• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯氧化程度對(duì)Ni(OH)2贗電容性能的影響

    2014-10-18 05:27:44賀園園張晉江趙健偉
    物理化學(xué)學(xué)報(bào) 2014年2期
    關(guān)鍵詞:劉建華化工學(xué)院物理化學(xué)

    賀園園 張晉江 趙健偉

    (南京大學(xué)化學(xué)化工學(xué)院,生命分析化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京 210008)

    1 Introduction

    The energy of chemical battery is stored by Faradic charge transfer,which is produced by electrochemical reaction.Chemical battery has many shortcomings,for example,short service life,narrow temperature range,and environmental pollution.1Compared with charge storage capacity of conventional capacitors and rechargeable chemical battery,supercapacitor is higher.It has many characteristics such as high rate and efficiency of charge/discharge,no pollution,long service life,wide temperature range,and high security.2According to the different energy storage mechanisms,supercapacitor can be divided into three categories:(1)electrochemical double-layer capacitors(EDLCs),energy storage by adsorbing anions and cations;(2)pseudocapacitor,energy storage through the rapid surface redox reaction;(3)asymmetric supercapacitor.3

    Pseudocapacitor is also known as Faradic supercapacitor.The energy storage is completed by an innovative redox-mediated strategy.The quick reversible redox reaction aroused by redox mediator can efficiently enhance the ionic conductivity and pseudocapacitance.4,5Various materials such as transition metal oxides,metal hydroxides,and polymeric materials have been explored for pseudocapacitor application.6-8Among them,nickel hydroxide is a promising candidate for pseudocapacitors owing to well-defined electrochemical redox activity,high specific capacitance,low cost,and availability of various morphologies.9Yang et al.10reported a electrodeposited α-Ni(OH)2film with a porous-wrinkle structure and ultrahigh capacitance.

    Ni(OH)2/graphene has attracted extensive interest as a pseudocapacitor material over the past decade.The stable electrochemical property and large surface area of Ni(OH)2enable it to form layered structure with large interlayer spacing.11-17Oxidation degree of graphene substrates would affect the pseudocapacitance and rate capability of composite materials.18Accordingly,a better conductive system built with well dispersed Ni(OH)2particles and highly conducting graphene sheets can significantly improve supercapacitive behavior.Many researchers19-21considered the large amount of oxygen-containing functional groups on reduced graphene oxide sheet(rGNOs)such as hydroxyl,carbonyl,epoxyl and lactone groups might be attributed to the pseudocapacitance of many metal materials.

    However,the reason why oxygen-containing functional groups on rGNOs can improve the characteristics of Ni(OH)2as pseudocapacitor is not yet clear,so we aim to investigate the interaction between oxided defects on rGNOs and Ni(OH)2in atomic scale using density functional theory(DFT)method and analyze the influence of the reduction degree of rGNOs on Ni(OH)2when it is applied as pseudocapacitor material.On the other hand,in order to testify the theoretical results,we also develop a new method to deposite Ni(OH)2on rGNOs substrate and characterize it with modern analytical techniques such as cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS).

    2 Computational method

    Fig.1 shows the models of graphene sheet(GS)and rGNOs with different oxidation degrees.The carbonyl,epoxyl,and hydroxyl groups are anchored on the adjacent C atoms of rGNOs,respectively,in Fig.1(b,c,d).All these geometric structures were optimized at B3LYP level with 6-31G*basic set except Ni at LANL2DZ using the Gaussian 03 software.23,24

    3 Experimental

    Graphite(Sinopharm Chemicals Reagent Co.,Ltd.,China)was used as received.Na2SO4,Ni(NO3)2,KOH,and H2SO4(95%)(Sinopharm Chemicals Reagent Co.,Ltd.,China)were all of analytical grade purity.Doubly distilled water was used throughout the experiments.Scheme 1 shows the preparation flow of Ni(OH)2nanoparticles/rGNOs.Graphene oxide(GO)was synthesized through a modified Hummers?method.25Graphene oxide sheets(GNOs)were attained by ultrasonically dispersing 50 mg graphitic oxide in 100 mL deionized water for 2 h.GNOs modified electrode(2 cm2in area)was prepared by soaking nickel foam in 0.05%(w)GNOs solution for 4 h through a simple self-assemble process.26-28

    Fig.1 Models of(a)GS,(b)rGNOs with two carbonyl groups,(c)rGNOs with two epoxyl group,and(d)rGNOs with two hydroxyl groups

    Scheme 1 Preparation flow of Ni(OH)2nanoparticles/rGNOs

    All electrochemical measurements were carried out in a three-electrode experimental setup.Platinum wire electrode and saturated calomel electrode(SCE)were used as the counter and reference electrodes,respectively.All electrochemical measurements were carried out in 3%(w)KOH aqueous electrolyte by using CHI660B(Shanghai Chenhua Apparatus,China)and PGSTAT30(Autolab,EchoChemie,Netherlands)electrochemical workstations.The mass of the deposited Ni(OH)2was measured from the mass difference before and after electrochemical deposition by means of a micro-balance(Sartorius BT125D)with an accuracy of 0.01 mg.The morphology of the sample was observed by a scanning electron microscope Model S-4800(SEM,Hitachi,Japan)and a high-resolution transmission electron microscope Model JEM-2100(HRTEM,Jeol,Japan).

    4 Results and discussion

    The optimized geometry is shown in Fig.2a.We can see that Ni(OH)2bridges the gap between two adjacent C atoms and the GS remains planar conformation.The distance between Ni(OH)2and the GS surface is 0.248 nm.The adsorption energy is 12.57 kJ·mol-1.From the structure and the small adsorption energy we can predict that there is little chemical adsorption between Ni(OH)2and GS,and GS will have little effect on the electronic properties of Ni(OH)2.

