• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    苯分子與Si6O18H12和Al6O24H30團簇模型相互作用的理論研究

    2014-10-18 05:27:42宋開慧
    物理化學(xué)學(xué)報 2014年2期
    關(guān)鍵詞:材料科學(xué)泰安泰安市

    王 幸 錢 萍,* 宋開慧 張 超 宋 偉

    (1山東農(nóng)業(yè)大學(xué)化學(xué)與材料科學(xué)學(xué)院,山東泰安 271018;2泰安市疾病預(yù)防控制中心,山東泰安 271000)

    1 Introduction

    The monoaromatic hydrocarbons benzene,toluene,ethylbenzene,and xylenes are abbreviated by BTEX,which is commonly found in liquid and gas states in our planet,especially abundant in pollutants,present in soils,in industrial process as well as in the product of petroleum refining.BTEX is mainly produced in catalytic synthesis,the pyrolysis of naphtha,and oil refinement.1BTEX,playing an important role in the synthesis of other compounds,is the main pollutant to the soils and groundwater,and has resulted in great harm to the people because of its high toxicity,carcinogenicity,and mutagenicity.2-4BTEX migration is controlled by diffusion and adsorption on the surface of soil components,where the clay minerals are ubiquitous.For further understanding the surface structural and chemical properties of clay mineral,it is important to know the adsorption structures and interactions between the pollutants and clay surface at the molecular level.

    To the best of our knowledge,the important crystal structure information of clay minerals has been determined by some available experimental techniques.5,6However,the particles of clay minerals are extremely small sizes and in structural and substitutional disorder for the natural material.These factors complicate an experimental study of structure and properties of clay.In particular,these small particles,which often prevent utilizing single-crystal diffraction for the precise determination of structural parameters,lead to ambiguous crystal structure.Therefore,special attention is given to the related study of clay systems at the molecular level,especially,the adsorbent properties of clay surfaces.7Essentially,two main approaches should be used in theoretical studies of clay.The first one is based on the exploitation of the translational symmetry in the calculation procedure,e.g.,periodic ab initio calculations,6,8which may be impractical or over costly for a very large system just like ours.The second one is based on the application of standard molecular approach in which the cluster is formed by cutting the periodic structure and the model is treated as a molecule.9-12However,it is well-known that the disadvantage of the cluster approach is the limited cluster size,and non-bonding interactions will be ignored.Therefore,in order to avoid artificial edge effects,the geometry of the outer part of the cluster model was frozen at the original structure and only the innermost part representing the adsorption site of the cluster model was fully optimized.

    A lot of researches have been implemented about adsorption and desorption of benzene and its derivatives on clay materials.13-22For example,Castro et al.13,14employed the(Al2Si2O9H4)3cluster model to study the properties(molecular orbital,electrostatic potential,vibrational frequencies,electron localization function(ELF),atomic charges,molecular orbital information,and so on)of benzene interaction with kaolinite surfaces by semi-empirical AM1,RHF,B3LYP,and MP2 methods,and found that the benzene molecule is largely tilted related to the Al―O surface.Michalková et al.18used the Si13O15H35and All6O24H30cluster models to study the adsorption of 2,4-dinitroluene(DNT)on the tetrahedral and octahedral surfaces of dickite at the HF/3-21G level,and they discovered that the adsorption energy of DNT-octahedral fragment system was lower than that of the DNT-tetrahedral fragment.Furthermore,the interaction of 1,3,5-trinitrobenzene(TNB)with the basal siloxane surface of clay minerals was studied by Pelmenschikov and Leszczynski.19The silicon-oxygen clusters symbolizing the siloxane sites were constructed by SiO4tetrahedra with the Si―O bond length equal to 0.161 nm.Gorb et al.20also used Si13O37H22cluster to study the TNB interaction with a pure silicon-oxygen surface.Their studies both suggested that the interaction of TNB with the basal siloxane surface is governed by the balance between favorable dispersion,electrostatic forces,and repulsive exchange forces.Therefore,all the above ab initio results provide reliable references for us to construct a new kaolinite cluster model.

    The primary aim of this work is to construct a new cluster model of kaolinite,and to make an extensive investigation on the new cluster model.The various gas state properties characterizing the interaction of benzene molecule and cluster model of kaolinite surface include optimized structures,structural parameters,adsorption energies,secondary hydrogen bonds,electron density characteristics,vibration frequencies,natural bond orbital(NBO)charge distributions,electrostatic potential,and electron density difference,and so on.Simultaneously,the connection among the various properties is indicated.

    2 Models and methodology

    All quantum chemical calculations were performed at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level using the Gaussian 03 suit of programs.23This approach has been shown to be suitable for describing adsorption on oxide surface.13Among clays,kaolinite,composed of one Si―O layer linked to an Al―O layer,is classified as 1:1 type layer aluminosilicate.14,24,25Inspired by Michalková′s work,5we constructed Si6O18H12and Al6O24H30cluster models to represent the Si―O and Al―O layers of kaolinite,respectively(Fig.1).In the center of the Al―O surface,the six O atoms make up a triangle(Fig.2).The Si―O layer consists of SiO4tetrahedrally coordinated Si,and six O atoms of the center form a hexagon(Figs.1-2).It is universally accepted that the“dangling”valences of the border oxygen atoms of the Si―O layer and Al―O layer clusters were saturated with hydrogen atoms.For the optimized structures,all vibrational frequencies were performed at the same basis set level,and the scaled factor of frequencies is 0.9611.26The adsorption energy(AE)for each complex system was calculated as the difference between the total energy of the whole system and the total sum of energies of both subsystems,and the counterpoise corrections for the basis set superposition error(BSSE)were included.

