• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    苯分子與Si6O18H12和Al6O24H30團簇模型相互作用的理論研究

    2014-10-18 05:27:42宋開慧
    物理化學(xué)學(xué)報 2014年2期
    關(guān)鍵詞:材料科學(xué)泰安泰安市

    王 幸 錢 萍,* 宋開慧 張 超 宋 偉

    (1山東農(nóng)業(yè)大學(xué)化學(xué)與材料科學(xué)學(xué)院,山東泰安 271018;2泰安市疾病預(yù)防控制中心,山東泰安 271000)

    1 Introduction

    The monoaromatic hydrocarbons benzene,toluene,ethylbenzene,and xylenes are abbreviated by BTEX,which is commonly found in liquid and gas states in our planet,especially abundant in pollutants,present in soils,in industrial process as well as in the product of petroleum refining.BTEX is mainly produced in catalytic synthesis,the pyrolysis of naphtha,and oil refinement.1BTEX,playing an important role in the synthesis of other compounds,is the main pollutant to the soils and groundwater,and has resulted in great harm to the people because of its high toxicity,carcinogenicity,and mutagenicity.2-4BTEX migration is controlled by diffusion and adsorption on the surface of soil components,where the clay minerals are ubiquitous.For further understanding the surface structural and chemical properties of clay mineral,it is important to know the adsorption structures and interactions between the pollutants and clay surface at the molecular level.

    To the best of our knowledge,the important crystal structure information of clay minerals has been determined by some available experimental techniques.5,6However,the particles of clay minerals are extremely small sizes and in structural and substitutional disorder for the natural material.These factors complicate an experimental study of structure and properties of clay.In particular,these small particles,which often prevent utilizing single-crystal diffraction for the precise determination of structural parameters,lead to ambiguous crystal structure.Therefore,special attention is given to the related study of clay systems at the molecular level,especially,the adsorbent properties of clay surfaces.7Essentially,two main approaches should be used in theoretical studies of clay.The first one is based on the exploitation of the translational symmetry in the calculation procedure,e.g.,periodic ab initio calculations,6,8which may be impractical or over costly for a very large system just like ours.The second one is based on the application of standard molecular approach in which the cluster is formed by cutting the periodic structure and the model is treated as a molecule.9-12However,it is well-known that the disadvantage of the cluster approach is the limited cluster size,and non-bonding interactions will be ignored.Therefore,in order to avoid artificial edge effects,the geometry of the outer part of the cluster model was frozen at the original structure and only the innermost part representing the adsorption site of the cluster model was fully optimized.

    A lot of researches have been implemented about adsorption and desorption of benzene and its derivatives on clay materials.13-22For example,Castro et al.13,14employed the(Al2Si2O9H4)3cluster model to study the properties(molecular orbital,electrostatic potential,vibrational frequencies,electron localization function(ELF),atomic charges,molecular orbital information,and so on)of benzene interaction with kaolinite surfaces by semi-empirical AM1,RHF,B3LYP,and MP2 methods,and found that the benzene molecule is largely tilted related to the Al―O surface.Michalková et al.18used the Si13O15H35and All6O24H30cluster models to study the adsorption of 2,4-dinitroluene(DNT)on the tetrahedral and octahedral surfaces of dickite at the HF/3-21G level,and they discovered that the adsorption energy of DNT-octahedral fragment system was lower than that of the DNT-tetrahedral fragment.Furthermore,the interaction of 1,3,5-trinitrobenzene(TNB)with the basal siloxane surface of clay minerals was studied by Pelmenschikov and Leszczynski.19The silicon-oxygen clusters symbolizing the siloxane sites were constructed by SiO4tetrahedra with the Si―O bond length equal to 0.161 nm.Gorb et al.20also used Si13O37H22cluster to study the TNB interaction with a pure silicon-oxygen surface.Their studies both suggested that the interaction of TNB with the basal siloxane surface is governed by the balance between favorable dispersion,electrostatic forces,and repulsive exchange forces.Therefore,all the above ab initio results provide reliable references for us to construct a new kaolinite cluster model.

    The primary aim of this work is to construct a new cluster model of kaolinite,and to make an extensive investigation on the new cluster model.The various gas state properties characterizing the interaction of benzene molecule and cluster model of kaolinite surface include optimized structures,structural parameters,adsorption energies,secondary hydrogen bonds,electron density characteristics,vibration frequencies,natural bond orbital(NBO)charge distributions,electrostatic potential,and electron density difference,and so on.Simultaneously,the connection among the various properties is indicated.

    2 Models and methodology

    All quantum chemical calculations were performed at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level using the Gaussian 03 suit of programs.23This approach has been shown to be suitable for describing adsorption on oxide surface.13Among clays,kaolinite,composed of one Si―O layer linked to an Al―O layer,is classified as 1:1 type layer aluminosilicate.14,24,25Inspired by Michalková′s work,5we constructed Si6O18H12and Al6O24H30cluster models to represent the Si―O and Al―O layers of kaolinite,respectively(Fig.1).In the center of the Al―O surface,the six O atoms make up a triangle(Fig.2).The Si―O layer consists of SiO4tetrahedrally coordinated Si,and six O atoms of the center form a hexagon(Figs.1-2).It is universally accepted that the“dangling”valences of the border oxygen atoms of the Si―O layer and Al―O layer clusters were saturated with hydrogen atoms.For the optimized structures,all vibrational frequencies were performed at the same basis set level,and the scaled factor of frequencies is 0.9611.26The adsorption energy(AE)for each complex system was calculated as the difference between the total energy of the whole system and the total sum of energies of both subsystems,and the counterpoise corrections for the basis set superposition error(BSSE)were included.

