• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nd3+/Yb3+離子共摻的氧化鈦基上轉(zhuǎn)換發(fā)光玻璃的熱學(xué)和力學(xué)性能

    2014-06-23 06:50:28于惠梅潘秀紅張明輝余建定
    物理化學(xué)學(xué)報 2014年2期
    關(guān)鍵詞:氧化鈦張建軍研究所

    于惠梅 潘秀紅 張明輝 劉 巖 余建定

    (1中國科學(xué)院上海硅酸鹽研究所,上海200050;2美國賓州州立大學(xué)能源研究所,賓夕法尼亞州16802,美國)

    1 Introduction

    Upconversion from infrared to visible light in rare earth(RE)ions doped glasses attracted much attention for their potential use in infrared converters and upconversion short wavelength solid-state lasers.1,2The trivalent neodymium ion(Nd3+)was one of the most important active ions in the RE family due to its favorable energy level structure.Spectroscopic results demonstrated that the Nd3+ions were good candidates for upconversion luminescence.3,4Among the glassy materials,the fluoride glasses were notable due to its lower phonon energy,which can reduce the nonradiative loss caused by the multiphonon relaxation and thus realize strong upconversion luminescence.5,6Unfortunately,the fluoride glasses usually performed low mechanical property and thermal stability,and therefore were limited for practical utility.Oxide glasses,on the other hand,might be much better for practical applications because of their high thermal stability,chemical durability and mechanical property.

    Titanium dioxide can be a good candidate matrix for upconversion generation because it has lower cutoff phonons of energy(600-700 cm-1).7,8However,it was difficult to form titanate bulk glass by traditional methods.Aerodynamic levitation is one of the containerless processing methods which can avoid melt contamination from containers and preclude the source for heterogeneous nucleation,resulting in deep undercooling for glass forming in the melt.It is a useful way to fabricate homogenous,high-purity and compact glasses.Therefore,in our previous work,this new containerless method by aerodynamic levitation was successfully used to prepare the Nd3+/Yb3+codoped TiO2-La2O3-ZrO2(TLZ)glasses.9Intense infrared-to-visible upconversion luminescence was observed when Nd3+and Yb3+ions were incorporated upon excitation of 980 nm laser.In this work,in order to estimate the overall performance of the titanate glass for practical application,thermal and mechanical properties of TLZ glasses incorporated with Nd3+and Yb3+ions are investigated by thermal differential analysis(DTA)and micro-hardness test.Besides,the upconversion luminescence property upon 808 nm laser excitation in the rare earth doped TLZ glasses has also been demonstrated.

    2 Experimental

    2.1 Preparation of Nd3+/Yb3+co-doped TLZ glasses

    All the starting materials were of analytical grade and the host composition(molar fraction(x),%)of the titanate glass was 78TiO2-18La2O3-4ZrO2.Neodymium and ytterbium ions in the form of Nd2O3and Yb2O3were added.The concentration of Yb3+ion was fixed at 0.2%(molar fraction)while Nd3+concentration varied as 0.6%,1.2%,1.8%,and 2.4%(x),respectively.Raw materials with stoichiometric compositions were mixed and compressed into small rods.The rods were levitated in an aerodynamic levitation furnace and melted by a CO2laser with temperature of 1700°C.A pyrometer was utilized to measure the temperature of the sample.A high resolution charge-coupled device video camera equipped with telephoto objective lens was employed to obtain a magnified view of the sample.Then the CO2laser power was shut off and spherical sample with a diameter of~3 mm was obtained.The as-prepared spherical sample was polished to be 1.5 mm thick wafer for further measurements.Fig.1 shows the photo of Nd3+/Yb3+co-doped TLZ glass wafers with both sides well polished.Obviously,all the investigated TLZ samples performed high transparency in the region of visible light.