    Fig.1 Kaolinite cluster models Si6O18H12(a)and Al6O24H30(b)for Si―O surface and Al―O surface,respectively

    Fig.2 Atomic labels of benzene molecule(Ben)and the innermost part representing the adsorption site of kaolinite cluster model

    In this paper,the weak hydrogen bonds C―H…O with 0.23 nm<R(H…O)<0.32 nm,0.32 nm<R(C…O)<0.40 nm and 105°<∠C―H…O<170°are considered to be secondary hydrogen bonds.To gauge the bonding properties,27,28the AIM methodology29was applied to analyze the electron denstiy ρ(r)and its Laplacian(▽2ρ(r))at the critical point of Hδ+…Oδ-from the optimized results at the B3LYP/6-31G(d,p)level.In general,a small electron denstiy ρ(r)at the hydrogen bond critical point(BCP)indicates a weak hydrogen bond,and a positive value of Laplacians ▽2ρ(r)implies that the closed-shell(electrostatic)interaction is the major source in the hydrogen bonded system.Simultaneously,Molekel program package30was applied to obtain the electrostatic potential.The maps of electron density of adsorbed complex system were also studied by the program Multiwfn31and gsgrid.32

    3 Results and discussion

    3.1 Verification of kaolinite cluster model

    To further verify the reasonableness of the kaolinite cluster model,the average bond lengths of kaolinite cluster model have been compared with those from other methods25,33-35(Table 1).The results show that our data are consistent with the others.Besides,interaction energies per water of the intercalation of n(n=1-3)water molecules in kaolinite(K-n W(n=1-3))were examined(Table 2).At the same time,the optimized structures of the intercalation of n(n=1-3)water molecules in kaolinite are depicted in Fig.3.The other detailed information concerning kaolinite-water systems can be found in reference.33We found that the interaction energies per water of kaolinitewater systems are close to those calculated by other density functional theory(DFT)methods.For example,the range of interaction energy per water calculated by Hu and Michaelides34is-43.44--63.70 kJ·mol-1,and our value is-36.69--64.68 kJ·mol-1.Specifically,when the numbers of intercalated water molecule are 2 and 3,the interaction energies per water are-61.78 and-64.68 kJ·mol-1,respectively.These data further confirm the reasonableness of our cluster models.

    3.2 Structural and energetic properties

    The benzene molecule was respectively optimized on the Si―O and Al―O surfaces of kaolinite at the B3LYP/6-31G(d,p)level.It is worth mentioning that although its initial geometry is parallel to the surfaces,the optimized benzene molecule is almost perpendicular to the surfaces,which is in agreement with Castro′s earlier work,14but different from Castro′s later job.13Various optimized low-energy structures of adsorption ofbenzene molecule on the Al―O surface and Si―O surface of kaolinite are respectively depicted in Figs.4-5.From Figs.4-5,it can be seen that the interaction angle between the benzene ring plane and kaolinite surface for benzene/kaolinite complex is almost close to 90°.In each complex,two H atoms of benzene molecule are preferentially located above the Al―O triangle or Si―O hexagon area,and interact with the surface O atoms by forming C―H…O secondary hydrogen bond.Therefore,the nature of the adsorption of benzene molecule on the kaolinite surfaces may be the formation of secondary hydrogen bonds.The relevant adsorption energies(AE),structural parameters,and electron density characteristics of secondary hydrogen bonds for these low-energy structures are indicated in Tables 3-4.In Table 3,the average values of R(C…O)and R(H…O)are respectively 0.3574 and 0.2498 nm for the lowest energy structure Al-O-Ben1 of benzene adsorption on Al―O surface of kaolinite,less than 0.3583 and 0.2816 nm for the lowest energy structure Si-O-Ben1 of benzene adsorption on Si―O surface of kaolinite.The average values of R(O…H)and∠C―H…O for all of the benzene/Al―O surface complexes are about 0.2630 nm and 143.9°,whereas those for benzene/Si―O surface complexes are about 0.2788 nm and 141.5°,respectivtly.

    Table 1 Comparison of some typical bond distances of kaolinite cluster model

    Table 2 Comparison of the interaction energies per water(kJ·mol-1)of the intercalation of n water molecules in kaolinite(K-n W(n=1-3))

    Fig.3 Optimized structures of kaolinite-water clusters(K-n W(n=1-3))

    Fig.4 Various low energy structures of adsorption of benzene on Al―O surface of kaolinite

    In addition,the AE and conventional counterpoise(CP)method corrected adsorption energies(AECP)between benzene molecule and kaolinite surface have been calculated(Table 4).For Al-O-BEN1,the AECPvalue is-18.40 kJ·mol-1.For Si-OBEN1,the AECPvalue is-18.57 kJ·mol-1.Previous studies36,37have suggested that,for systems with weak interactions,the real BSSE is small.That is to say,the real BSSE can be considered to be one order of magnitude lower than the associated counterpoise correction(BSSE=CP/10).37In this paper,we applied the approximation of BSSE=CP/10.The adsorption energies with real BSSE correction(AEBSSE)for Al-O-Ben1 and Si-O-Ben1 complexes would be-40.85 and-34.04 kJ·mol-1,respectively.This energy difference may be caused by two factors.The first one is the repulsion between π orbital of benzene and the orbitals of oxygen network from the kaolinite Si―O surface.The second one is the size of energy gap between HOMO(the highest occupied molecular orbital)and LUMO(the lowest unoccupied molecular orbital)for different clay surface.The greater the energy gap,the lower the surface chemical activity,the more stable the surfaces.Si―O surface has greater energy gap(6.52 eV)than Al―O surface(4.20 eV).This further shows that the Si―O surface is more stable than the Al―O surface.As a final result of the above two factors,the benzene molecule will be adsorbed more preferably on the Al―O surface than on the Si―O surface.

    In the current investigation,based on the analysis of electron density characteristics(Table 3),we confirmed the existence of secondary hydrogen bonds for structures in Figs.4-5.The results show that the ρ and ▽2ρ values of secondary hydrogen bonds for Al-O-Ben complexes are respectively 0.00364-0.01361 a.u.and 0.01384-0.03704 a.u.except for the HB1 and HB2 of Al-O-Ben3.However,the secondary hydrogen bonds of Si-O-Ben complexes,which are characterized by 0.00197-0.00846 a.u.of ρ values and 0.00894-0.02735 a.u.of▽2ρ values,are slightly weaker than those of Al-O-Ben complexes.At the same time,the values of the electron density and the Laplacian of the electron density are proportional to the strength of formed hydrogen bonds(shorter distances corresponding with larger ρ and ▽2ρ values).