    Fig.1 Kaolinite cluster models Si6O18H12(a)and Al6O24H30(b)for Si―O surface and Al―O surface,respectively

    Fig.2 Atomic labels of benzene molecule(Ben)and the innermost part representing the adsorption site of kaolinite cluster model

    In this paper,the weak hydrogen bonds C―H…O with 0.23 nm<R(H…O)<0.32 nm,0.32 nm<R(C…O)<0.40 nm and 105°<∠C―H…O<170°are considered to be secondary hydrogen bonds.To gauge the bonding properties,27,28the AIM methodology29was applied to analyze the electron denstiy ρ(r)and its Laplacian(▽2ρ(r))at the critical point of Hδ+…Oδ-from the optimized results at the B3LYP/6-31G(d,p)level.In general,a small electron denstiy ρ(r)at the hydrogen bond critical point(BCP)indicates a weak hydrogen bond,and a positive value of Laplacians ▽2ρ(r)implies that the closed-shell(electrostatic)interaction is the major source in the hydrogen bonded system.Simultaneously,Molekel program package30was applied to obtain the electrostatic potential.The maps of electron density of adsorbed complex system were also studied by the program Multiwfn31and gsgrid.32

    3 Results and discussion

    3.1 Verification of kaolinite cluster model

    To further verify the reasonableness of the kaolinite cluster model,the average bond lengths of kaolinite cluster model have been compared with those from other methods25,33-35(Table 1).The results show that our data are consistent with the others.Besides,interaction energies per water of the intercalation of n(n=1-3)water molecules in kaolinite(K-n W(n=1-3))were examined(Table 2).At the same time,the optimized structures of the intercalation of n(n=1-3)water molecules in kaolinite are depicted in Fig.3.The other detailed information concerning kaolinite-water systems can be found in reference.33We found that the interaction energies per water of kaolinitewater systems are close to those calculated by other density functional theory(DFT)methods.For example,the range of interaction energy per water calculated by Hu and Michaelides34is-43.44--63.70 kJ·mol-1,and our value is-36.69--64.68 kJ·mol-1.Specifically,when the numbers of intercalated water molecule are 2 and 3,the interaction energies per water are-61.78 and-64.68 kJ·mol-1,respectively.These data further confirm the reasonableness of our cluster models.

    3.2 Structural and energetic properties

    The benzene molecule was respectively optimized on the Si―O and Al―O surfaces of kaolinite at the B3LYP/6-31G(d,p)level.It is worth mentioning that although its initial geometry is parallel to the surfaces,the optimized benzene molecule is almost perpendicular to the surfaces,which is in agreement with Castro′s earlier work,14but different from Castro′s later job.13Various optimized low-energy structures of adsorption ofbenzene molecule on the Al―O surface and Si―O surface of kaolinite are respectively depicted in Figs.4-5.From Figs.4-5,it can be seen that the interaction angle between the benzene ring plane and kaolinite surface for benzene/kaolinite complex is almost close to 90°.In each complex,two H atoms of benzene molecule are preferentially located above the Al―O triangle or Si―O hexagon area,and interact with the surface O atoms by forming C―H…O secondary hydrogen bond.Therefore,the nature of the adsorption of benzene molecule on the kaolinite surfaces may be the formation of secondary hydrogen bonds.The relevant adsorption energies(AE),structural parameters,and electron density characteristics of secondary hydrogen bonds for these low-energy structures are indicated in Tables 3-4.In Table 3,the average values of R(C…O)and R(H…O)are respectively 0.3574 and 0.2498 nm for the lowest energy structure Al-O-Ben1 of benzene adsorption on Al―O surface of kaolinite,less than 0.3583 and 0.2816 nm for the lowest energy structure Si-O-Ben1 of benzene adsorption on Si―O surface of kaolinite.The average values of R(O…H)and∠C―H…O for all of the benzene/Al―O surface complexes are about 0.2630 nm and 143.9°,whereas those for benzene/Si―O surface complexes are about 0.2788 nm and 141.5°,respectivtly.

    Table 1 Comparison of some typical bond distances of kaolinite cluster model

    Table 2 Comparison of the interaction energies per water(kJ·mol-1)of the intercalation of n water molecules in kaolinite(K-n W(n=1-3))

    Fig.3 Optimized structures of kaolinite-water clusters(K-n W(n=1-3))

    Fig.4 Various low energy structures of adsorption of benzene on Al―O surface of kaolinite

    In addition,the AE and conventional counterpoise(CP)method corrected adsorption energies(AECP)between benzene molecule and kaolinite surface have been calculated(Table 4).For Al-O-BEN1,the AECPvalue is-18.40 kJ·mol-1.For Si-OBEN1,the AECPvalue is-18.57 kJ·mol-1.Previous studies36,37have suggested that,for systems with weak interactions,the real BSSE is small.That is to say,the real BSSE can be considered to be one order of magnitude lower than the associated counterpoise correction(BSSE=CP/10).37In this paper,we applied the approximation of BSSE=CP/10.The adsorption energies with real BSSE correction(AEBSSE)for Al-O-Ben1 and Si-O-Ben1 complexes would be-40.85 and-34.04 kJ·mol-1,respectively.This energy difference may be caused by two factors.The first one is the repulsion between π orbital of benzene and the orbitals of oxygen network from the kaolinite Si―O surface.The second one is the size of energy gap between HOMO(the highest occupied molecular orbital)and LUMO(the lowest unoccupied molecular orbital)for different clay surface.The greater the energy gap,the lower the surface chemical activity,the more stable the surfaces.Si―O surface has greater energy gap(6.52 eV)than Al―O surface(4.20 eV).This further shows that the Si―O surface is more stable than the Al―O surface.As a final result of the above two factors,the benzene molecule will be adsorbed more preferably on the Al―O surface than on the Si―O surface.

    In the current investigation,based on the analysis of electron density characteristics(Table 3),we confirmed the existence of secondary hydrogen bonds for structures in Figs.4-5.The results show that the ρ and ▽2ρ values of secondary hydrogen bonds for Al-O-Ben complexes are respectively 0.00364-0.01361 a.u.and 0.01384-0.03704 a.u.except for the HB1 and HB2 of Al-O-Ben3.However,the secondary hydrogen bonds of Si-O-Ben complexes,which are characterized by 0.00197-0.00846 a.u.of ρ values and 0.00894-0.02735 a.u.of▽2ρ values,are slightly weaker than those of Al-O-Ben complexes.At the same time,the values of the electron density and the Laplacian of the electron density are proportional to the strength of formed hydrogen bonds(shorter distances corresponding with larger ρ and ▽2ρ values).