    Fig.2 Geometric structures of(a)GS,(b)rGNOs with two carbonyl groups,(c)rGNOs with two epoxyl groups,and(d)rGNOs with two hydroxyl groups after absorbing Ni(OH)2optimized at 6-31G*level except Ni at LANL2DZ,via DFT method

    When two carbonyl groups are anchored on the adjacent C atoms in rGNOs,Ni(OH)2bridges the gap between the two adjacent O atoms of the carbonyl groups(Fig.2b).Variations of the atomic distances for rGNOs with two carbonyl groups before and after adsorbing Ni(OH)2are listed in Table 1.The Ni―O and C―O bonds become longer and the distance between Ni(OH)2and the carbonyl group on rGNOs with two carbonyl groups(Ni-O1)is 0.197 nm.It means that Ni(OH)2is closer to rGNOs with two carbonyl groups compared with GS.The adsorption energy is-131.02 kJ·mol-1,which indicates that the adsorption between Ni(OH)2and rGNOs with two carbonyl groups is very strong under the influence of complexation interaction between the Ni atom in Ni(OH)2and O atom in carbonyl group.

    When the two carbonyl groups are reduced to be an epoxyl group,the distance between the Ni atom in Ni(OH)2and the O1 atom in epoxyl group is 0.205 nm,a littler longer than that in rGNOs with two carbonyl groups(Fig.2c).The adsorption energy is-131.03 kJ·mol-1.It shows that the complexation interaction exists between the Ni atom in Ni(OH)2and O atom in epoxy group,although it is weaker than that between Ni(OH)2and rGNOs with two carbonyl groups.

    But when the epoxyl group is reduced to two hydroxyl groups,the Ni―O and C―O bonds become longer and the distance between the Ni atom in Ni(OH)2and O atom in one of the hydroxyl groups changes to be 0.197 nm that is equivalent to that in rGNOs with an carbonyl group(Fig.2d).The adsorption energy has dropped to be-131.11 kJ·mol-1and it is the lowest value in the systems containing rGNOs with different extents of oxidation.We can get the conclusion that the complexation interaction between Ni(OH)2and oxidation defects on rGNOs becomes stronger whenthe reduction degree of the oxidation defects on rGNOs increases.The electron transfer between Ni(OH)2and rGNOs is promoted by the strong complexation interaction.Hence the interfacial resistance of Ni(OH)2/rGNOs decreases and Ni(OH)2shows more pseudocapacitance characteristics.

    Table 1 Variations of the atomic distances for rGNOs before and after adsorbing Ni(OH)2

    We further analyze the charge distribution over GS and rGNOs before and after adsorbing Ni(OH)2.Charge distribution over GS changes little after adsorbing Ni(OH)2.The net charge of Ni(OH)2is-0.205e,which means that electrons transfer from Ni(OH)2to graphene are not effective.Then we list the charge variations on every atom in rGNOs and Ni(OH)2in Table 2 in detail.When Ni(OH)2is adsorbed with the two carbonyl or epoxy groups on rGNOs,the net charges of Ni(OH)2are-0.380e and-0.388e,respectively.However,when Ni(OH)2is adsorbed with the two hydroxyl groups on rGNOs,the positive charge of C atoms in rGNOs increases and the net charge on Ni(OH)2is-0.462e.Electrons transfer from rGNOs substrate to Ni(OH)2through hydroxyl groups,which makes Ni(OH)2negative and even increases the oxidation activity of Ni(OH)2.

    The quantum chemical calculations above indicate that Ni(OH)2takes negative charges when it is adsorbed on rGNOs.The asymmetric electron transfer pathway from rGNOs to Ni(OH)2promotes the rectifying effect of Ni(OH)2.The negative charge on Ni(OH)2makes it easier for Ni(OH)2to be oxidized to NiOOH with higher reactivity by improving the efficiency of electron transfer.The discharge potential of Ni(OH)2/rGNOs will shift positive and the charge/discharge rate tends to be consistent.As a result,the oxygen-containing groups on rGNOs help to enhance the pseudocapacitance characteristic of Ni(OH)2.

    In order to verify this mechanism supposed above,we study the morphology of Ni(OH)2particles electrochemically deposited on rGNOs with different reduction degrees(Fig.3).Ni(OH)2particles are deposited at-0.7 V in 0.1 mol·L-1Ni(NO3)2solution for 1000 s with potentiostatic method on rGNOs that have been reduced in 0.5 mol·L-1Na2SO4solution at-0.9 V for 3000 and 6000 s,respectively,in advance.When rGNOs are electrochemically reduced for different time,functional group densities on surface of them also change.Morphology of Ni(OH)2deposited on GNOs is greatly different from that deposited on rGNOs.Ni(OH)2particles with larger diameter on GNOs are readily aggregated.In contrast,the Ni(OH)2particles with smaller diameter are homogeneously dispersed on surface of rGNOs.Furthermore,the Ni(OH)2particles have a smaller diameter and more uniform dispersion when the reduction time of rGNOs becomes longer.

    Fig.4(a,c,e)shows the SEM,TEM,and HRTEM images of Ni(OH)2electrochemically deposited on bare nickel foam in 0.1 mol·L-1Ni(NO3)2solution at-0.7 V for 1000 s.They depict the disorderly aggregated morphology of Ni(OH)2that is loose and porous.Fig.4(b,d,f)shows the SEM,TEM,and HRTEM images of Ni(OH)2electrochemically deposited on rGNOs that have been reduced for 6000 s at the same condition as above.It can be observed that the plate-like Ni(OH)2particles are densely anchored on the surface of rGNOs.More-over,Ni(OH)2particles deposited on rGNOs have smaller diameter and their distribution is more uniform than that deposited on graphene.29They provide larger specific surface area and higher capacity utilization.

    Table 2 Charge changes(e)of rGNOs after adsorbing Ni(OH)2

    Fig.3 Transmission electron microscope(TEM)images of Ni(OH)2particles electrodeposited on GNOs(a),rGNOs electrochemical reduced for 3000 s(b),and 6000s(c)

    Fig.4 Scanning electron microscope(SEM)(a),TEM(c),high-resolution transmission electron microscope(HRTEM)(e)images of Ni(OH)2clusters deposited on bare nickel foam and SEM(b),TEM(d),HRTEM(f)images of Ni(OH)2nanoparticles deposited on rGNOs surface

    The electrodeposition process of Ni(OH)2film can be expressed as follows:30,31

    When rGNOs are applied as electrochemical deposition substrates,the Ni2+ions are absorbed on rGNOs surface and probably combine with the oxidation defects on rGNOs under the influence of strong chemical adsorption.Ni(OH)2particles are slowly formed on rGNOs during electrochemical reduction.The strong adsorption between Ni(OH)2and oxidation defects on rGNOs makes Ni(OH)2particles be anchored on rGNOs firmly.