    3.3 NBO charge distributions

    Fig.5 Various low energy structures of adsorption of benzene on Si―O surface of kaolinite

    Table 3 Structural parameters for benzene/kaolinite adsorbed systems and electron density characteristics(ρ,▽2ρ)of hydrogen bonds both calculated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level

    Table 4 AE,CP method and real BSSE corrected adsorption energies(AECPand AEBSSE)for benzene/kaolinite adsorbed systems calculated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level

    Table 5 NBO charges of the lowest-energetic structure for benzene and kaolinite surfaces calculated by the B3LYP/6-31G(d,p)method

    In this section,a cluster structure is arbitrarily chosen to study the NBO charge distributions.Taking the lowest energy structures Al-O-Ben1 and Si-O-Ben1 for example,the charges are listed in Table 5.For the isolated benzene molecule,the charge change of hydrogen atoms is regarded as zero.When benzene molecule interacts with each kaolinite surface,the charges of all sites for benzene molecule are different from the isolated benzene.i.e.,for the isolated benzene,no other molecule affects its electron cloud,but for a benzene/kaolinite complex,the intermolecular secondary hydrogen bonds C―H…O directly influence the charge distribution.For example,for the structure Si-O-Ben1,two H atoms(qH2and qH3are 0.253e and 0.272e)exhibit relatively larger absolute charges than the corresponding H atoms(0.238e and 0.238e)of isolated benzene,because the two H atoms and oxygen atoms of Si―O surface form the hydrogen bonds.Simultaneously,the charge change(△q)of all H atoms is 0.027e.For the structure Al-O-Ben1,△q of all H atoms is 0.034e,which is slightly larger than 0.027e of Si-O-Ben1.Thus,it indicates that the polarization degree of benzene on Al―O surface is slightly greater than that on Si―O surface.

    In the same way,this is also true of Al―O and Si―O surfaces.From Table 5,we can also see that after benzene adsorption on the Si―O surface,the absolute charges of O atoms of Si―O surface are almost all a little bit increased.Specifically,for the structure Si-O-Ben1,│Δq│of O atoms of Si―O surface is 0.013e.The same results occurred on the Al―O surface.H atoms and O atoms of Al―O surface for structure Al-O-Ben1 both exhibit relatively larger absolute charge(0.012e and 0.013e)than those of the isolated Al―O surface.

    To sum up,we hold that the polarization degrees of O atoms of Al―O surface are stronger than that of the Si―O layer,and further validate that benzene molecule is adsorbed more preferably on the Al―O surface than on the Si―O surface.

    3.4 Vibration frequencies

    We have also calculated the vibration frequencies of benzene as well as the lowest energy structures for the benzene adsorption on Al―O/Si―O surface by the B3LYP/6-31G(d,p)method and the related data are shown in Table 6.After benzene was adsorbed on the Al―O surface and Si―O surface,bending vibration frequencies for plane and out of plane have been enhanced.For examples,C―H bending vibration frequencies for plane of Si-O-Ben1 and Al-O-Ben1 complexes are respectively 1132-1159 cm-1and 1137-1170 cm-1,slightly larger than 1133-1155 cm-1of the isolated benzene.At the same time,C―H bending vibration frequencies for out of plane also increase from 830-973 cm-1of the isolated benzene to 834-991 cm-1of Al-O-Ben1 and 840-973 cm-1of Si-OBen1.Nevertheless,Table 6 indicates a little decrease of C―H and C=C stretching vibrations of adsorbed benzene,comparedto free benzene molecule.Specifically,C―H stretching vibration frequencies of Si-O-Ben1 and Al-O-Ben1 are respectively 3032-3080 cm-1and 3044-3076 cm-1,lower than 3051-3086 cm-1of the isolated benzene,and C=C stretching vibration frequencies also decrease from 1302-1589 cm-1of the isolated benzene to 1301-1585 cm-1of Si-O-Ben1 and 1302-1585 cm-1of Al-O-Ben1.Furthermore,O―H stretching vibration frequencies of Al―O surface change a little bit,which decrease from 3582-3808 cm-1(from OH1 to OH6)of the isolated Al―O surface to 3567-3802 cm-1of Al-O-Ben1.These results are in accordance with the Castro′s earlier work14(for details see Table 6).To a lesser extent,these changes of vibration frequencies,especially the stretching modes of hydroxyl groups of kaolinite surface and C―H of benzene ring,can account for the adsorption between benzene and kaolinite surface.So people can utilize kaolinite to remove organics and remediate soils and groundwater contaminated with petroleum hydrocarbons.

    Table 6 Comparison of vibration frequenciesa(cm-1)of benzene and benzene/kaolinite complex Si-O-Ben1 and Al-O-Ben1

    3.5 Electrostatic potential on adsorption

    The isopotential electrostatic surfaces of the lowest energy structures are depicted on Fig.6 for benzene,kaolinite,and benzene/kaolinite complex.It is universally acknowledged that for adsorption of organic molecules,the calculation of maps of electrostatic potentials(MEPs)on the surface of a solid material can help us acquire much more knowledge about the adsorption processes.For adsorption of the benzene ring on clay minerals,in which weak interactions are originated from hydrogen bonds,it is interesting to calculate the electrostatic potential between the adsorbate and substrate because it helps to determine the related properties of sorption complexes.The electrostatic potential of benzene adsorbed on kaolinite surfaces showed no obvious difference compared to the isolated kaolinite surface.The results of electrostatic potential show the same tendency for the interaction of benzene molecule with the Al―O and Si―O surfaces.Furthermore,the adsorption of benzene ring on the Al―O surface results in much less significant changes in the MEPs than that on the Si―O surface(Fig.6).It indicates that the formation of the secondary hydrogen bonds causes much less significant polarization of the target molecule,because Δq of all H atoms of benzene molecule are only+0.034e and+0.027e(Table 4)for Al―O and Si―O surfaces,respectively.

