精品| 国产亚洲精品综合一区在线观看 | 三级毛片av免费| www.精华液| 9热在线视频观看99| 久久久国产欧美日韩av| 一个人免费在线观看的高清视频| 亚洲一区二区三区欧美精品| 黑人猛操日本美女一级片| 欧美日韩精品网址| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉国产精品| 精品久久久久久电影网| 日日爽夜夜爽网站| 午夜精品国产一区二区电影| 免费高清视频大片| 日韩人妻精品一区2区三区| 十分钟在线观看高清视频www| 国产亚洲精品综合一区在线观看 | 啦啦啦免费观看视频1| 亚洲中文av在线| 男人操女人黄网站| 夫妻午夜视频| 99国产精品一区二区三区| 亚洲伊人色综图| av有码第一页| av福利片在线| 怎么达到女性高潮| 国产欧美日韩一区二区三区在线| 一个人免费在线观看的高清视频| 日本vs欧美在线观看视频| 黑人操中国人逼视频| 99久久人妻综合| 午夜亚洲福利在线播放| 性欧美人与动物交配| 又黄又粗又硬又大视频| 999久久久精品免费观看国产| 欧美午夜高清在线| av超薄肉色丝袜交足视频| 欧美中文综合在线视频| 老司机在亚洲福利影院| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 美女扒开内裤让男人捅视频| 成人特级黄色片久久久久久久| 久久精品国产亚洲av香蕉五月| 日韩欧美免费精品| 久久久精品国产亚洲av高清涩受| 精品高清国产在线一区| 18禁观看日本| 嫩草影院精品99| tocl精华| svipshipincom国产片| 亚洲一区中文字幕在线| 午夜福利欧美成人| 精品国产乱码久久久久久男人| 国产麻豆69| 美国免费a级毛片| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密| 一边摸一边抽搐一进一小说| 首页视频小说图片口味搜索| 精品国产国语对白av| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 一级片免费观看大全| 欧美另类亚洲清纯唯美| 欧美 亚洲 国产 日韩一| 深夜精品福利| 首页视频小说图片口味搜索| 身体一侧抽搐| 欧美成人性av电影在线观看| 亚洲中文日韩欧美视频| 午夜福利,免费看| www国产在线视频色| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区免费| 88av欧美| 国产片内射在线| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 少妇 在线观看| 久久久国产精品麻豆| 成人18禁在线播放| 在线观看一区二区三区激情| 国产成人av教育| 国产精品一区二区精品视频观看| 天堂中文最新版在线下载| 脱女人内裤的视频| 男人舔女人下体高潮全视频| 性欧美人与动物交配| 999精品在线视频| 亚洲国产精品一区二区三区在线| 热re99久久国产66热| 亚洲精品一二三| www国产在线视频色| 12—13女人毛片做爰片一| 高清黄色对白视频在线免费看| 丁香六月欧美| 18禁国产床啪视频网站| √禁漫天堂资源中文www| 婷婷精品国产亚洲av在线| a在线观看视频网站| 欧美人与性动交α欧美软件| 欧美日韩中文字幕国产精品一区二区三区 | 欧美在线一区亚洲| 久久精品国产综合久久久| 99精品欧美一区二区三区四区| 人妻久久中文字幕网| 日韩免费av在线播放| 亚洲一区二区三区欧美精品| 激情在线观看视频在线高清| 日本免费a在线| 夜夜躁狠狠躁天天躁| 一区二区日韩欧美中文字幕| 国产97色在线日韩免费| 波多野结衣高清无吗| 中文欧美无线码| 色婷婷久久久亚洲欧美| 欧美日韩亚洲综合一区二区三区_| 高潮久久久久久久久久久不卡| avwww免费| 日本wwww免费看| 日本黄色视频三级网站网址| 久久精品成人免费网站| 老司机在亚洲福利影院| 亚洲精品中文字幕一二三四区| 国产成人免费无遮挡视频| 欧美老熟妇乱子伦牲交| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 18禁黄网站禁片午夜丰满| 国产精品亚洲一级av第二区| 久久天躁狠狠躁夜夜2o2o| 欧美乱码精品一区二区三区| 成人亚洲精品一区在线观看| 美女福利国产在线| 五月开心婷婷网| 欧美久久黑人一区二区| 午夜免费观看网址| 国产高清videossex| 亚洲欧美日韩无卡精品| 亚洲免费av在线视频| 国产高清视频在线播放一区| 99在线视频只有这里精品首页| 侵犯人妻中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 国产区一区二久久| 