    For exploring its potential applications,Ni(OH)2/rGNOs composite is used as the electroactive material for pseudocapacitor electrode and characterized by cyclic voltammetry(CV).Fig.5 shows the CV curves of Ni(OH)2composited on GS and rGNOs reduced in 0.5 mol·L-1Na2SO4solution at-0.9 V for 3000 and 6000 s,respectively,in advance.The potential window is 0-0.55 V32and the scan rate is 10 mV·s-1in 3%(w)KOH solution.The anodic peak is due to the oxidation of Ni(OH)2to NiOOH,and the cathodic peak is for the reverse process.Oxidation peaks of Ni(OH)2/GS and Ni(OH)2/rGNOs are both observed from 0.30 V.When the reduction time increases,the reduction degree of rGNOs also increases.The redox peaks of Ni(OH)2/rGNOs reduced for 6000 s are smoother and more rectangular shaped than that reduced for 3000 s,which illustrates the lower contact resistance of Ni(OH)2/rGNOs that have been reduced for 6000 s.33,34

    Fig.5 CV curves of Ni(OH)2composited on GS and rGNOs reduced for 3000 and 6000 s in 3%(w)KOH solution

    Fig.6 shows the CV curves of Ni(OH)2electrode at different scan rates on different substrates in 3%(w)KOH solution.The CV slope of Ni(OH)2/rGNOs is larger than that of Ni(OH)2at 0.30-0.35 V,which indicates that the Ni(OH)2/rGNOs has faster oxidation rate and smaller interfacial resistance.They are caused by the strong chemical interaction between Ni(OH)2and the functional groups on rGNOs and the electron transfer between nanoparticles is more efficient.

    It is also observed that the redox peaks of Ni(OH)2/rGNOs are smoother and more rectangular shaped than Ni(OH)2on bare nickel foam,which illustrates the lower contact resistance of Ni(OH)2/rGNOs.33,34The wider redox peaks and higher peak current density of Ni(OH)2/rGNOs are due to the excellent dispersion of Ni(OH)2nanoparticles on rGNOs,which promotes the diffusion of reactant molecules in bulk solution and thus improves the material utilization.When rGNOs is applied as electrochemical disposition substrate,the redox peaks shift lit-tle with the increase of scan rate,which demonstrates the higher reactivity of Ni(OH)2/rGNOs.It is caused by the increase of electric double layer(EDL),since the EDL of rGNOs is much larger than that of bare nickel foam.

    Fig.6 CV curves of Ni(OH)2electrode at different scan rates in 3%(w)KOH solution

    The specific mass capacitances(SC)at different scan rates can be calculated according to the Eq.(3):

    where m is the mass of the electroactive materials Ni(OH)2and ν is the scan rate.The capacitances under different scan rates are shown in Fig.7.SC of Ni(OH)2/rGNOs is 1591 F·g-1at 5 mV·s-1,while the value of Ni(OH)2on bare nickel foam is 656 F·g-1.Besides,at a higher scan rate of 100 mV·s-1,Ni(OH)2/rGNOs has a specific capacitance retaining 49%of that at 5 mV·s-1,whereas the value is 41%for bare nickel substrate.It proves the higher utilization and electrochemical activity of Ni(OH)2on rGNOs.Buglione et al.35observed that graphite microparticles showed a capacitance of 0.88 F·g-1and electrochemical reduction of GO leaded to a capacitance to 4.99 F·g-1.Although SC of rGNOs has increased dramatically,it is still so small to be neglected comparing to that of Ni(OH)2/rGNOs.The electric double-layer capacitance is influenced by the chemical adsorption between Ni(OH)2and rGNOs,it is impossible to measure the electric double-layer capacitance of rGNOs separately through experimental measurements.Therefore,the contribution from rGNOs can not be quantitatively assessed in the specific capacitance calculation.It is believed that the layered structure of composites with high surface area and the positive synergy effect between Ni(OH)2and rGNOs might enhance the capacitive performance.36As discussed above,the Ni(OH)2/rGNOs electrode exhibits good capacity retention and capacitive property,indicating that Ni(OH)2/rGNOs has the potential of being used as the electrode material of pseudocapacitor.

    Fig.7 Specific capacitances of Ni(OH)2electrode at different scan rates on different substrates in 3%(w)KOH solution

    To further investigate the influence of such rGNOs substrate on electrolyte diffusion,electrochemical impedance spectroscopy(EIS)of the prepared Ni(OH)2/rGNOs is explored.Fig.8 shows the Nyquist plots of the prepared Ni(OH)2and Ni(OH)2/rGNOs at the potential of 0.0 V(a)and 0.5 V(b)with a frequency range from 105to 0.01 Hz in 3%(w)KOH aqueous.The equivalent series resistance(ESR),which measures the conductivity of an electrode material,has been obtained from the tangential intersection of the corresponding Nyquist plots on Z?-axis.37

    In generally,a sharp increase of the imaginary part of EIS at lower frequency is due to capacitive behavior of the cell,where a semicircular loop at higher frequencies is due to charge-transfer resistance.The semicircle diameter of Ni(OH)2at high frequency has been reduced notably after modifying by rGNOs,indicating that the electron transport is greatly accelerated by the strong adsorption between Ni(OH)2and rGNOs.38In the inset of Fig.8a,ESR of Ni(OH)2and Ni(OH)2/rGNOs are found to be ~1.63 and 1.40 Ω,respectively,clearly suggesting the higher conductivity of Ni(OH)2/rGNOs.However,there is no straight lines on both of the EIS of Ni(OH)2and Ni(OH)2/rGNOs at lower frequency region at 0.0 V and the EIS of Ni(OH)2/rGNOs shows remarkable linear at low frequency region at 0.5 V.The linear part represents Warburg impedance resistance controlled by proton diffusion,finally reflecting concentration polarization impedance.The results demonstrate that at the potential of 0.0 V,the material rGNOs has only limited benefit to Ni(OH)2in improving its pseudocapacitor performance,whereas impedance spectroscopy of Ni(OH)2/rGNOs performed a typical capacitance characteristic.39