    Fig.6 Surfaces of electrostatic potentials(unit in a.u.)for(a)Al―O surface cluster modelAl6O24H30,(b)benzene molecule,(c)Si―O surface cluster model Si6O18H12,the lowest energy structures(d)Al-O-Ben1 and(e)Si-O-Ben1 of benzene/kaolinite complex

    Fig.7 (a)Surfaces of electron density difference for the lowest-energy structure Al-O-Ben1 of benzene/Al―O surface complex;(b)enlargement of the left side of the hydrogen bonds;(c)enlargement of the right side of the hydrogen bonds

    3.6 Electron density difference

    An examination of Fig.7 indicates that the common trend is that electron density decreases on carbon atoms of benzene molecule and oxygen atoms of Al―O surface,while electron density increases on the basis of the C―H bond and C=C bond.In the interaction region of secondary hydrogen bond C―H…O,electrons on the oxygen atoms of Al―O surface are gathered to the middle of benzene molecule and Al―O surface,therefore electron densities of oxygen atoms on the Al―O surface apparently diminish.On the contrary,the electron densities between benzene molecule and Al―O layer increase simultaneously.However,the electron densities of O atoms away from the H atoms in the benzene ring increase a little bit,as we can see clearly from Fig.7(b),which is consistent with the increase of NBO charge(Table 5)absolute value of oxygen atoms on the Al―O surface.Additionally,with the decrease of hydrogen atom electron densities around,the NBO charges(Table 5)of the corresponding hydrogen atoms increase.Nonetheless,these small changes will have a positive effect on the energy of adsorption,so that,there is,to a small extent,a chemical contribution to the adsorption mechanism.

    The change of electron density suggests that enhanced polarization leads to a predominant electrostatic interaction between benzene molecule and kaolinite surface.It also indicates that the adsorption results in significant electron transfer between the molecule and the surface.We also can draw the same conclusion from the electron density characteristics of Table 5.Additionally,the electron density is transferred to the π orbital of benzene and comes mainly from the C―H…O hydrogen bonding,depicted clearly in Fig.7.All these can be accounted for the gradual formations of C―H…O secondary hydrogen bonds.

    4 Conclusions

    The interactions of benzene with the kaolinite cluster models,Si6O18H12(Si―O layer)and Al6O24H30(Al―O layer),have been systematically investigated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level to mimic the adsorption of benzene on the kaolinite surface.Various gas state properties characterizing benzene/kaolinite complexes,including the optimized structures,structural parameters,adsorption energies,NBO charge distributions,vibration frequencies,and electrostatic potential,electron density characteristics,and electron density difference,were presented and discussed in this paper.The optimized structures show that there are secondary hydrogen bond interactions between the benzene molecule and the polar kaolinite surface.That is to say,the nature of the adsorption of the benzene molecule on kaolinite surfaces may be the formation of secondary hydrogen bonds.The results of other properties further confirmed the existence of secondary hydrogen bonds.Simultaneously,benzene molecule is more likely to be adsorbed on the Al―O surface than on the Si―O surface,and the absorption angle between benzene ring plane and kaolinite Al―O surface is about 90°.

    (1)Roldan,R.;Romero,F.J.;Jimenez,C.;Borau,V.;Marinas,J.M.Appl.Catal.A 2004,266,203.doi:10.1016/j.apcata.2004.02.008

    (2)Maliyekkal,S.M.;Rene,E.R.;Philip,L.;Swaminathan,T.J.Hazard.Mater.2004,109,201.doi:10.1016/j.jhazmat.2004.04.001

    (3)Pilidis,G.A.;Karakitsios,S.P.;Kassomenos,P.A.;Kazos,E.A.;Stalikas,C.D.Environ.Monit.Assess.2009,150,285.doi:10.1007/s10661-008-0230-9

    (4)Lesage,S.Anal.Chem.ACS Publications 1993,65,647A.

    (5)Michalková,A.;Tunega,D.;Nagy,L.T.J.Mol.Struct.-Theochem 2002,581,37.doi:10.1016/S0166-1280(01)00741-2

    (6)Hess,A.C.;Saunders,V.R.J.Phys.Chem.1992,96,4367.doi:10.1021/j100190a047

    (7)Shua,H.T.;Lib,D.;Scalaa,A.A.;Mab,Y.H.Purif.Technol.1997,11,27.doi:10.1016/S1383-5866(96)01005-2

    (8)Beltrán,A.;Andrés,J.;Calatayud,M.;Martins,J.B.L.Chem.Phys.Lett.2001,338,224.doi:10.1016/S0009-2614(01)00238-X

    (9)Martins,J.B.L.;Sambrano,J.R.;Vasconcellos,L.A.S.;Longo,E.;Taft,C.A.Quim.Nova.2004,27,10.doi:10.1590/S0100-40422004000100003

    (10)Martins,J.;Taft,C.;Lie,S.;Longo,E.J.Mol.Struct.-Theochem 2000,528,161.doi:10.1016/S0166-1280(99)00498-4

    (11)Almeida,A.;Martins,J.;Longo,E.;Taft,C.;Murgich,J.;Jalbout,A.F.J.Mol.Struct.-Theochem 2003,664,111.

    (12)Sambrano,J.;Vasconcellos,L.;Martins,J.;Santos,M.;Longo,E.;Beltran,A.J.Mol.Struct.-Theochem 2003,629,307.doi:10.1016/S0166-1280(03)00200-8

    (13)Castro,E.A.S.;Gargano,R.;Martins,J.B.L.Int.J.Quantum Chem.2012,112,2828.doi:10.1002/qua.v112.16

    (14)Castro,E.A.S.;Martins,J.B.L.J.Comput.Aided Mater.Des.2005,12,121.