    Fig.1 Photo of Nd3+/Yb3+co-doped TLZ glass wafers with both sides well polished

    2.2 Characterization

    Thermal differential analysis was carried out to characterize the thermal stability10-15by Netzsch STA 449C thermoanalyzer in the experiments.The amorphous structure of TLZ glasses prepared by levitation method has been identified by Bruker D8 Advance X-ray diffractometer(XRD).9,16The mechanical property was estimated by Vickers hardness test which was performed on an Akashi(AVK-A)hardness tester with an applied load of 1 kg for 10 s.Upconversion luminescence spectra were recorded by a spectrofluorometer(Fluorolog-3,Jobin Yvon,France)equipped with Hamamatsu R928 photomultiplier tube.An 808 nm continuous wave diode laser was used as the excitation source.

    3 Results and discussion

    3.1 Thermal stability

    DTA was used to investigate the thermal stability of Nd3+/Yb3+co-doped TLZ glasses.Fig.2 shows the DTA curves at a heating rate(β)of 10 K · min-1.All the curves had similarshapes.The glass transition temperature(Tg),crystallization onset temperature(Tc),and crystallization peak temperature(Tp),for the TLZ glasses can be obtained from Fig.2.

    Fig.2 DTAcurves of Nd3+/Yb3+co-doped TLZ glass samples with a heating rate(β)of 10 K·min-1

    It was obvious that the variation of Nd3+content had no significant effect on the values ofTg,Tc,andTpin the investigated scope.Tgwas estimated as high as~1093 K,much higher than that of fluoride or oxy-fluoride glasses which was usually lower than 700 K.13,14Therefore,the upconversion devices based on this glass might be used more widely for technological application.On the other hand,the values ofTcandTpwere 1168 and 1177 K,respectively.Similarly,these two values were also higher than those of fluoride or oxy-fluoride glasses.These results hinted a good thermal stability against high temperature.

    The value of ΔT=Tc-Tg,which is often an important parameter to characterize the glass forming ability has also been calculated.Fig.3 shows the DTA curves of Nd3+/Yb3+co-doped TLZ glass samples at different heating rates.The obtained results are shown in Table 1.The calculated ΔTof present TLZ glasses was much lower than those of most traditional oxide glasses such as silicate or borate glass systems14,15and even lower than some heavy metal oxide glasses.16,17It indicated a comparatively poor glass forming ability for Nd3+/Yb3+co-doped TLZ glass.This makes it difficult to obtain bulk titanate glass by traditional melt-quenching method.Therefore,levitation method has to be introduced to prepare bulk titanate glass in present experiments,because overheated or undercooled melt was achieved more easily by this technique.Non-isothermal kinetic analyses were used in our experiments.18The heating rates were 5,10,15,and 20 K·min-1.The commonly used kinetic equation of solid thermal decomposition under non-isothermal conditions was given as follows:

    Fig.3 DTAcurves of Nd3+/Yb3+co-doped TLZ glass samples at different heating rates

    Table 1 Values of Tg,Tc,and Tpof the Nd3+/Yb3+co-doped TLZ glasses at different heating rates

    Whereαwas the extent of reaction,k(T)=Ae-Ea/RT,Eawas the activation energy,Awas the pre-exponential factor.f(α)was the differential conversion function.Both Kissinger and Friedman methods can calculate the activation energy and lgAof the oxidation process under non-isothermal conditions.Fig.4 shows the average activation energy and lgAobtained by the Kissinger method for the crystallization of Nd3+/Yb3+co-doped TLZ glass.The Kissinger equation19was given as follows:

    The average activation energy andAwere 325 kJ·mol-1and 6.02×1013s-1,respectively.The dependence ofEaand lgAobtained by Friedman analysis for the crystallization of Nd3+/Yb3+co-doped TLZ glass was shown in Fig.5.It can be concluded that large activation energy was required at the beginning of the reaction.As the extent of conversion enhancing,the precipitation was increasingly easy in the Nd3+/Yb3+co-doped TLZ glass.