    In the low frequency region,the capacitance(C)can be defined as the combination of real(C')and imaginary(C'')parts of the capacitance.40,41

    Fig.8 Nyquist plots for Ni(OH)2and Ni(OH)2/rGNOs at potentials of 0.0 V(a)and 0.5 V(b)

    where C'corresponds to the capacitance measured under low frequency alternating current conditions and C''is directly proportional to resistance and corresponds to losses in the form of energy dispersion.The real capacitance(C′)decreases as the frequency increases,and at high frequency,the capacitance value is nearly to zero.C'of the capacitance at 0.5 V is over 20 times of that at 0.0 V,which further illustrates the pseudocapacitance of Ni(OH)2(Fig.9).Capacitance of Ni(OH)2electrode increases by nearly 10 times when it is deposited on rGNOs substrate.This incremental capacitance is mainly the electric double-layer capacitance of Ni(OH)2/rGNOs,which is mostly attributed by large surface area of rGNOs substrate.

    There are two reasons for rGNOs substrate′s effect upon the pseudocapacitance enhancement of Ni(OH)2.The unique structure of Ni(OH)2/rGNOs can increase the utilization of Ni(OH)2greatly.As shown in TEM images,Ni(OH)2nanoparticles dispersed on rGNOs can increase surface area of the electrode and further contact more electrolyte solution.In addition,the theoretical result that the strong adsorption energy between rGNOs and Ni(OH)2calculated above can be applied to explain the higher capacitance and lower resistance of Ni(OH)2/rGNOs,as it can make the electron transfer between rGNOs and Ni(OH)2easier.The variations of the atomic distances and charge distributions for rGNOs after adsorbing Ni(OH)2also contribute to decreasing the interface resistance between Ni(OH)2and rGNOs.

    Fig.9 Real(C')part variation of the capacitance for Ni(OH)2and Ni(OH)2/rGNOs with the frequency at 0.0 V(a)and 0.5 V(b)

    5 Conclusions

    In conclusion,the adsorption energy between rGNOs with hydroxyl groups and Ni(OH)2is the highest in the rGNOs with all oxidation degrees and the atomic distance between rGNOs with hydroxyl groups and Ni(OH)2is also the shortest.The charge distribution demonstrates that rGNOs with different oxidation degrees can improve the efficiency of electron transfer between rGNOs and Ni(OH)2.All these factors can enhance the pseudocapacitor characteristic of Ni(OH)2.We further synthesized Ni(OH)2nanoparticles about 5 nm in size and dispersed them on rGNOs substrate uniformly using the potentiostatic electrodeposition method.The specific mass capacitance of Ni(OH)2/rGNOs is 1591 F·g-1at 5 mV·s-1,2.5 times of that of the Ni(OH)2on bare nickel foam.The higher conductivity of Ni(OH)2/rGNOs also indicates that Ni(OH)2/rGNOs had the potential of being used as the electrode material of pseudocapacitor.

    (1)Levi,E.;Gofer,Y.;Aurbach,D.Chem.Mater.2010,22,860.doi:10.1021/cm9016497

    (2)Yuan,Y.F.;Xia,X.H.;Wu,J.B.;Yang,J.L.;Chen,Y.B.;Guo,S.Y.Electrochim.Acta 2011,56,2627.doi:10.1016/j.electacta.2010.12.001

    (3)Pang,S.C.;Anderson,M.A.;Chapman,T.W.J.Electrochem.Soc.2000,147,444.doi:10.1149/1.1393216

    (4)Aricò,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.M.;Van Schalkwijk,W.Nature Materials 2005,4,366.doi:10.1038/nmat1368

    (5)Choi,B.G.;Yang,M.;Jung,S.C.;Lee,K.G.;Kim,J.G.;Park,H.;Park,T.J.;Lee,S.B.;Han,Y.K.;Huh,Y.S.ACS Nano 2013,7,2453.doi:10.1021/nn305750s

    (6)Yang,X.F.;Wang,G.C.;Wang,R.Y.;Li,X.W.Electrochim.Acta 2010,55,5414.doi:10.1016/j.electacta.2010.04.067

    (7)Pico,F.;Morales,E.;Fernandez,J.A.;Centeno,T.A.;Iba?ez,J.;Rojas,R.M.;Amarilla,J.M.;Rojo,J.M.Electrochim.Acta 2009,54,2239.doi:10.1016/j.electacta.2008.10.028

    (8)Zhao,D.D.;Bao,S.J.;Zhou,W.J.;Li,H.L.Electrochem.Commun.2007,9,869.doi:10.1016/j.elecom.2006.11.030

    (9)Zhang,L.L.;Xiong,Z.G.;Zhao,X.S.J.Power Sources 2013,222,326.doi:10.1016/j.jpowsour.2012.09.016

    (10)Yang,G.W.;Xu,C.L.;Li,H.L.Chem.Commun.2008,6537.

    (11)Yang,D.N.;Wang,R.M.;He,M.S.;Zhang,J.;Liu,Z.F.J.Phys.Chem.B 2005,109,7654.doi:10.1021/jp050083b

    (12)Xu,L.P.;Ding,Y.S.;Chen,C.H.;Zhao,L.L.;Rimkus,C.Chem.Mater.2008,20,308.doi:10.1021/cm702207w

    (13)Wang,D.B.;Song,C.X.;Hu,Z.S.;Fu,X.J.Phys.Chem.B 2005,109,1125.doi:10.1021/jp046797o

    (14)Chen,X.;Chen,X.H.;Zhang,F.Q.;Yang,Z.;Huang,S.M.J.Power Sources 2013,243,555.doi:10.1016/j.jpowsour.2013.04.076

    (15)Zhao,D.D.;Xu,M.W.;Zhou,W.J.;Zhang,J.;Li,H.L.Electrochim.Acta 2008,53,2699.doi:10.1016/j.electacta.2007.07.053

    (16)Kottegoda,I.R.M.;Idris,N.H.;Lu,L.;Wang,J.Z.;Liu,H.K.Electrochim.Acta 2011,56,5815.doi:10.1016/j.electacta.2011.03.143