    (15)Bickmore,B.R.;Rosso,K.M.;Nagy,K.L.;Cygan,R.T.;Tadanier,C.J.Clays Clay Min.2003,51,359.

    (16)Castro,E.A.S.;Martins,J.B.L.Int.J.Quantum Chem.2005,103,550.

    (17)Balan,E.;Saitta,A.M.;Mauri,F.;Lemaire,C.;Guyot,F.Am.Mineral.2002,87,1286.

    (18)Michalková,A.;Szymczak,J.J.;Leszczynski,J.Struct.Chem.2005,16,325.doi:10.1007/s11224-005-4463-8

    (19)Pelmenschikov,A.;Leszczynski,J.J.Phys.Chem.B 1999,103,6886.doi:10.1021/jp990091q

    (20)Gorb,L.;Lutchyn,R.;Zub,Y.;Leszczynska,D.;Leszczynski,J.J.Mol.Struct.-Theochem 2006,766,151.doi:10.1016/j.theochem.2006.04.013

    (21)Lee,J.F.;Mortland,M.M.;Chiou,C.T.;Kile,D.E.;Boyd,S.A.Clay Clay Min.1990,38,113.

    (22)Wilson,M.A.;Lee,G.S.H.;Taylor,R.C.Clay Clay Min.2002,50,348.

    (23)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision A.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (24)Young,R.A.;Hewat,A.W.Clay Clay Min.1988,36,225.

    (25)Bish,D.L.Clay Clay Min.1993,41,738.

    (26)Karl,K.I.;Russell,D.J.;Raghu,N.K.J.Phys.Chem.A 2005,109,8430.doi:10.1021/jp052793n

    (27)Koch,U.;Popelier,P.J.Phys.Chem.1995,99,9747.doi:10.1021/j100024a016

    (29)Bader,R.W.F.Accounts Chem.Res.1985,18,9.

    (30)Flükiger,P.;Lüthi,H.;Portmann,S.;Weber,J.Molekel 4.0;Swiss Center for Scientific Computing:Manno,Switzerlan,2000.

    (31)Lu,T.;Chen,F.J.Comput.Chem.2012,33,580.doi:10.1002/jcc.v33.5

    (32)Lu,T.GsGrid:Extracting Data from Gaussian Grid File and Grid File Calculation[EB/OL].http:∥gsgrid.codeplex.com,in.

    (33)Zhang,C.;Song,K.H.;Wang,X.;Yin,H.Z.;Qian,P.J.Mol.Sci.2013,29,134.[張 超,宋開慧,王 幸,尹洪宗,錢 萍.分子科學(xué)學(xué)報,2013,29,134.]

    (34)Hu,X.L.;Michaelides,A.Surf.Sci.2008,602,960.doi:10.1016/j.susc.2007.12.032

    (35)Neder,R.;Burghammer,M.;Grasl,T.;Schulz,H.;Bram,A.;Fiedler,S.Clay Clay Min.1999,47,487.

    (36)Austen,K.F.;White,T.O.H.;Marmier,A.;Parker,S.C.;Artacho,E.;Dove,M.T.J.Phys:Condes.Matter 2008,20,035215.doi:10.1088/0953-8984/20/03/035215

    (37)Sainz-Díaz,I.;Francisco-Márquez,M.;Vivier-Bunge,A.Environ.Chem.2011,8,429.