    3.3 NBO charge distributions

    Fig.5 Various low energy structures of adsorption of benzene on Si―O surface of kaolinite

    Table 3 Structural parameters for benzene/kaolinite adsorbed systems and electron density characteristics(ρ,▽2ρ)of hydrogen bonds both calculated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level

    Table 4 AE,CP method and real BSSE corrected adsorption energies(AECPand AEBSSE)for benzene/kaolinite adsorbed systems calculated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level

    Table 5 NBO charges of the lowest-energetic structure for benzene and kaolinite surfaces calculated by the B3LYP/6-31G(d,p)method

    In this section,a cluster structure is arbitrarily chosen to study the NBO charge distributions.Taking the lowest energy structures Al-O-Ben1 and Si-O-Ben1 for example,the charges are listed in Table 5.For the isolated benzene molecule,the charge change of hydrogen atoms is regarded as zero.When benzene molecule interacts with each kaolinite surface,the charges of all sites for benzene molecule are different from the isolated benzene.i.e.,for the isolated benzene,no other molecule affects its electron cloud,but for a benzene/kaolinite complex,the intermolecular secondary hydrogen bonds C―H…O directly influence the charge distribution.For example,for the structure Si-O-Ben1,two H atoms(qH2and qH3are 0.253e and 0.272e)exhibit relatively larger absolute charges than the corresponding H atoms(0.238e and 0.238e)of isolated benzene,because the two H atoms and oxygen atoms of Si―O surface form the hydrogen bonds.Simultaneously,the charge change(△q)of all H atoms is 0.027e.For the structure Al-O-Ben1,△q of all H atoms is 0.034e,which is slightly larger than 0.027e of Si-O-Ben1.Thus,it indicates that the polarization degree of benzene on Al―O surface is slightly greater than that on Si―O surface.

    In the same way,this is also true of Al―O and Si―O surfaces.From Table 5,we can also see that after benzene adsorption on the Si―O surface,the absolute charges of O atoms of Si―O surface are almost all a little bit increased.Specifically,for the structure Si-O-Ben1,│Δq│of O atoms of Si―O surface is 0.013e.The same results occurred on the Al―O surface.H atoms and O atoms of Al―O surface for structure Al-O-Ben1 both exhibit relatively larger absolute charge(0.012e and 0.013e)than those of the isolated Al―O surface.

    To sum up,we hold that the polarization degrees of O atoms of Al―O surface are stronger than that of the Si―O layer,and further validate that benzene molecule is adsorbed more preferably on the Al―O surface than on the Si―O surface.

    3.4 Vibration frequencies

    We have also calculated the vibration frequencies of benzene as well as the lowest energy structures for the benzene adsorption on Al―O/Si―O surface by the B3LYP/6-31G(d,p)method and the related data are shown in Table 6.After benzene was adsorbed on the Al―O surface and Si―O surface,bending vibration frequencies for plane and out of plane have been enhanced.For examples,C―H bending vibration frequencies for plane of Si-O-Ben1 and Al-O-Ben1 complexes are respectively 1132-1159 cm-1and 1137-1170 cm-1,slightly larger than 1133-1155 cm-1of the isolated benzene.At the same time,C―H bending vibration frequencies for out of plane also increase from 830-973 cm-1of the isolated benzene to 834-991 cm-1of Al-O-Ben1 and 840-973 cm-1of Si-OBen1.Nevertheless,Table 6 indicates a little decrease of C―H and C=C stretching vibrations of adsorbed benzene,comparedto free benzene molecule.Specifically,C―H stretching vibration frequencies of Si-O-Ben1 and Al-O-Ben1 are respectively 3032-3080 cm-1and 3044-3076 cm-1,lower than 3051-3086 cm-1of the isolated benzene,and C=C stretching vibration frequencies also decrease from 1302-1589 cm-1of the isolated benzene to 1301-1585 cm-1of Si-O-Ben1 and 1302-1585 cm-1of Al-O-Ben1.Furthermore,O―H stretching vibration frequencies of Al―O surface change a little bit,which decrease from 3582-3808 cm-1(from OH1 to OH6)of the isolated Al―O surface to 3567-3802 cm-1of Al-O-Ben1.These results are in accordance with the Castro′s earlier work14(for details see Table 6).To a lesser extent,these changes of vibration frequencies,especially the stretching modes of hydroxyl groups of kaolinite surface and C―H of benzene ring,can account for the adsorption between benzene and kaolinite surface.So people can utilize kaolinite to remove organics and remediate soils and groundwater contaminated with petroleum hydrocarbons.

    Table 6 Comparison of vibration frequenciesa(cm-1)of benzene and benzene/kaolinite complex Si-O-Ben1 and Al-O-Ben1

    3.5 Electrostatic potential on adsorption

    The isopotential electrostatic surfaces of the lowest energy structures are depicted on Fig.6 for benzene,kaolinite,and benzene/kaolinite complex.It is universally acknowledged that for adsorption of organic molecules,the calculation of maps of electrostatic potentials(MEPs)on the surface of a solid material can help us acquire much more knowledge about the adsorption processes.For adsorption of the benzene ring on clay minerals,in which weak interactions are originated from hydrogen bonds,it is interesting to calculate the electrostatic potential between the adsorbate and substrate because it helps to determine the related properties of sorption complexes.The electrostatic potential of benzene adsorbed on kaolinite surfaces showed no obvious difference compared to the isolated kaolinite surface.The results of electrostatic potential show the same tendency for the interaction of benzene molecule with the Al―O and Si―O surfaces.Furthermore,the adsorption of benzene ring on the Al―O surface results in much less significant changes in the MEPs than that on the Si―O surface(Fig.6).It indicates that the formation of the secondary hydrogen bonds causes much less significant polarization of the target molecule,because Δq of all H atoms of benzene molecule are only+0.034e and+0.027e(Table 4)for Al―O and Si―O surfaces,respectively.