    3.2 Mechanical property

    Vickers hardness was experimentally measured to evaluate the mechanical property of the Nd3+/Yb3+co-doped TLZ glasses.The Vickers hardness was determined using a micro-hard-ness tester equipped with a Vickers indenter.The indentation was examined by an optical microscopy.Fig.6 shows two typical optical micrographs of Vickers indentations for Nd3+/Yb3+co-doped TLZ glasses.Significant micro-cracks emanating from the corners of the indentations can be observed in both images.In Fig.6(a),no shear bands were observed,while in Fig.6(b)semi-circular shear band mark was visible on the one side of the indentation impression,suggesting an asymmetric deformation of the surface.It should be mentioned that,seldom shear band can be observed in TLZ glass with low Nd3+concentration.Nevertheless,they were observed frequently in TLZ glass with high Nd3+concentration.

    Fig.4 Average activation energy and lgAobtained by the Kissinger method for the crystallization of Nd3+/Yb3+co-doped TLZ glass

    Fig.5 Dependence of Eaand lgAobtained by Friedman analysis for the crystallization of Nd3+/Yb3+co-doped TLZ glass

    Fig.6 Two typical optical micrographs of Vickers indentations for Nd3+/Yb3+co-doped TLZ glasses

    Quantitative value of Vickers hardness was averaged from three data points by the following standard formula:20Hv=1.854P/d2.Here,Hvwas the Vickers hardness,Pwas the applied load,anddwas the mean length of the two diagonal lines of the indentation.The measured values of Vickers hardness were listed in Table 2.No significant correlation seemed to exist between Nd3+concentration and the Vickers hardness since the variation of Nd3+concentration was very weak.However,theHvvalues were higher than 7.50 GPa for all the investigated TLZ glasses.This value was not only much higher than that of the ordinary fluoride glass(~2.0 GPa)21but also higher than that of some traditional oxide glass such as silicate or borate glass system.22Another important parameter characterizing the mechanical property of a material is fracture toughness,which describes the resistance of the material to crack propagation.The fracture toughnessKcfor present Nd3+/Yb3+co-doped TLZ glasses was determined by micro-indentation experiments with Vickers indenter.TheKcvalue was calculated using the following equation:23Kc=P(πb)-3/2(tgγ)-1,wherebwas the crack length,andγ=68°.The calculated results were also illustrated in Table 2,where one can see that theKcvalues of the TLZ glasses varyfrom 1.20 to 1.39 MPa·m1/2.Similarly,theKcvalues for the investigated rare earth doped TLZ glasses were higher than those of ordinary rare earth doped fluoride glasses(~0.60 MPa·m1/2).21The high Vickers hardness as well as high fracture toughness indicated a potential application for upconversion devices made of the Nd3+/Yb3+co-doped TLZ glasses.

    Table 2 Variation of Vickers hardness(Hv)and fracture toughness(Kc)with Nd3+concentrations(molar fraction)in the Nd3+/Yb3+co-doped TLZ glasses

    Fig.7 Upconversion emission spectrum of 1.2%(x)Nd3+/Yb3+co-doped TLZ glasses

    3.3 Upconversion luminescence upon 808 nm laser excitation

    The upconversion emission spectra of Nd3+/Yb3+co-doped TLZ glasses have been recorded at 808 nm excitations.All the spectra showed similar features except for an increase in intensities of the upconversion bands.Fig.7 shows the typical upconversion spectrum of Nd3+/Yb3+co-doped TLZ glass(for the sample of 1.2%(x)Nd3+ions).Three intense emission bands were observed centered at 545,605,and 669 nm,respectively,which were attributed to the Nd3+:4G7/2→4I9/2,2G7/2→4I11/2,and4G7/2→4I13/2transitions,respectively.It was clear that the emissions at 605 and 669 nm had significant shoulder peaks at 615 and 655 nm,respectively.They were possibly due to the energy level splitting of2G7/2and4G7/2levels.The peak intensity of the green emission at 545 nm was almost the same as that of the red emission at 669 nm.However,the band intensity of the orange emission at 605 nm was only a half or so,which was different from the result for 980 nm excitation where the orange emission intensity was much weaker than the green and red emission intensities.9This indicated that more Nd3+ions were populated to2G7/2level by 808 nm laser.