    猜你喜歡
    材料科學(xué)泰安泰安市
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    北風(fēng)催眠曲
    再見,雪姑娘
    泰安雜記
    文苑(2019年20期)2019-11-16 08:52:42
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    泰安市通聯(lián)站站長——王曉棟
    寶藏(2017年2期)2017-03-20 13:16:57
    Transform Yourself into a Butterfly
    泰安無性系引種品種的紅茶適制性初步研究
    蜜桃国产av成人99| 人成视频在线观看免费观看| 嫩草影院入口| 亚洲欧洲日产国产| 女人精品久久久久毛片| 亚洲欧洲国产日韩| 丝袜人妻中文字幕| 母亲3免费完整高清在线观看 | 国产精品国产av在线观看| 波多野结衣av一区二区av| 婷婷色av中文字幕| 建设人人有责人人尽责人人享有的| 日韩 亚洲 欧美在线| 在线免费观看不下载黄p国产| 欧美日韩精品网址| 亚洲欧美中文字幕日韩二区| xxxhd国产人妻xxx| xxxhd国产人妻xxx| 国产日韩一区二区三区精品不卡| 欧美少妇被猛烈插入视频| 一本—道久久a久久精品蜜桃钙片| 极品人妻少妇av视频| 菩萨蛮人人尽说江南好唐韦庄| 五月伊人婷婷丁香| 日韩中字成人| 久久精品久久久久久噜噜老黄| av免费观看日本| 国产熟女午夜一区二区三区| 亚洲精品久久久久久婷婷小说| 精品福利永久在线观看| 精品国产乱码久久久久久男人| 叶爱在线成人免费视频播放| 欧美最新免费一区二区三区| 夫妻性生交免费视频一级片| 久久av网站| 国产毛片在线视频| 一级爰片在线观看| 日韩欧美一区视频在线观看| 国产av一区二区精品久久| 在线观看一区二区三区激情| 国产日韩欧美在线精品| 亚洲av在线观看美女高潮| 欧美精品高潮呻吟av久久| 蜜桃国产av成人99| 天天躁夜夜躁狠狠躁躁| 如何舔出高潮| 久久久久久久国产电影| 三上悠亚av全集在线观看| 久久久久久人人人人人| 国产精品蜜桃在线观看| 免费看av在线观看网站| 麻豆乱淫一区二区| 青春草国产在线视频| 啦啦啦啦在线视频资源| 亚洲精品在线美女| 亚洲精品第二区| 国产黄色视频一区二区在线观看| 午夜激情av网站| 欧美精品亚洲一区二区| 一级a爱视频在线免费观看| 国产精品99久久99久久久不卡 | 免费观看无遮挡的男女| 卡戴珊不雅视频在线播放| av在线播放精品| 99久久精品国产国产毛片| 老司机影院成人| 97人妻天天添夜夜摸| 夜夜骑夜夜射夜夜干| 一本大道久久a久久精品| 啦啦啦在线免费观看视频4| 啦啦啦中文免费视频观看日本| 免费观看性生交大片5| 美女福利国产在线| 亚洲精品久久午夜乱码| 久久久久久久精品精品| xxxhd国产人妻xxx| 色视频在线一区二区三区| 欧美另类一区| 伦理电影免费视频| 天美传媒精品一区二区| 91精品伊人久久大香线蕉| av卡一久久| 精品少妇久久久久久888优播| 观看美女的网站| 一区二区三区乱码不卡18| 曰老女人黄片| 亚洲一区中文字幕在线| 最近2019中文字幕mv第一页| 国产精品免费视频内射| 国产精品国产三级国产专区5o| 在线 av 中文字幕| 亚洲精品日本国产第一区| 少妇人妻精品综合一区二区| a 毛片基地| 一本大道久久a久久精品| 中文字幕av电影在线播放| 久久精品国产综合久久久| 2021少妇久久久久久久久久久| 天天躁日日躁夜夜躁夜夜| 天堂中文最新版在线下载| a级毛片在线看网站| 中文欧美无线码| 亚洲av男天堂| 亚洲精品国产一区二区精华液| 欧美中文综合在线视频| 丰满乱子伦码专区| 久久97久久精品| 亚洲精品av麻豆狂野| 亚洲欧美清纯卡通| 99久久精品国产国产毛片| 侵犯人妻中文字幕一二三四区| 一边摸一边做爽爽视频免费| 晚上一个人看的免费电影| 高清在线视频一区二区三区| 少妇精品久久久久久久| 亚洲欧美成人精品一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜福利在线免费观看网站| 熟女电影av网| 免费人妻精品一区二区三区视频| 一区二区三区精品91| 亚洲伊人久久精品综合| 国产精品免费大片| 天堂8中文在线网| 啦啦啦在线免费观看视频4| 日韩欧美精品免费久久| 下体分泌物呈黄色| 热re99久久精品国产66热6| 97在线人人人人妻| 亚洲男人天堂网一区| 国产有黄有色有爽视频| 两性夫妻黄色片| 亚洲伊人久久精品综合| 伦理电影免费视频| 99久久综合免费| 成年人午夜在线观看视频| 一级黄片播放器| 久久久久久免费高清国产稀缺| 久久久久久人人人人人| 丝袜喷水一区| 1024香蕉在线观看| 日韩熟女老妇一区二区性免费视频| 香蕉丝袜av| 亚洲人成电影观看| 国产一区二区在线观看av| 2018国产大陆天天弄谢| 天堂8中文在线网| 亚洲国产最新在线播放| 亚洲精品成人av观看孕妇| 国产深夜福利视频在线观看| 91成人精品电影| 欧美老熟妇乱子伦牲交| 成人免费观看视频高清| 亚洲国产精品一区二区三区在线| 欧美亚洲 丝袜 人妻 在线| 性少妇av在线| 国产激情久久老熟女| 亚洲精品av麻豆狂野| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| 涩涩av久久男人的天堂| 在线观看免费视频网站a站| 捣出白浆h1v1| 久久久久久久久久久久大奶| 最黄视频免费看| 精品久久蜜臀av无| 精品少妇久久久久久888优播| 国产精品熟女久久久久浪| 热re99久久精品国产66热6| av在线老鸭窝| 久久av网站| 狠狠婷婷综合久久久久久88av| 这个男人来自地球电影免费观看 | 少妇人妻久久综合中文| 免费观看性生交大片5| 欧美日韩av久久| 天堂俺去俺来也www色官网| www.自偷自拍.com| 两个人免费观看高清视频| 欧美最新免费一区二区三区| 国产极品天堂在线| 色吧在线观看| 我的亚洲天堂| 国产精品久久久久久精品电影小说| 丰满饥渴人妻一区二区三| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| a级毛片在线看网站| 色吧在线观看| 一级毛片电影观看| 国产在视频线精品| 国产精品蜜桃在线观看| 日韩一区二区视频免费看| 久久久国产精品麻豆| 丝袜人妻中文字幕| www.