    Fig.6 Surfaces of electrostatic potentials(unit in a.u.)for(a)Al―O surface cluster modelAl6O24H30,(b)benzene molecule,(c)Si―O surface cluster model Si6O18H12,the lowest energy structures(d)Al-O-Ben1 and(e)Si-O-Ben1 of benzene/kaolinite complex

    Fig.7 (a)Surfaces of electron density difference for the lowest-energy structure Al-O-Ben1 of benzene/Al―O surface complex;(b)enlargement of the left side of the hydrogen bonds;(c)enlargement of the right side of the hydrogen bonds

    3.6 Electron density difference

    An examination of Fig.7 indicates that the common trend is that electron density decreases on carbon atoms of benzene molecule and oxygen atoms of Al―O surface,while electron density increases on the basis of the C―H bond and C=C bond.In the interaction region of secondary hydrogen bond C―H…O,electrons on the oxygen atoms of Al―O surface are gathered to the middle of benzene molecule and Al―O surface,therefore electron densities of oxygen atoms on the Al―O surface apparently diminish.On the contrary,the electron densities between benzene molecule and Al―O layer increase simultaneously.However,the electron densities of O atoms away from the H atoms in the benzene ring increase a little bit,as we can see clearly from Fig.7(b),which is consistent with the increase of NBO charge(Table 5)absolute value of oxygen atoms on the Al―O surface.Additionally,with the decrease of hydrogen atom electron densities around,the NBO charges(Table 5)of the corresponding hydrogen atoms increase.Nonetheless,these small changes will have a positive effect on the energy of adsorption,so that,there is,to a small extent,a chemical contribution to the adsorption mechanism.

    The change of electron density suggests that enhanced polarization leads to a predominant electrostatic interaction between benzene molecule and kaolinite surface.It also indicates that the adsorption results in significant electron transfer between the molecule and the surface.We also can draw the same conclusion from the electron density characteristics of Table 5.Additionally,the electron density is transferred to the π orbital of benzene and comes mainly from the C―H…O hydrogen bonding,depicted clearly in Fig.7.All these can be accounted for the gradual formations of C―H…O secondary hydrogen bonds.

    4 Conclusions

    The interactions of benzene with the kaolinite cluster models,Si6O18H12(Si―O layer)and Al6O24H30(Al―O layer),have been systematically investigated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level to mimic the adsorption of benzene on the kaolinite surface.Various gas state properties characterizing benzene/kaolinite complexes,including the optimized structures,structural parameters,adsorption energies,NBO charge distributions,vibration frequencies,and electrostatic potential,electron density characteristics,and electron density difference,were presented and discussed in this paper.The optimized structures show that there are secondary hydrogen bond interactions between the benzene molecule and the polar kaolinite surface.That is to say,the nature of the adsorption of the benzene molecule on kaolinite surfaces may be the formation of secondary hydrogen bonds.The results of other properties further confirmed the existence of secondary hydrogen bonds.Simultaneously,benzene molecule is more likely to be adsorbed on the Al―O surface than on the Si―O surface,and the absorption angle between benzene ring plane and kaolinite Al―O surface is about 90°.

    (1)Roldan,R.;Romero,F.J.;Jimenez,C.;Borau,V.;Marinas,J.M.Appl.Catal.A 2004,266,203.doi:10.1016/j.apcata.2004.02.008

    (2)Maliyekkal,S.M.;Rene,E.R.;Philip,L.;Swaminathan,T.J.Hazard.Mater.2004,109,201.doi:10.1016/j.jhazmat.2004.04.001

    (3)Pilidis,G.A.;Karakitsios,S.P.;Kassomenos,P.A.;Kazos,E.A.;Stalikas,C.D.Environ.Monit.Assess.2009,150,285.doi:10.1007/s10661-008-0230-9

    (4)Lesage,S.Anal.Chem.ACS Publications 1993,65,647A.

    (5)Michalková,A.;Tunega,D.;Nagy,L.T.J.Mol.Struct.-Theochem 2002,581,37.doi:10.1016/S0166-1280(01)00741-2

    (6)Hess,A.C.;Saunders,V.R.J.Phys.Chem.1992,96,4367.doi:10.1021/j100190a047

    (7)Shua,H.T.;Lib,D.;Scalaa,A.A.;Mab,Y.H.Purif.Technol.1997,11,27.doi:10.1016/S1383-5866(96)01005-2

    (8)Beltrán,A.;Andrés,J.;Calatayud,M.;Martins,J.B.L.Chem.Phys.Lett.2001,338,224.doi:10.1016/S0009-2614(01)00238-X

    (9)Martins,J.B.L.;Sambrano,J.R.;Vasconcellos,L.A.S.;Longo,E.;Taft,C.A.Quim.Nova.2004,27,10.doi:10.1590/S0100-40422004000100003

    (10)Martins,J.;Taft,C.;Lie,S.;Longo,E.J.Mol.Struct.-Theochem 2000,528,161.doi:10.1016/S0166-1280(99)00498-4

    (11)Almeida,A.;Martins,J.;Longo,E.;Taft,C.;Murgich,J.;Jalbout,A.F.J.Mol.Struct.-Theochem 2003,664,111.

    (12)Sambrano,J.;Vasconcellos,L.;Martins,J.;Santos,M.;Longo,E.;Beltran,A.J.Mol.Struct.-Theochem 2003,629,307.doi:10.1016/S0166-1280(03)00200-8

    (13)Castro,E.A.S.;Gargano,R.;Martins,J.B.L.Int.J.Quantum Chem.2012,112,2828.doi:10.1002/qua.v112.16

    (14)Castro,E.A.S.;Martins,J.B.L.J.Comput.Aided Mater.Des.2005,12,121.

    (15)Bickmore,B.R.;Rosso,K.M.;Nagy,K.L.;Cygan,R.T.;Tadanier,C.J.Clays Clay Min.2003,51,359.