精品人妻1区二区| 精品熟女少妇八av免费久了| 黄网站色视频无遮挡免费观看| 免费搜索国产男女视频| 曰老女人黄片| av网站免费在线观看视频| 91九色精品人成在线观看| 亚洲精品国产精品久久久不卡| 国产aⅴ精品一区二区三区波| 午夜福利欧美成人| 首页视频小说图片口味搜索| 神马国产精品三级电影在线观看 | 神马国产精品三级电影在线观看 | 亚洲成人免费av在线播放| 18禁黄网站禁片午夜丰满| 国产一区二区三区视频了| 色精品久久人妻99蜜桃| 亚洲欧美精品综合一区二区三区| 一级片免费观看大全| 欧美日韩瑟瑟在线播放| 一夜夜www| netflix在线观看网站| 欧美激情极品国产一区二区三区| 久久久久久久久免费视频了| 国产av一区二区精品久久| 久久草成人影院| 99久久人妻综合| 免费在线观看黄色视频的| 精品国产亚洲在线| 青草久久国产| 麻豆久久精品国产亚洲av | 神马国产精品三级电影在线观看 | 日本欧美视频一区| 欧美一级毛片孕妇| 免费少妇av软件| 久久久国产成人精品二区 | 国内久久婷婷六月综合欲色啪| 啦啦啦免费观看视频1| 欧美丝袜亚洲另类 | 国产一卡二卡三卡精品| 久久热在线av| 亚洲男人天堂网一区| 国产片内射在线| 婷婷六月久久综合丁香| 日本vs欧美在线观看视频| 97碰自拍视频| 97超级碰碰碰精品色视频在线观看| 亚洲 国产 在线| 精品熟女少妇八av免费久了| 自线自在国产av| 日本一区二区免费在线视频| 天天躁夜夜躁狠狠躁躁| 老司机午夜十八禁免费视频| 女人高潮潮喷娇喘18禁视频| 女人精品久久久久毛片| 天天影视国产精品| 一级片'在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 色综合欧美亚洲国产小说| 搡老岳熟女国产| 女人被狂操c到高潮| 婷婷精品国产亚洲av在线| 久久精品亚洲av国产电影网| 国产免费男女视频| av欧美777| 久久99一区二区三区| 国产成人啪精品午夜网站| 激情视频va一区二区三区| 久久香蕉国产精品| 99久久精品国产亚洲精品| 一边摸一边做爽爽视频免费| 亚洲精品粉嫩美女一区| 久久久国产成人精品二区 | a在线观看视频网站| 热re99久久国产66热| 男女下面进入的视频免费午夜 | 亚洲人成网站在线播放欧美日韩| 亚洲精品粉嫩美女一区| 精品午夜福利视频在线观看一区| 亚洲精品国产区一区二| 日本免费a在线| 可以在线观看毛片的网站| av欧美777| 18禁裸乳无遮挡免费网站照片 | 亚洲av成人不卡在线观看播放网| 国产成人精品无人区| 真人做人爱边吃奶动态| 丰满的人妻完整版| aaaaa片日本免费| 久久久久久免费高清国产稀缺| 精品久久久久久久毛片微露脸| 欧美久久黑人一区二区| 国产精品影院久久| 久久人妻熟女aⅴ| 久久影院123| 精品久久久久久,| 久久天躁狠狠躁夜夜2o2o| 看免费av毛片| 啦啦啦免费观看视频1| 久99久视频精品免费| 中文字幕高清在线视频| avwww免费| 久久九九热精品免费| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美国产一区二区入口| 交换朋友夫妻互换小说| 高潮久久久久久久久久久不卡| 一级a爱片免费观看的视频| 99riav亚洲国产免费| 欧美最黄视频在线播放免费 | 亚洲久久久国产精品| 性欧美人与动物交配| 少妇粗大呻吟视频| 在线观看午夜福利视频| 国产精品电影一区二区三区| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 亚洲专区国产一区二区| 亚洲av电影在线进入| 国产av一区在线观看免费| 亚洲国产精品999在线| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 女警被强在线播放| 在线视频色国产色| 多毛熟女@视频| 91麻豆精品激情在线观看国产 | 免费高清在线观看日韩| 757午夜福利合集在线观看| av超薄肉色丝袜交足视频| 亚洲熟女毛片儿| 制服诱惑二区| 亚洲伊人色综图| 精品久久蜜臀av无| 午夜免费观看网址| 免费一级毛片在线播放高清视频 | 国产区一区二久久| 日本 av在线| 正在播放国产对白刺激| 啦啦啦 在线观看视频| 9191精品国产免费久久| 亚洲aⅴ乱码一区二区在线播放 | 日韩三级视频一区二区三区| 韩国av一区二区三区四区| cao死你这个sao货| 好看av亚洲va欧美ⅴa在| 亚洲精品中文字幕一二三四区| 国产精品98久久久久久宅男小说| 真人一进一出gif抽搐免费| 欧美亚洲日本最大视频资源| 97超级碰碰碰精品色视频在线观看| 巨乳人妻的诱惑在线观看| 午夜成年电影在线免费观看| 中文字幕人妻丝袜一区二区| 