精华液| 精品国产国语对白av| 一二三四在线观看免费中文在| 十八禁高潮呻吟视频| 国产欧美亚洲国产| 日韩av在线免费看完整版不卡| 性少妇av在线| 久久99热这里只频精品6学生| 亚洲欧美一区二区三区国产| 国产乱人偷精品视频| 免费在线观看完整版高清| 美女大奶头黄色视频| 十分钟在线观看高清视频www| xxxhd国产人妻xxx| 人妻少妇偷人精品九色| 亚洲少妇的诱惑av| 欧美在线黄色| 国产在线免费精品| 汤姆久久久久久久影院中文字幕| 日本wwww免费看| 国产精品女同一区二区软件| av女优亚洲男人天堂| 亚洲国产精品国产精品| 久久久欧美国产精品| 寂寞人妻少妇视频99o| 少妇人妻 视频| 精品第一国产精品| 亚洲成人手机| 秋霞在线观看毛片| 欧美av亚洲av综合av国产av | 不卡视频在线观看欧美| 男女下面插进去视频免费观看| 十分钟在线观看高清视频www| 亚洲,一卡二卡三卡| 亚洲精品成人av观看孕妇| 精品国产一区二区三区四区第35| 深夜精品福利| 亚洲精品视频女| 十分钟在线观看高清视频www| 久久 成人 亚洲| 少妇熟女欧美另类| 久久精品熟女亚洲av麻豆精品| 国产成人精品福利久久| 波多野结衣一区麻豆| 男女国产视频网站| 中文字幕精品免费在线观看视频| 飞空精品影院首页| 少妇被粗大的猛进出69影院| 久久人妻熟女aⅴ| 免费播放大片免费观看视频在线观看| 国产麻豆69| 交换朋友夫妻互换小说| 精品人妻一区二区三区麻豆| 久久久国产一区二区| 国产黄频视频在线观看| 日韩熟女老妇一区二区性免费视频| 欧美日韩av久久| 欧美 亚洲 国产 日韩一| 香蕉精品网在线| 欧美激情 高清一区二区三区| 亚洲av中文av极速乱| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 国产成人精品一,二区| 日韩熟女老妇一区二区性免费视频| 69精品国产乱码久久久| 精品一区在线观看国产| 黄色视频在线播放观看不卡| 欧美在线黄色| 欧美精品一区二区大全| 精品午夜福利在线看| 日本欧美国产在线视频| 在线观看一区二区三区激情| 99精国产麻豆久久婷婷| 欧美bdsm另类| 91精品国产国语对白视频| 中文字幕制服av| 久久久久精品人妻al黑| 久久99蜜桃精品久久| 中文字幕最新亚洲高清| 九色亚洲精品在线播放| 亚洲国产看品久久| 国产福利在线免费观看视频| 18禁裸乳无遮挡动漫免费视频| 精品久久久精品久久久| 精品亚洲乱码少妇综合久久| 亚洲成人av在线免费| 精品人妻偷拍中文字幕| 久久这里只有精品19| 中国国产av一级| 亚洲精品国产av成人精品| 亚洲图色成人| 性高湖久久久久久久久免费观看| 波多野结衣一区麻豆| 观看美女的网站| 女人被躁到高潮嗷嗷叫费观| 亚洲成av片中文字幕在线观看 | 成人18禁高潮啪啪吃奶动态图| 最近的中文字幕免费完整| 国产av一区二区精品久久| 日韩人妻精品一区2区三区| 2018国产大陆天天弄谢| 欧美人与性动交α欧美软件| 乱人伦中国视频| 国产成人精品福利久久| 久久久久精品久久久久真实原创| 亚洲 欧美一区二区三区| 老汉色∧v一级毛片| 另类亚洲欧美激情| 国产精品av久久久久免费| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 精品99又大又爽又粗少妇毛片| 看免费成人av毛片| 久久久精品国产亚洲av高清涩受| 色播在线永久视频| 国产欧美日韩一区二区三区在线| 久久久久国产网址| 电影成人av| 2018国产大陆天天弄谢| 一二三四在线观看免费中文在| 成年动漫av网址| 中文字幕另类日韩欧美亚洲嫩草| xxx大片免费视频| 欧美 亚洲 国产 日韩一| 国产免费又黄又爽又色| 日韩熟女老妇一区二区性免费视频| 国产欧美日韩综合在线一区二区| 91精品伊人久久大香线蕉| 激情视频va一区二区三区| 亚洲,欧美精品.| 一区二区三区精品91| 成人18禁高潮啪啪吃奶动态图| 在线观看www视频免费| 国产精品二区激情视频| 母亲3免费完整高清在线观看 | 亚洲欧美一区二区三区黑人 | 国产成人欧美| 欧美黄色片欧美黄色片| 国产精品偷伦视频观看了| 我的亚洲天堂| 女人被躁到高潮嗷嗷叫费观| 亚洲精品美女久久久久99蜜臀 | 啦啦啦啦在线视频资源| 热99久久久久精品小说推荐| 亚洲人成电影观看| 午夜免费鲁丝| 黄色 视频免费看| 黄色配什么色好看| 视频区图区小说| 国产在视频线精品| 丝袜喷水一区| 久久99一区二区三区| 日韩av免费高清视频| 秋霞在线观看毛片| 在线天堂中文资源库| 少妇被粗大猛烈的视频| 国产免费视频播放在线视频| 国产爽快片一区二区三区| 成人午夜精彩视频在线观看| 老鸭窝网址在线观看| 亚洲情色 制服丝袜| 三上悠亚av全集在线观看| 你懂的网址亚洲精品在线观看| 日韩中文字幕视频在线看片| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 最新的欧美精品一区二区| 免费观看性生交大片5| 精品亚洲乱码少妇综合久久| 成年美女黄网站色视频大全免费| 熟女少妇亚洲综合色aaa.| 国产亚洲一区二区精品| 女性生殖器流出的白浆| 18禁裸乳无遮挡动漫免费视频| 在线 av 中文字幕| 伦精品一区二区三区| 26uuu在线亚洲综合色| 超碰成人久久| 日韩在线高清观看一区二区三区| 男人操女人黄网站| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 精品人妻偷拍中文字幕| 亚洲,一卡二卡三卡| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| 一二三四中文在线观看免费高清| 新久久久久国产一级毛片| 午夜福利网站1000一区二区三区| 91久久精品国产一区二区三区| 成人二区视频| 99精国产麻豆久久婷婷| 免费av中文字幕在线| 在线亚洲精品国产二区图片欧美| 久久久久国产网址| 日韩三级伦理在线观看| 精品少妇一区二区三区视频日本电影 | 国产精品 国内视频| 久久ye,这里只有精品| 免费看av在线观看网站| 亚洲av电影在线进入| 一边亲一边摸免费视频| 飞空精品影院首页| 免费女性裸体啪啪无遮挡网站| 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| 欧美日韩综合久久久久久| 亚洲综合色网址| 美女视频免费永久观看网站| 人体艺术视频欧美日本| 黑人猛操日本美女一级片| 熟妇人妻不卡中文字幕| 大话2 男鬼变身卡| 菩萨蛮人人尽说江南好唐韦庄| 日韩免费高清中文字幕av| 青春草视频在线免费观看| 天堂中文最新版在线下载| 搡老乐熟女国产| 欧美 日韩 精品 国产| 亚洲一码二码三码区别大吗| 日本爱情动作片www.