    (17)Li,S.M.;Wang,B.;Liu,J.H.;Yu,M.;An,J.W.Acta Phys.-Chim.Sin.2012,28,2754. [李松梅,王 博,劉建華,于 美,安軍偉.物理化學(xué)學(xué)報(bào),2012,28,2754.]doi:10.3866/PKU.WHXB201208292

    (18)Wang,H.L.;Casalongue,H.S.;Liang,Y.Y.;Dai,H.J.J.Am.Chem.Soc.2010,132,7472.doi:10.1021/ja102267j

    (20)Xu,H.B.;Fan,X.Z.;Lu,Y.H.;Zhong,L.A.;Kong,X.F.;Wang,J.Carbon 2010,48,3300.doi:10.1016/j.carbon.2010.04.051

    (21)Fan,X.Z.;Lu,Y.H.;Xu,H.B.;Kong,X.F.;Wang,J.J.Mater.Chem.2011,21,18753.doi:10.1039/c1jm13214h

    (22)Sun,Z.P.;Lu,X.M.Ind.Eng.Chem.Res.2012,51,9973.doi:10.1021/ie202706h

    (23)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision A.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (24)Zhao,J.W.;Liu,H.M.;Ni,W.B.;Guo,Y.;Yin,X.Acta Phys.-Chim.Sin.2009,25,1472.[趙健偉,劉洪梅,倪文彬,郭 彥,尹 星.物理化學(xué)學(xué)報(bào),2009,25,1472.]doi:10.3866/PKU.WHXB20090744

    (25)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80,1339.doi:10.1021/ja01539a017

    (26)Ramesha,G.K.;Sampath,S.J.Phys.Chem.C 2009,113,7985.doi:10.1021/jp811377n

    (27)Guo,H.L.;Wang,X.F.;Qian,Q.Y.;Wang,F.B.;Xia,X.H.ACS Nano 2009,3,2653.doi:10.1021/nn900227d

    (28)Gao,F.;Qi,X.W.;Cai,X.L.;Wang,Q.X.;Gao,F.;Sun,W.Thin Solid Films 2012,520,5064.doi:10.1016/j.tsf.2012.03.002

    (29)Zhao,C.M.;Wang,X.;Wang,S.M.;Wang,Y.Y.;Zhao,Y.X.;Zheng,W.T.Int.J.Hydrog.Energy 2012,37,11846.doi:10.1016/j.ijhydene.2012.05.138

    (30)Wang,D.H.;Choi,D.W.;Li,J.;Yang,Z.G.;Nie,Z.M.;Kou,R.;Hu,D.H.;Wang,C.M.;Saraf,L.V.;Zhang,J.G.;Aksay,I.A.;Liu,J.ACS Nano 2009,3,907.doi:10.1021/nn900150y

    (31)Corrigan,D.A.;Bendert,R.M.J.Electrochem.Soc.1989,136,723.doi:10.1149/1.2096717

    (32)Kim,S.J.;Park,G.J.;Kim,B.C.;Chung,J.K.;Wallace,G.G.;Park,S.Y.Synthetic Metals 2012,161,2641.

    (33)Gomez,J.;Kalu,E.E.J.Power Sources 2013,230,218.doi:10.1016/j.jpowsour.2012.12.069

    (34)Zhang,W.K.;Wang,L.;Huang,H.;Gan,Y.P.;Wang,C.T.;Tao,X.Y.Electrochim.Acta 2009,54,4760.doi:10.1016/j.electacta.2009.04.008

    (35)Buglione,L.;Chng,E.L.K.;Ambrosi,A.;Sofer,Z.;Pumera,M.Electrochem.Commun.2012,14,5.doi:10.1016/j.elecom.2011.09.013

    (36)Li,L.;He,Y.Q.;Chu,X.F.;Li,Y.M.;Sun,F.F.;Huang,H.Z.Acta Phys.-Chim.Sin.2013,29,1681. [李 樂,賀蘊(yùn)秋,儲(chǔ)曉菲,李一鳴,孫芳芳,黃河洲.物理化學(xué)學(xué)報(bào),2013,29,1681.]doi:10.3866/PKU.WHXB201305223

    (37)Zhang,J.T.;Jiang,J.W.;Zhao,X.S.J.Phys.Chem.C 2011,115,6448.doi:10.1021/jp200724h

    (38)Jagadale,A.D.;Kumbhar,V.S.;Dhawale,D.S.;Lokhande,C.D.Electrochim.Acta 2013,98,32.doi:10.1016/j.electacta.2013.02.094

    (39)Grden,M.;Alsabet,M.;Jerkiewicz,G.ACS Appl.Mater.Interfaces 2012,4,3012.doi:10.1021/am300380m

    (40)Taberna,P.L.;Simon,P.;Fauvarque,J.F.J.Electrochem.Soc.2003,150,A292.

    (41)Chmiola,J.;Yushin,G.;Dash,R.;Gogotsi,Y.J.Power Sources 2006,158,765.doi:10.1016/j.jpowsour.2005.09.008