    (16)Castro,E.A.S.;Martins,J.B.L.Int.J.Quantum Chem.2005,103,550.

    (17)Balan,E.;Saitta,A.M.;Mauri,F.;Lemaire,C.;Guyot,F.Am.Mineral.2002,87,1286.

    (18)Michalková,A.;Szymczak,J.J.;Leszczynski,J.Struct.Chem.2005,16,325.doi:10.1007/s11224-005-4463-8

    (19)Pelmenschikov,A.;Leszczynski,J.J.Phys.Chem.B 1999,103,6886.doi:10.1021/jp990091q

    (20)Gorb,L.;Lutchyn,R.;Zub,Y.;Leszczynska,D.;Leszczynski,J.J.Mol.Struct.-Theochem 2006,766,151.doi:10.1016/j.theochem.2006.04.013

    (21)Lee,J.F.;Mortland,M.M.;Chiou,C.T.;Kile,D.E.;Boyd,S.A.Clay Clay Min.1990,38,113.

    (22)Wilson,M.A.;Lee,G.S.H.;Taylor,R.C.Clay Clay Min.2002,50,348.

    (23)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision A.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (24)Young,R.A.;Hewat,A.W.Clay Clay Min.1988,36,225.

    (25)Bish,D.L.Clay Clay Min.1993,41,738.

    (26)Karl,K.I.;Russell,D.J.;Raghu,N.K.J.Phys.Chem.A 2005,109,8430.doi:10.1021/jp052793n

    (27)Koch,U.;Popelier,P.J.Phys.Chem.1995,99,9747.doi:10.1021/j100024a016

    (29)Bader,R.W.F.Accounts Chem.Res.1985,18,9.

    (30)Flükiger,P.;Lüthi,H.;Portmann,S.;Weber,J.Molekel 4.0;Swiss Center for Scientific Computing:Manno,Switzerlan,2000.

    (31)Lu,T.;Chen,F.J.Comput.Chem.2012,33,580.doi:10.1002/jcc.v33.5

    (32)Lu,T.GsGrid:Extracting Data from Gaussian Grid File and Grid File Calculation[EB/OL].http:∥gsgrid.codeplex.com,in.

    (33)Zhang,C.;Song,K.H.;Wang,X.;Yin,H.Z.;Qian,P.J.Mol.Sci.2013,29,134.[張 超,宋開慧,王 幸,尹洪宗,錢 萍.分子科學(xué)學(xué)報,2013,29,134.]

    (34)Hu,X.L.;Michaelides,A.Surf.Sci.2008,602,960.doi:10.1016/j.susc.2007.12.032

    (35)Neder,R.;Burghammer,M.;Grasl,T.;Schulz,H.;Bram,A.;Fiedler,S.Clay Clay Min.1999,47,487.

    (36)Austen,K.F.;White,T.O.H.;Marmier,A.;Parker,S.C.;Artacho,E.;Dove,M.T.J.Phys:Condes.Matter 2008,20,035215.doi:10.1088/0953-8984/20/03/035215

    (37)Sainz-Díaz,I.;Francisco-Márquez,M.;Vivier-Bunge,A.Environ.Chem.2011,8,429.