在线观看| av在线老鸭窝| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂| 一级爰片在线观看| 69精品国产乱码久久久| 免费在线观看视频国产中文字幕亚洲 | 免费黄频网站在线观看国产| 亚洲av中文av极速乱| 精品国产国语对白av| 亚洲精华国产精华液的使用体验| 国产欧美日韩综合在线一区二区| 人妻少妇偷人精品九色| 亚洲中文av在线| 高清av免费在线| 亚洲国产欧美日韩在线播放| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 青春草视频在线免费观看| 久久99蜜桃精品久久| 国产片特级美女逼逼视频| 欧美激情极品国产一区二区三区| 两性夫妻黄色片| 免费在线观看视频国产中文字幕亚洲 | 亚洲成人一二三区av| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| 精品视频人人做人人爽| 视频区图区小说| 最近2019中文字幕mv第一页| 夫妻性生交免费视频一级片| 国产精品 欧美亚洲| 九九爱精品视频在线观看| 天天躁夜夜躁狠狠久久av| 最近中文字幕高清免费大全6| 日本欧美视频一区| 少妇被粗大猛烈的视频| 国产淫语在线视频| kizo精华| 可以免费在线观看a视频的电影网站 | 国精品久久久久久国模美| 成年女人在线观看亚洲视频| 久久这里只有精品19| 亚洲三区欧美一区| 久久女婷五月综合色啪小说| 日韩av免费高清视频| 女的被弄到高潮叫床怎么办| 在线天堂中文资源库| 亚洲国产欧美在线一区| 免费在线观看视频国产中文字幕亚洲 | 欧美黄色片欧美黄色片| 日韩三级伦理在线观看| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| 亚洲国产色片| 日本黄色日本黄色录像| 久久ye,这里只有精品| 精品99又大又爽又粗少妇毛片| 波多野结衣一区麻豆| 亚洲三区欧美一区| 成人毛片a级毛片在线播放| 色播在线永久视频| 捣出白浆h1v1| 久久ye,这里只有精品| 亚洲第一av免费看| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 国产免费福利视频在线观看| av在线播放精品| 亚洲视频免费观看视频| 少妇的丰满在线观看| 中文字幕亚洲精品专区| 天天躁夜夜躁狠狠久久av| 精品国产国语对白av| 亚洲,欧美,日韩| 欧美国产精品一级二级三级| 老女人水多毛片| 欧美日韩一级在线毛片| 最近的中文字幕免费完整| 香蕉丝袜av| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 亚洲三区欧美一区| 国产女主播在线喷水免费视频网站| 看免费av毛片| 亚洲欧美成人精品一区二区| 日本vs欧美在线观看视频| 久热久热在线精品观看| 男女下面插进去视频免费观看| av国产久精品久网站免费入址| 女人久久www免费人成看片| 亚洲精品久久午夜乱码| 欧美变态另类bdsm刘玥| 日韩三级伦理在线观看| 99久久人妻综合| 久久精品久久久久久噜噜老黄| 丝袜在线中文字幕| 香蕉国产在线看| 999精品在线视频| 久久99蜜桃精品久久| 亚洲欧美中文字幕日韩二区| 午夜福利在线免费观看网站| 久久午夜综合久久蜜桃| 考比视频在线观看| 熟女少妇亚洲综合色aaa.| 丝袜喷水一区| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区蜜桃| 超色免费av| 黄色视频在线播放观看不卡| 熟女电影av网| 最近手机中文字幕大全| 五月开心婷婷网| 国产免费视频播放在线视频| 在线精品无人区一区二区三| 伦理电影免费视频| 午夜福利乱码中文字幕| 各种免费的搞黄视频| 99久久人妻综合| 日韩不卡一区二区三区视频在线| 亚洲国产成人一精品久久久| 亚洲天堂av无毛| 国产一级毛片在线| 久久99精品国语久久久| 亚洲三区欧美一区| 国产精品成人在线| 蜜桃国产av成人99| 看非洲黑人一级黄片| 久久久久久人人人人人| 视频区图区小说| 久久久久久久大尺度免费视频| 日韩中字成人| 欧美 日韩 精品 国产| 日韩伦理黄色片| 亚洲国产精品国产精品| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 一级片'在线观看视频| 两个人免费观看高清视频| av一本久久久久| 亚洲,欧美精品.| 亚洲精品久久午夜乱码| 性高湖久久久久久久久免费观看| 亚洲成人手机| 香蕉丝袜av| 中文乱码字字幕精品一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲欧美精品综合一区二区三区 | 欧美中文综合在线视频| 考比视频在线观看| 久久人人爽av亚洲精品天堂| 黄色配什么色好看| 好男人视频免费观看在线| 国产成人精品久久久久久| 黄色视频在线播放观看不卡| 18在线观看网站| 中文字幕亚洲精品专区| 性少妇av在线| 天天影视国产精品| www.熟女人妻精品国产| 热99久久久久精品小说推荐| 黄色怎么调成土黄色| 黄色配什么色好看| 国产免费一区二区三区四区乱码| 大话2 男鬼变身卡| 97精品久久久久久久久久精品| 亚洲精品久久久久久婷婷小说| 老汉色∧v一级毛片| 亚洲综合色惰| 美女午夜性视频免费| 久久久久人妻精品一区果冻| 国产成人一区二区在线| 精品少妇内射三级| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久精品电影小说| 婷婷色麻豆天堂久久| 国产精品蜜桃在线观看| 欧美bdsm另类| 波多野结衣av一区二区av| 欧美中文综合在线视频| 人人妻人人爽人人添夜夜欢视频| 亚洲成人手机| 永久网站在线| 欧美成人午夜精品| 国产欧美日韩综合在线一区二区| 国产亚洲av片在线观看秒播厂| 日本猛色少妇xxxxx猛交久久| 天天影视国产精品| 两个人看的免费小视频| 色94色欧美一区二区| 日本欧美国产在线视频| av在线观看视频网站免费| 少妇熟女欧美另类| 午夜av观看不卡| 性色av一级| 欧美+日韩+精品| 男女国产视频网站| 久久国产精品男人的天堂亚洲|