亚洲欧美一区二区三区久久| av网站免费在线观看视频| 久久精品91蜜桃| 人人妻人人澡人人看| 亚洲国产毛片av蜜桃av| 国产片内射在线| 国产一区二区三区综合在线观看| 99久久99久久久精品蜜桃| 最近最新中文字幕大全免费视频| 亚洲 欧美 日韩 在线 免费| 精品国产一区二区久久| 天天影视国产精品| 精品第一国产精品| 视频区欧美日本亚洲| 国产精品乱码一区二三区的特点 | xxx96com| 国产免费现黄频在线看| 亚洲一区中文字幕在线| 久久午夜亚洲精品久久| 国产三级在线视频| 国产av一区在线观看免费| 99在线人妻在线中文字幕| 香蕉久久夜色| 中国美女看黄片| 国产高清视频在线播放一区| 久久久国产成人精品二区 | 99国产精品99久久久久| 18禁美女被吸乳视频| 欧美成人午夜精品| x7x7x7水蜜桃| 国产精品香港三级国产av潘金莲| 午夜免费鲁丝| 日本免费a在线| 在线观看免费视频日本深夜| 免费在线观看黄色视频的| 国产精品久久久av美女十八| av天堂久久9| 欧美激情极品国产一区二区三区| 欧美国产精品va在线观看不卡| 日韩高清综合在线| 神马国产精品三级电影在线观看 | 欧美日本中文国产一区发布| 超碰成人久久| 欧美乱妇无乱码| 亚洲精品在线观看二区| 男女高潮啪啪啪动态图| 成人亚洲精品一区在线观看| 97人妻天天添夜夜摸| 99香蕉大伊视频| 天天躁狠狠躁夜夜躁狠狠躁| 两个人看的免费小视频| 99国产综合亚洲精品| 午夜激情av网站| 国产欧美日韩一区二区精品| 亚洲全国av大片| bbb黄色大片| 久久久久亚洲av毛片大全| 高清毛片免费观看视频网站 | 精品一区二区三区av网在线观看| 国产蜜桃级精品一区二区三区| 天堂影院成人在线观看| 岛国视频午夜一区免费看| 18禁裸乳无遮挡免费网站照片 | 亚洲片人在线观看| 精品欧美一区二区三区在线| 一区福利在线观看| 国产高清国产精品国产三级| 一a级毛片在线观看| 亚洲精品国产色婷婷电影| 亚洲激情在线av| 久久青草综合色| 亚洲精品国产精品久久久不卡| 在线国产一区二区在线| 99国产精品免费福利视频| 国产精品电影一区二区三区| 久久中文字幕人妻熟女| 757午夜福利合集在线观看| 一级,二级,三级黄色视频| 国产精品98久久久久久宅男小说| 超色免费av| 亚洲精品中文字幕在线视频| 国产色视频综合| 亚洲熟女毛片儿| 国产熟女午夜一区二区三区| 成人国产一区最新在线观看| 美女 人体艺术 gogo| 人人妻,人人澡人人爽秒播| av片东京热男人的天堂| 久久人人精品亚洲av| 可以免费在线观看a视频的电影网站| 国产成人系列免费观看| 精品午夜福利视频在线观看一区| 男女下面进入的视频免费午夜 | 美女大奶头视频| 99久久综合精品五月天人人| 国产不卡一卡二| 中文字幕最新亚洲高清| 亚洲第一青青草原| 国产激情欧美一区二区| 嫩草影院精品99| 国产精品乱码一区二三区的特点 | 别揉我奶头~嗯~啊~动态视频| 天天躁夜夜躁狠狠躁躁| 免费不卡黄色视频| 久久国产乱子伦精品免费另类| 国产亚洲欧美精品永久| 国产av一区二区精品久久| 久久国产精品人妻蜜桃| 午夜福利,免费看| 色综合婷婷激情| 国产成人影院久久av| 久久久国产欧美日韩av| 人人妻人人添人人爽欧美一区卜| 69av精品久久久久久| 日本免费一区二区三区高清不卡 | 亚洲欧美日韩另类电影网站| 最新在线观看一区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久成人av| 后天国语完整版免费观看| 国产精品香港三级国产av潘金莲| 丝袜美足系列| 中文欧美无线码| 国产又色又爽无遮挡免费看| 热re99久久国产66热| a在线观看视频网站| 丁香欧美五月| 麻豆一二三区av精品| 色精品久久人妻99蜜桃| 亚洲美女黄片视频| 国产99久久九九免费精品| 亚洲五月天丁香| 99国产极品粉嫩在线观看| xxx96com| 欧美在线一区亚洲| av天堂在线播放| 国产成人av激情在线播放| 免费搜索国产男女视频| 亚洲少妇的诱惑av| 淫妇啪啪啪对白视频| av网站免费在线观看视频| 亚洲少妇的诱惑av| 亚洲精品久久午夜乱码| 午夜福利在线观看吧| 久久久国产欧美日韩av| 亚洲精品av麻豆狂野| 日韩高清综合在线| 巨乳人妻的诱惑在线观看| 成人精品一区二区免费| 国产精华一区二区三区| avwww免费| 美国免费a级毛片| 欧美日韩一级在线毛片| 国产一卡二卡三卡精品| 色婷婷久久久亚洲欧美| 很黄的视频免费| 亚洲精品美女久久久久99蜜臀| 亚洲欧美精品综合一区二区三区| 国产精品亚洲av一区麻豆| 黄色视频不卡| 亚洲熟女毛片儿| 熟女少妇亚洲综合色aaa.| 午夜福利在线免费观看网站| 丰满饥渴人妻一区二区三|