    猜你喜歡
    材料科學(xué)泰安泰安市
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    北風(fēng)催眠曲
    再見,雪姑娘
    泰安雜記
    文苑(2019年20期)2019-11-16 08:52:42
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    泰安市通聯(lián)站站長——王曉棟
    寶藏(2017年2期)2017-03-20 13:16:57
    Transform Yourself into a Butterfly
    泰安無性系引種品種的紅茶適制性初步研究
    身体一侧抽搐| 国产精品 欧美亚洲| 天天躁夜夜躁狠狠躁躁| 18禁裸乳无遮挡免费网站照片 | 国产成人啪精品午夜网站| 精品高清国产在线一区| 日韩欧美国产在线观看| 亚洲中文av在线| 色综合亚洲欧美另类图片| 他把我摸到了高潮在线观看| 亚洲七黄色美女视频| 大码成人一级视频| 亚洲电影在线观看av| or卡值多少钱| 黑人操中国人逼视频| 黄色视频不卡| 国产激情久久老熟女| 国产一区二区激情短视频| 成人三级做爰电影| 久久精品影院6| 午夜久久久在线观看| 亚洲欧美日韩无卡精品| 可以在线观看毛片的网站| 一级a爱片免费观看的视频| 国产不卡一卡二| 免费在线观看日本一区| 成在线人永久免费视频| 黄色毛片三级朝国网站| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av香蕉五月| 亚洲国产欧美网| 亚洲精品国产一区二区精华液| 国产亚洲欧美在线一区二区| 亚洲 国产 在线| 麻豆一二三区av精品| 大型av网站在线播放| 精品久久久久久,| 窝窝影院91人妻| 香蕉国产在线看| 18禁国产床啪视频网站| 精品国产乱子伦一区二区三区| 男人的好看免费观看在线视频 | 亚洲人成网站在线播放欧美日韩| 国产日韩一区二区三区精品不卡| 免费高清视频大片| 中文亚洲av片在线观看爽| 久久久久精品国产欧美久久久| 久久精品影院6| 黑人巨大精品欧美一区二区mp4| 亚洲欧洲精品一区二区精品久久久| cao死你这个sao货| 波多野结衣高清无吗| 99国产精品99久久久久| 色综合欧美亚洲国产小说| 日韩欧美免费精品| 亚洲av成人不卡在线观看播放网| 最新在线观看一区二区三区| 十八禁网站免费在线| 国产精品1区2区在线观看.| xxx96com| 午夜精品久久久久久毛片777| 男女做爰动态图高潮gif福利片 | 自线自在国产av| 亚洲欧美日韩高清在线视频| 国产欧美日韩综合在线一区二区| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 最近最新免费中文字幕在线| 亚洲男人天堂网一区| 国产成人免费无遮挡视频| 久久性视频一级片| 欧美老熟妇乱子伦牲交| 国产成+人综合+亚洲专区| 久久久久久亚洲精品国产蜜桃av| 一区二区日韩欧美中文字幕| 一级毛片高清免费大全| 免费高清在线观看日韩| 日韩中文字幕欧美一区二区| 久久国产亚洲av麻豆专区| 在线观看午夜福利视频| 一区福利在线观看| 搞女人的毛片| 国产三级黄色录像| 老司机靠b影院| 亚洲午夜精品一区,二区,三区| 黑人欧美特级aaaaaa片| 一级,二级,三级黄色视频| 国产午夜精品久久久久久| 国产野战对白在线观看| 免费在线观看视频国产中文字幕亚洲| 级片在线观看| 99在线视频只有这里精品首页| 老汉色av国产亚洲站长工具| 亚洲精品一卡2卡三卡4卡5卡| 99精品在免费线老司机午夜| 中出人妻视频一区二区| 在线观看免费午夜福利视频| 欧美成人性av电影在线观看| 在线天堂中文资源库| 久久天堂一区二区三区四区| 午夜福利18| 变态另类成人亚洲欧美熟女 | 久久久久久久午夜电影| 国产不卡一卡二| 老熟妇仑乱视频hdxx| 国产乱人伦免费视频| 夜夜爽天天搞| 国产一卡二卡三卡精品| 亚洲全国av大片| 久久精品亚洲精品国产色婷小说| 高清毛片免费观看视频网站| 两个人免费观看高清视频| 日韩精品中文字幕看吧| 美女 人体艺术 gogo| 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 大型av网站在线播放| 满18在线观看网站| 国产精品久久久人人做人人爽| 最好的美女福利视频网| 每晚都被弄得嗷嗷叫到高潮| 国产精品98久久久久久宅男小说| 亚洲少妇的诱惑av| 亚洲成av片中文字幕在线观看| 免费人成视频x8x8入口观看| 成人手机av| 亚洲avbb在线观看| 亚洲av片天天在线观看| 国产亚洲av高清不卡| 欧美av亚洲av综合av国产av| 最好的美女福利视频网| av中文乱码字幕在线| 欧美老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 香蕉国产在线看| 人妻久久中文字幕网| 中文字幕久久专区| 女性被躁到高潮视频| 久热爱精品视频在线9| 午夜精品国产一区二区电影| 亚洲国产毛片av蜜桃av| 国产亚洲欧美在线一区二区| 日本 欧美在线| 一进一出抽搐动态| www.精华液| 一本大道久久a久久精品| 国产午夜福利久久久久久| 亚洲国产精品sss在线观看| 琪琪午夜伦伦电影理论片6080| 免费人成视频x8x8入口观看| 99久久精品国产亚洲精品| 制服人妻中文乱码| 天天一区二区日本电影三级 | 黄片大片在线免费观看| 精品久久蜜臀av无| 欧美一级a爱片免费观看看 | 欧美人与性动交α欧美精品济南到| 久久草成人影院| av电影中文网址| ponron亚洲| 岛国视频午夜一区免费看| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一小说| 精品久久蜜臀av无| 麻豆一二三区av精品| 欧美日本视频| 亚洲全国av大片| 变态另类丝袜制服| 嫁个100分男人电影在线观看| 亚洲欧美精品综合久久99| 国产亚洲精品综合一区在线观看 | 可以免费在线观看a视频的电影网站| 看免费av毛片| 国产精品乱码一区二三区的特点 | 午夜福利视频1000在线观看 | 日韩成人在线观看一区二区三区| 在线观看一区二区三区| videosex国产| 久久午夜亚洲精品久久| 亚洲天堂国产精品一区在线| 手机成人av网站| 搡老岳熟女国产| 俄罗斯特黄特色一大片| 一区在线观看完整版| 久久人妻av系列| 亚洲五月色婷婷综合| 亚洲国产看品久久| 男女下面插进去视频免费观看| e午夜精品久久久久久久| 久久影院123| 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 