    猜你喜歡
    劉建華化工學(xué)院物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Chemical Concepts from Density Functional Theory
    搟面條
    掉鞭炮
    手影
    Identity-based proxy multi-signature applicable to secure E-transaction delegations①
    人成视频在线观看免费观看| 日韩中文字幕欧美一区二区| 一进一出好大好爽视频| 一本久久中文字幕| 久久国产精品人妻蜜桃| 国产视频一区二区在线看| 国产真人三级小视频在线观看| 成人亚洲精品一区在线观看| 欧美色欧美亚洲另类二区| 日日摸夜夜添夜夜添小说| 韩国av一区二区三区四区| 日韩国内少妇激情av| 777久久人妻少妇嫩草av网站| 国产亚洲av高清不卡| 国产99白浆流出| 午夜视频精品福利| 女人高潮潮喷娇喘18禁视频| 成人三级黄色视频| 91麻豆精品激情在线观看国产| 国产av不卡久久| 久久人妻福利社区极品人妻图片| 人成视频在线观看免费观看| 91国产中文字幕| 久9热在线精品视频| 日韩一卡2卡3卡4卡2021年| 免费在线观看成人毛片| 国产成人啪精品午夜网站| 一级毛片高清免费大全| 国产99白浆流出| 免费在线观看完整版高清| 中国美女看黄片| 午夜久久久在线观看| 亚洲最大成人中文| 草草在线视频免费看| 亚洲一码二码三码区别大吗| 久久伊人香网站| 曰老女人黄片| 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 我的亚洲天堂| 欧美+亚洲+日韩+国产| 18禁裸乳无遮挡免费网站照片 | 成人永久免费在线观看视频| 国产野战对白在线观看| 亚洲七黄色美女视频| 女警被强在线播放| 美国免费a级毛片| 2021天堂中文幕一二区在线观 | 日韩精品中文字幕看吧| 国产蜜桃级精品一区二区三区| 久久亚洲真实| 日本一本二区三区精品| 亚洲 欧美 日韩 在线 免费| 国产精品日韩av在线免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲天堂国产精品一区在线| 999久久久精品免费观看国产| 久久久久久久久久黄片| 免费在线观看黄色视频的| 日日摸夜夜添夜夜添小说| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 成人国产综合亚洲| 黄片小视频在线播放| 禁无遮挡网站| 久久国产亚洲av麻豆专区| 久久久久久人人人人人| 黑丝袜美女国产一区| 精品一区二区三区四区五区乱码| 韩国av一区二区三区四区| 亚洲自拍偷在线| 国产亚洲精品久久久久5区| 少妇的丰满在线观看| 免费在线观看视频国产中文字幕亚洲| 日韩欧美一区视频在线观看| 18禁裸乳无遮挡免费网站照片 | 男女下面进入的视频免费午夜 | 无限看片的www在线观看| 色在线成人网| av超薄肉色丝袜交足视频| 正在播放国产对白刺激| 亚洲专区中文字幕在线| 搡老妇女老女人老熟妇| 日韩欧美国产在线观看| 一区二区三区高清视频在线| 丝袜美腿诱惑在线| 国产亚洲av嫩草精品影院| 校园春色视频在线观看| 色婷婷久久久亚洲欧美| 啦啦啦免费观看视频1| av视频在线观看入口| 老司机福利观看| 色老头精品视频在线观看| 久久狼人影院| 免费搜索国产男女视频| svipshipincom国产片| 国产精品98久久久久久宅男小说| 久久99热这里只有精品18| 免费看十八禁软件| 中文字幕最新亚洲高清| 老司机在亚洲福利影院| 99热6这里只有精品| 脱女人内裤的视频| 日韩精品青青久久久久久| 亚洲性夜色夜夜综合| 亚洲一区高清亚洲精品| 在线十欧美十亚洲十日本专区| 国产精品香港三级国产av潘金莲| av超薄肉色丝袜交足视频| 观看免费一级毛片| 免费在线观看影片大全网站| 国产三级黄色录像| av福利片在线| 亚洲av成人一区二区三| 亚洲自拍偷在线| 亚洲国产精品成人综合色| 午夜久久久久精精品| 国产成人欧美| 90打野战视频偷拍视频| 在线av久久热| 激情在线观看视频在线高清| 免费av毛片视频| 制服诱惑二区| 人人妻人人看人人澡| 亚洲国产精品999在线| cao死你这个sao货| 高清在线国产一区| 色哟哟哟哟哟哟| 久久久久久大精品| 欧美黄色淫秽网站| 曰老女人黄片| 88av欧美| 国产成人一区二区三区免费视频网站| 欧美乱码精品一区二区三区| 亚洲国产精品999在线| 亚洲av日韩精品久久久久久密| 午夜福利在线观看吧| 99久久精品国产亚洲精品| 最新美女视频免费是黄的| 亚洲电影在线观看av| 亚洲中文av在线| 桃色一区二区三区在线观看| 亚洲午夜精品一区,二区,三区| 精品国产亚洲在线| 日韩欧美三级三区| 精品熟女少妇八av免费久了| 韩国av一区二区三区四区| av欧美777| 嫁个100分男人电影在线观看| 黄色毛片三级朝国网站| 2021天堂中文幕一二区在线观 | 国产一级毛片七仙女欲春2 | 国产精品一区二区精品视频观看| 美女高潮喷水抽搐中文字幕| 国产国语露脸激情在线看| 国产亚洲精品一区二区www| 国内揄拍国产精品人妻在线 | 侵犯人妻中文字幕一二三四区| 日本精品一区二区三区蜜桃| 国产成人av教育| 欧美乱色亚洲激情| 精品国产美女av久久久久小说| 在线观看免费午夜福利视频| 亚洲自偷自拍图片 自拍| 国内揄拍国产精品人妻在线 | 一边摸一边做爽爽视频免费| 精品第一国产精品| 一进一出抽搐gif免费好疼| 叶爱在线成人免费视频播放| 色尼玛亚洲综合影院| 一区二区三区激情视频| 国产精品日韩av在线免费观看| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 国产一区二区在线av高清观看| 可以免费在线观看a视频的电影网站| 亚洲五月色婷婷综合| 日韩三级视频一区二区三区| 女人被狂操c到高潮| 一边摸一边做爽爽视频免费| 亚洲无线在线观看| 国产97色在线日韩免费| 亚洲五月色婷婷综合| 女性生殖器流出的白浆| 人妻久久中文字幕网| 精品国产超薄肉色丝袜足j| 露出奶头的视频| 国产亚洲欧美精品永久| 亚洲精品国产区一区二| 久久中文字幕人妻熟女| 国产精品永久免费网站| 日韩免费av在线播放| 亚洲欧美一区二区三区黑人| 国产在线精品亚洲第一网站| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 