国产精品久久久人人做人人爽| 久久婷婷人人爽人人干人人爱 | 一级片免费观看大全| 视频在线观看一区二区三区| 禁无遮挡网站| 99riav亚洲国产免费| 丝袜人妻中文字幕| 色精品久久人妻99蜜桃| 国产精品久久视频播放| 日韩大码丰满熟妇| 免费看十八禁软件| 日韩高清综合在线| 国产色视频综合| 欧美日韩一级在线毛片| 成年人黄色毛片网站| 非洲黑人性xxxx精品又粗又长| 中亚洲国语对白在线视频| 给我免费播放毛片高清在线观看| 欧美一级毛片孕妇| 搡老熟女国产l中国老女人| 欧美亚洲日本最大视频资源| 国产私拍福利视频在线观看| 中国美女看黄片| 久久人妻av系列| 国产一级毛片七仙女欲春2 | or卡值多少钱| 国产91精品成人一区二区三区| 国产又爽黄色视频| 少妇裸体淫交视频免费看高清 | 亚洲精品国产区一区二| 国产一卡二卡三卡精品| 99在线视频只有这里精品首页| 精品国内亚洲2022精品成人| 黄网站色视频无遮挡免费观看| 99热只有精品国产| 欧美成人性av电影在线观看| 精品日产1卡2卡| 日韩国内少妇激情av| 免费少妇av软件| 亚洲七黄色美女视频| 中文字幕色久视频| 欧美绝顶高潮抽搐喷水| 欧美日本亚洲视频在线播放| 黑丝袜美女国产一区| 欧美日韩福利视频一区二区| 精品日产1卡2卡| 一级黄色大片毛片| 精品国产美女av久久久久小说| a级毛片在线看网站| 日本在线视频免费播放| 国产精品乱码一区二三区的特点 | 亚洲成a人片在线一区二区| 欧美乱码精品一区二区三区| 亚洲伊人色综图| 久久人妻福利社区极品人妻图片| 麻豆国产av国片精品| 国内精品久久久久精免费| 老司机靠b影院| 亚洲熟妇熟女久久| 桃红色精品国产亚洲av| 亚洲在线自拍视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品美女久久久久99蜜臀| 国产av又大| 成人精品一区二区免费| 午夜影院日韩av| 免费搜索国产男女视频| 多毛熟女@视频| 久久国产精品影院| 他把我摸到了高潮在线观看| av视频在线观看入口| 国产精品 欧美亚洲| 免费在线观看影片大全网站| 亚洲熟妇熟女久久| x7x7x7水蜜桃| 欧美日本视频| 一区福利在线观看| a级毛片在线看网站| 久久国产精品人妻蜜桃| 国产一区二区三区视频了| 久久久久久国产a免费观看| 很黄的视频免费| 亚洲专区字幕在线| 国产真人三级小视频在线观看| 久久亚洲真实| 免费久久久久久久精品成人欧美视频| 精品少妇一区二区三区视频日本电影| 免费av毛片视频| 国产精华一区二区三区| 黄色毛片三级朝国网站| 女人高潮潮喷娇喘18禁视频| 一个人观看的视频www高清免费观看 | 在线观看66精品国产| 亚洲国产看品久久| 高清黄色对白视频在线免费看| 久久久久精品国产欧美久久久| 少妇粗大呻吟视频| 日韩视频一区二区在线观看| 禁无遮挡网站| 亚洲精品av麻豆狂野| 一区二区三区高清视频在线| 琪琪午夜伦伦电影理论片6080| 桃色一区二区三区在线观看| 久久精品亚洲熟妇少妇任你| 日韩欧美一区视频在线观看| 久久精品成人免费网站| 国内精品久久久久精免费| 99国产极品粉嫩在线观看| 90打野战视频偷拍视频| 免费不卡黄色视频| 国产伦一二天堂av在线观看| 啦啦啦免费观看视频1| 久久精品国产亚洲av高清一级| 日韩欧美在线二视频| 亚洲精品在线美女| 国产亚洲欧美在线一区二区| 欧美中文日本在线观看视频| 一级a爱视频在线免费观看| 欧美黄色片欧美黄色片| 久9热在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美成狂野欧美在线观看| 成人永久免费在线观看视频| 老司机靠b影院| 国产精品九九99| 欧美中文综合在线视频| 18禁观看日本| 人成视频在线观看免费观看| 美女扒开内裤让男人捅视频| 夜夜看夜夜爽夜夜摸| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| 亚洲人成77777在线视频| 国产亚洲欧美精品永久| 在线观看www视频免费| 国产精品爽爽va在线观看网站 | 后天国语完整版免费观看| 一本大道久久a久久精品| 国产蜜桃级精品一区二区三区| 久久九九热精品免费| 久久精品亚洲精品国产色婷小说| 99精品欧美一区二区三区四区| 女人精品久久久久毛片| 欧美成人午夜精品| 亚洲av电影在线进入| 国内久久婷婷六月综合欲色啪| 女同久久另类99精品国产91| 嫁个100分男人电影在线观看| 精品高清国产在线一区| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 亚洲欧美精品综合一区二区三区| 日韩三级视频一区二区三区| 国产区一区二久久| 女同久久另类99精品国产91| 91av网站免费观看| 欧美久久黑人一区二区| 午夜福利18| 亚洲成av人片免费观看| 亚洲国产日韩欧美精品在线观看 | 999精品在线视频| 久久中文字幕一级| 欧美久久黑人一区二区| 欧美在线黄色| 香蕉国产在线看| 欧美性长视频在线观看| 天堂√8在线中文| 亚洲av电影不卡..在线观看| 不卡一级毛片| 99国产综合亚洲精品| 最近最新中文字幕大全电影3 | 一区二区三区激情视频| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图| 久久国产乱子伦精品免费另类| 给我免费播放毛片高清在线观看| 亚洲专区字幕在线| 精品乱码久久久久久99久播| 老司机午夜十八禁免费视频| 黑人巨大精品欧美一区二区mp4| 女性生殖器流出的白浆| 美女扒开内裤让男人捅视频| 欧美另类亚洲清纯唯美| 黑人巨大精品欧美一区二区蜜桃| 久久精品成人免费网站| 欧美绝顶高潮抽搐喷水| 国产一区二区三区综合在线观看| 国产亚洲欧美98| 亚洲中文字幕一区二区三区有码在线看 | 亚洲性夜色夜夜综合| av天堂久久9| 人人妻人人澡欧美一区二区 | 在线观看免费视频日本深夜| 欧美日韩亚洲综合一区二区三区_| 久久人人爽av亚洲精品天堂| 国产精品香港三级国产av潘金莲| 老司机午夜十八禁免费视频| 亚洲专区国产一区二区| 免费看美女性在线毛片视频| 窝窝影院91人妻| 午夜福利一区二区在线看| 操美女的视频在线观看| 亚洲午夜精品一区,二区,三区| 国产伦人伦偷精品视频| 可以在线观看毛片的网站| 他把我摸到了高潮在线观看| 狂野欧美激情性xxxx| 成人特级黄色片久久久久久久| 大型av网站在线播放| 国产亚洲精品av在线| 十八禁网站免费在线| 黄色丝袜av网址大全| 一级a爱片免费观看的视频| 国产精品美女特级片免费视频播放器 | 亚洲中文日韩欧美视频| 