免费在线观看日本一区| 国产在线观看jvid| 禁无遮挡网站| 国产成+人综合+亚洲专区| 成人三级黄色视频| 露出奶头的视频| 97人妻精品一区二区三区麻豆 | 禁无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 欧美日韩瑟瑟在线播放| 亚洲自拍偷在线| 久久久久久久精品吃奶| 国产亚洲欧美98| 又黄又爽又免费观看的视频| 久久精品aⅴ一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 在线免费观看的www视频| 国产欧美日韩一区二区精品| 脱女人内裤的视频| 国内少妇人妻偷人精品xxx网站 | 中文字幕久久专区| 身体一侧抽搐| 精品国产美女av久久久久小说| 一二三四社区在线视频社区8| 国产色视频综合| 亚洲欧洲精品一区二区精品久久久| 搡老熟女国产l中国老女人| 久久久久久人人人人人| 在线免费观看的www视频| 久久香蕉激情| 热re99久久国产66热| 此物有八面人人有两片| 搡老妇女老女人老熟妇| 黄片播放在线免费| 久久精品人妻少妇| 国产一区二区三区在线臀色熟女| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 啦啦啦免费观看视频1| 大型av网站在线播放| 精品第一国产精品| 欧美亚洲日本最大视频资源| 女性生殖器流出的白浆| 精品久久蜜臀av无| 亚洲自偷自拍图片 自拍| av中文乱码字幕在线| 亚洲精品粉嫩美女一区| 午夜福利视频1000在线观看| 色综合欧美亚洲国产小说| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看 | 日本精品一区二区三区蜜桃| cao死你这个sao货| 在线播放国产精品三级| 国产精品一区二区精品视频观看| 丁香欧美五月| 久久久久久久精品吃奶| 成人三级做爰电影| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区| 亚洲精品国产精品久久久不卡| 久久久久九九精品影院| 中出人妻视频一区二区| 看黄色毛片网站| 亚洲成人久久性| 亚洲美女黄片视频| 国产黄色小视频在线观看| 1024手机看黄色片| 丰满人妻熟妇乱又伦精品不卡| 精品卡一卡二卡四卡免费| 在线观看www视频免费| 久久狼人影院| 天天添夜夜摸| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 国产亚洲精品一区二区www| 妹子高潮喷水视频| 日韩精品免费视频一区二区三区| 香蕉丝袜av| 99热6这里只有精品| 国产高清videossex| 国产精品野战在线观看| 精品福利观看| 欧美+亚洲+日韩+国产| 香蕉av资源在线| 日本免费a在线| 中文字幕人妻熟女乱码| 亚洲欧洲精品一区二区精品久久久| 国产伦一二天堂av在线观看| 日本黄色视频三级网站网址| 久久精品aⅴ一区二区三区四区| 香蕉丝袜av| 国产色视频综合| 色尼玛亚洲综合影院| 在线观看舔阴道视频| 国产午夜福利久久久久久| av欧美777| 俄罗斯特黄特色一大片| 国产精品,欧美在线| 久久九九热精品免费| 色尼玛亚洲综合影院| 一本综合久久免费| 欧美一区二区精品小视频在线| 1024香蕉在线观看| 免费女性裸体啪啪无遮挡网站| 免费在线观看黄色视频的| 成人18禁高潮啪啪吃奶动态图| 国产精品1区2区在线观看.| 亚洲自拍偷在线| 欧美激情高清一区二区三区| 三级毛片av免费| 国产精品电影一区二区三区| 精品国产超薄肉色丝袜足j| 久热这里只有精品99| 国产精品av久久久久免费| 欧美日韩一级在线毛片| 天堂影院成人在线观看| 欧美日韩黄片免| 国产一区二区三区在线臀色熟女| 久久香蕉激情| 波多野结衣巨乳人妻| 自线自在国产av| 亚洲av电影在线进入| 给我免费播放毛片高清在线观看| 日韩欧美在线二视频| 免费无遮挡裸体视频| 国产野战对白在线观看| 91成年电影在线观看| 日韩有码中文字幕| 国产在线精品亚洲第一网站| 变态另类成人亚洲欧美熟女| 国产主播在线观看一区二区| 午夜亚洲福利在线播放| 日本撒尿小便嘘嘘汇集6| 男男h啪啪无遮挡| 男人舔女人的私密视频| 国产成年人精品一区二区| 成年人黄色毛片网站| 黄色a级毛片大全视频| 不卡一级毛片| 久久中文看片网| 男人的好看免费观看在线视频 | 99在线视频只有这里精品首页| 一级毛片精品| 麻豆久久精品国产亚洲av| 欧美黑人欧美精品刺激| 欧美成狂野欧美在线观看| 国产精品一区二区免费欧美| 亚洲成人免费电影在线观看| 日韩成人在线观看一区二区三区| 黄色视频不卡| 禁无遮挡网站| 伦理电影免费视频| 久热爱精品视频在线9| 久久精品国产清高在天天线| 色播亚洲综合网| 久久草成人影院| 亚洲最大成人中文| 国产精品久久久av美女十八| 国产黄色小视频在线观看| 成年女人毛片免费观看观看9| 一本大道久久a久久精品| 男人舔女人的私密视频| 岛国视频午夜一区免费看| 啪啪无遮挡十八禁网站| 久久久国产成人精品二区| 精品国产国语对白av| 99国产极品粉嫩在线观看| 极品教师在线免费播放| e午夜精品久久久久久久| 国产伦在线观看视频一区| 午夜影院日韩av| 亚洲性夜色夜夜综合| 国产亚洲欧美98| 99国产精品一区二区三区| 久久国产精品男人的天堂亚洲| av视频在线观看入口| 欧美一级毛片孕妇| 成年版毛片免费区| 一进一出好大好爽视频| 18禁裸乳无遮挡免费网站照片 | 欧美精品啪啪一区二区三区| 国内揄拍国产精品人妻在线 | 老司机福利观看| 一区二区三区激情视频| 一二三四社区在线视频社区8| av福利片在线| 久久久久免费精品人妻一区二区 | 国产精品av久久久久免费| 中出人妻视频一区二区| 老司机在亚洲福利影院| 两个人免费观看高清视频| 国产成人影院久久av| 午夜久久久久精精品| 国产午夜福利久久久久久| 黄色视频不卡| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频| 18禁黄网站禁片免费观看直播| 夜夜爽天天搞| 午夜久久久在线观看| 久久精品91蜜桃| 亚洲精品美女久久av网站| 久久久国产成人免费| 麻豆一二三区av精品| 波多野结衣高清无吗| 日韩欧美免费精品| 一卡2卡三卡四卡精品乱码亚洲| 国产黄片美女视频| 国产欧美日韩一区二区三| 俺也久久电影网| 最近最新中文字幕大全电影3 | 一级a爱片免费观看的视频| 亚洲欧美一区二区三区黑人| 欧美日韩亚洲国产一区二区在线观看| 免费无遮挡裸体视频| 国产私拍福利视频在线观看| 久99久视频精品免费| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久成人aⅴ小说| 国产亚洲av嫩草精品影院| 看免费av毛片| 2021天堂中文幕一二区在线观 | 搡老熟女国产l中国老女人| 国产区一区二久久| 91九色精品人成在线观看| 男女下面进入的视频免费午夜 | 午夜福利成人在线免费观看| 日韩免费av在线播放| 香蕉丝袜av| 法律面前人人平等表现在哪些方面| 国产午夜福利久久久久久| 国产精品日韩av在线免费观看| 午夜成年电影在线免费观看| 又紧又爽又黄一区二区| 久久久久久久午夜电影| 亚洲一区高清亚洲精品| 在线观看66精品国产| 亚洲精品美女久久久久99蜜臀| 精品无人区乱码1区二区| 亚洲色图av天堂| 波多野结衣高清作品| 人妻久久中文字幕网| 不卡av一区二区三区| 亚洲国产欧洲综合997久久, | 精品少妇一区二区三区视频日本电影| 亚洲久久久国产精品| 久久草成人影院| 亚洲一区二区三区色噜噜| 欧美激情高清一区二区三区| 精品久久久久久久久久久久久 | 免费电影在线观看免费观看| 国产精品美女特级片免费视频播放器 | 亚洲精品在线美女| 91av网站免费观看| 国产aⅴ精品一区二区三区波| 日韩成人在线观看一区二区三区| 又大又爽又粗| 韩国av一区二区三区四区| 免费电影在线观看免费观看| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 搡老妇女老女人老熟妇| 国产精品一区二区免费欧美| 亚洲自拍偷在线| 成人手机av| 亚洲自偷自拍图片 自拍| 免费在线观看完整版高清| 日韩欧美在线二视频| 国内揄拍国产精品人妻在线 | 亚洲欧美日韩高清在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成av人片免费观看| 久久久久国产精品人妻aⅴ院| 变态另类丝袜制服| 国产aⅴ精品一区二区三区波| 日本五十路高清| 成人手机av| 天天一区二区日本电影三级| 久久精品影院6| 国产精品永久免费网站| 人人妻,人人澡人人爽秒播| 91国产中文字幕| 日韩精品中文字幕看吧| 国产精品日韩av在线免费观看| 国产激情久久老熟女| 久久久久亚洲av毛片大全| 18禁裸乳无遮挡免费网站照片 | 国产三级在线视频| 一区二区三区精品91| 老司机深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 久久久久九九精品影院| 亚洲色图av天堂| 久久久精品欧美日韩精品| 日本一本二区三区精品| 欧美在线黄色| 99热6这里只有精品| 999久久久精品免费观看国产| 麻豆av在线久日| 99国产精品一区二区三区| 色综合站精品国产| 黄色a级毛片大全视频| 男女下面进入的视频免费午夜 | 国内精品久久久久精免费| av在线播放免费不卡| 亚洲人成伊人成综合网2020| 精品一区二区三区视频在线观看免费| 色播亚洲综合网| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 国产在线观看jvid| 热99re8久久精品国产| 亚洲精品中文字幕在线视频| 久久亚洲真实| 一本大道久久a久久精品| 久久香蕉国产精品| 国产又黄又爽又无遮挡在线| 亚洲精品一区av在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 免费女性裸体啪啪无遮挡网站| 久久国产亚洲av麻豆专区| 国产一卡二卡三卡精品| 精品日产1卡2卡| 国产男靠女视频免费网站| 一级作爱视频免费观看| 国产亚洲av高清不卡| 日本 欧美在线| 亚洲最大成人中文| 亚洲九九香蕉| 真人做人爱边吃奶动态| 日韩欧美三级三区| √禁漫天堂资源中文www| 在线视频色国产色| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站在线播放欧美日韩| 啪啪无遮挡十八禁网站| 无限看片的www在线观看| 国产精品自产拍在线观看55亚洲| 国产99久久九九免费精品| 日韩欧美一区二区三区在线观看| 美女扒开内裤让男人捅视频| 亚洲国产看品久久| 精品日产1卡2卡| 亚洲国产精品sss在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲专区中文字幕在线| 久久这里只有精品19| 午夜视频精品福利| 国产色视频综合| 在线观看免费视频日本深夜| 国产精品久久久久久人妻精品电影| 欧美日韩瑟瑟在线播放| 欧美日韩乱码在线| 成人永久免费在线观看视频| 日韩视频一区二区在线观看| 一区二区三区国产精品乱码| 日韩三级视频一区二区三区| 亚洲人成网站高清观看| 黄片小视频在线播放| 91老司机精品| 男女床上黄色一级片免费看| 黑人欧美特级aaaaaa片| 久久精品国产清高在天天线| 午夜久久久久精精品| 草草在线视频免费看| 亚洲avbb在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产极品粉嫩免费观看在线| 岛国在线观看网站| 亚洲欧美一区二区三区黑人| 成人国产综合亚洲| 老鸭窝网址在线观看| 国产精品99久久99久久久不卡| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站在线播放欧美日韩| 又大又爽又粗| 亚洲电影在线观看av| 无人区码免费观看不卡| 中文字幕人成人乱码亚洲影| 91老司机精品| 久久中文字幕人妻熟女| 免费无遮挡裸体视频| 好男人在线观看高清免费视频 | 国产麻豆成人av免费视频| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人看| 美女大奶头视频| 日本三级黄在线观看| 国产一卡二卡三卡精品| 亚洲精品av麻豆狂野| 国产伦人伦偷精品视频| 久久国产精品影院| 一级作爱视频免费观看| 午夜免费成人在线视频| 成年女人毛片免费观看观看9| 欧美午夜高清在线| 久久 成人 亚洲| 制服丝袜大香蕉在线| 一级a爱视频在线免费观看| 久久久久九九精品影院| 成人国产一区最新在线观看| 精品午夜福利视频在线观看一区| 国产精品香港三级国产av潘金莲| 国产成人av激情在线播放| 欧美性猛交黑人性爽| 天天一区二区日本电影三级| a在线观看视频网站| 精品一区二区三区视频在线观看免费| 青草久久国产| 女人高潮潮喷娇喘18禁视频| 午夜福利成人在线免费观看|