亚洲激情在线av| 精品欧美一区二区三区在线| 日韩免费av在线播放| 国产亚洲av嫩草精品影院| 一级a爱视频在线免费观看| 国产亚洲精品久久久久5区| 丁香六月欧美| 国产欧美日韩一区二区三| 亚洲国产精品成人综合色| 亚洲精品av麻豆狂野| 黄片小视频在线播放| 校园春色视频在线观看| 欧美+亚洲+日韩+国产| 久久久久九九精品影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av日韩精品久久久久久密| 我的亚洲天堂| 丰满的人妻完整版| 一卡2卡三卡四卡精品乱码亚洲| 国产精品影院久久| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 美女免费视频网站| 日韩有码中文字幕| 一级a爱视频在线免费观看| 91av网站免费观看| 免费一级毛片在线播放高清视频 | av片东京热男人的天堂| 久久婷婷成人综合色麻豆| 中国美女看黄片| 欧美 亚洲 国产 日韩一| 美女高潮到喷水免费观看| 国产日韩一区二区三区精品不卡| 国产又爽黄色视频| 日韩一卡2卡3卡4卡2021年| 精品国产超薄肉色丝袜足j| 在线观看午夜福利视频| 欧美日韩瑟瑟在线播放| 国产亚洲欧美在线一区二区| 日韩大尺度精品在线看网址 | 美女扒开内裤让男人捅视频| 免费看a级黄色片| 午夜老司机福利片| 不卡一级毛片| 午夜免费激情av| 一级黄色大片毛片| 亚洲欧美一区二区三区黑人| 国产成人免费无遮挡视频| 国产精品亚洲美女久久久| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| 婷婷六月久久综合丁香| 可以免费在线观看a视频的电影网站| 国产精品综合久久久久久久免费 | 两个人看的免费小视频| 国产主播在线观看一区二区| 成年女人毛片免费观看观看9| 神马国产精品三级电影在线观看 | 18禁国产床啪视频网站| 亚洲男人的天堂狠狠| 久久国产精品男人的天堂亚洲| 欧美丝袜亚洲另类 | 好看av亚洲va欧美ⅴa在| 亚洲人成77777在线视频| 免费一级毛片在线播放高清视频 | svipshipincom国产片| 国产在线观看jvid| 性欧美人与动物交配| 日韩精品青青久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 日本黄色视频三级网站网址| 啪啪无遮挡十八禁网站| 成人国产综合亚洲| 日日干狠狠操夜夜爽| 一级毛片精品| 啦啦啦 在线观看视频| 亚洲 欧美一区二区三区| 精品乱码久久久久久99久播| 天堂影院成人在线观看| 男人舔女人下体高潮全视频| 三级毛片av免费| 欧美+亚洲+日韩+国产| 美女 人体艺术 gogo| 老司机靠b影院| 后天国语完整版免费观看| 精品国产亚洲在线| 91国产中文字幕| 久热爱精品视频在线9| 最近最新免费中文字幕在线| 9191精品国产免费久久| 久久久久久国产a免费观看| 中文字幕av电影在线播放| 长腿黑丝高跟| 怎么达到女性高潮| 天堂√8在线中文| 黄色a级毛片大全视频| 99精品欧美一区二区三区四区| 正在播放国产对白刺激| 91麻豆精品激情在线观看国产| 最新美女视频免费是黄的| 久久精品国产亚洲av香蕉五月| www.精华液| 久久婷婷人人爽人人干人人爱 | 成人三级黄色视频| 欧美一级毛片孕妇| 日本欧美视频一区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜精品国产一区二区电影| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| 久久久精品国产亚洲av高清涩受| 日本五十路高清| 少妇的丰满在线观看| 精品国产一区二区三区四区第35| 欧美成人免费av一区二区三区| 在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| 少妇被粗大的猛进出69影院| 欧美国产日韩亚洲一区| 美女午夜性视频免费| 欧美成人免费av一区二区三区| 午夜影院日韩av| 人妻久久中文字幕网| 精品人妻在线不人妻| 国产高清videossex| 男女下面进入的视频免费午夜 | 久99久视频精品免费| 亚洲伊人色综图| 性欧美人与动物交配| 久久亚洲精品不卡| 黄色丝袜av网址大全| 欧美老熟妇乱子伦牲交| 九色国产91popny在线| 亚洲av成人av| 久久久久久久久中文| 欧美激情高清一区二区三区| 超碰成人久久| 日日干狠狠操夜夜爽| 国产乱人伦免费视频| 丝袜人妻中文字幕| 麻豆久久精品国产亚洲av| 欧美日韩一级在线毛片| 大型黄色视频在线免费观看| 亚洲欧美激情综合另类| 亚洲欧美日韩无卡精品| 欧美日韩亚洲国产一区二区在线观看| 精品不卡国产一区二区三区| 国产精品久久视频播放| 久久香蕉精品热| 成人手机av| 久久久久久免费高清国产稀缺| 成年人黄色毛片网站| 亚洲专区中文字幕在线| 亚洲人成电影观看| 午夜激情av网站| 制服丝袜大香蕉在线| 国内精品久久久久精免费| 日韩精品免费视频一区二区三区| 给我免费播放毛片高清在线观看| 久久 成人 亚洲| 最好的美女福利视频网| 国产熟女午夜一区二区三区| 午夜福利影视在线免费观看| 亚洲视频免费观看视频| 欧美中文综合在线视频| 18禁观看日本| 丝袜美腿诱惑在线| 亚洲中文日韩欧美视频| 免费高清在线观看日韩| 熟妇人妻久久中文字幕3abv| а√天堂www在线а√下载| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影| 成人特级黄色片久久久久久久| 在线观看免费午夜福利视频| 最好的美女福利视频网| 亚洲avbb在线观看| 深夜精品福利| 国产成人精品久久二区二区免费| 男女之事视频高清在线观看| 国产精品亚洲一级av第二区| 国产熟女午夜一区二区三区| 人人妻人人澡欧美一区二区 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲男人的天堂狠狠| 亚洲成av片中文字幕在线观看| 欧美乱码精品一区二区三区| av超薄肉色丝袜交足视频| 亚洲成人久久性| 成人国语在线视频| 男女做爰动态图高潮gif福利片 | 嫩草影视91久久| 大码成人一级视频| 精品乱码久久久久久99久播| 亚洲国产欧美网| 一级片免费观看大全| 丝袜在线中文字幕| 久久久国产成人精品二区| 精品国产美女av久久久久小说| 一级毛片精品| а√天堂www在线а√下载| 亚洲电影在线观看av| 好男人在线观看高清免费视频 | 国产蜜桃级精品一区二区三区| 国内精品久久久久精免费| 日韩欧美免费精品| 亚洲人成网站在线播放欧美日韩|