    4 Conclusions

    Nd3+/Yb3+co-doped TiO2-La2O3-ZrO2glasses were prepared by the levitation method.The glasses performed good thermal stability and high mechanical property.The average activation energyEaand the pre-exponential factorAobtained by means of Kissinger were 325 kJ·mol-1and 6.02×1013s-1,respectively.We also obtained the dependence ofEaand lgAon the extent of conversionacalculated by the Friedman method.Vickers hardness and fracture toughness were found higher than 7.50 GPa and 1.20 MPa·m1/2,respectively,indicating high mechanical property.Under 808 nm laser excitation,intensegreen(545 nm),orange(605 nm),and red(669 nm)upconversion emissions were observed,which were attributed to the Nd3+:4G7/2→4I9/2,2G7/2→4I11/2,and4G7/2→4I13/2transitions,respectively.

    (1) Giri,N.K.;Singh,A.K.;Rai,S.B.J.Appl.Phys.2007,101,033102.doi:10.1063/1.2432305

    (2) Silva,D.M.;Kassab,L.R.P.;Luthi,S.R.;Araujo,C.B.;Gomes,A.S.L.;Bell,M.J.V.Appl.Phys.Lett.2007,90,081913.doi:10.1063/1.2679798

    (3) Fernandez,J.;Balda,R.;Mendioroz,A.;Sanz,M.;Adam,J.L.J.Non-Cryst.Solids2001,287,437.doi:10.1016/S0022-3093(01)00597-X

    (4)Som,T.;Karmakar,B.J.Alloy.Compd.2009,476,383.doi:10.1016/j.jallcom.2008.09.006

    (5) Feng,L.;Lai,B.;Wang,J.;Du,G.;Su,Q.J.Lumin.2010,130,2418.doi:10.1016/j.jlumin.2010.08.005

    (6) Karmakar,B.J.Solid State Chem.2005,178,2663.doi:10.1016/j.jssc.2005.06.007

    (7) Porto,S.P.S.;Fleury,P.A.;Damen,T.C.Phys.Rev.1967,154,522.doi:10.1103/PhysRev.154.522

    (8) Mazza,T.;Barborini,E.;Piseri,P.;Milani,P.;Cattaneo,D.;Bassi,A.L.;Bottani,C.E.;Ducati,C.Phys.Rev.B2007,75,045416.doi:10.1103/PhysRevB.75.045416

    (9)Pan,X.H.;Yu,J.;Liu,Y.;Zhang,M.H.J.Mater.Res.2011,26,2907.doi:10.1557/jmr.2011.365

    (10) Plsko,A.;Liska,M.;Pagacova,J.J.Therm.Anal.Calorim.2012,108,505.doi:10.1007/s10973-011-1967-x

    (11) Jaqueline,L.M.;Antonio,R.S.;Aurelio,H.R.;Beatriz,Z.;Carlos,G.Y.;Roberto,M.S.Thermochim.Acta2011,516,35.doi:10.1016/j.tca.2011.01.008

    (12)Yu,H.M.;Qi,L.J.;Zhang,Q.H.;Jiang,D.Y.;Lu,C.L.J.Therm.Anal.Calorim.2011,106,47.doi:10.1007/s10973-010-1280-0

    (13) Zhang,K.;Liu,Q.;Su,X.B.;Zhong,H.M.;Shi,Y.;Pan,Y.B.Acta Phys.-Chim.Sin.2011,27(8),2001.[張 孔,劉 茜,蘇曉彬,鐘紅梅,石 云,潘裕柏.物理化學(xué)學(xué)報,2011,27(8),2001.]doi:10.3866/PKU.WHXB20110732

    (14)Yu,D.W.;Zhu,M.Q.;Utigard,T.A.;Barati,M.Thermochim.Acta2014,575,1.doi:10.1016/j.tca.2013.10.015

    (15)Abdel-Rehim,A.M.Thermochim.Acta2012,538,29.doi:10.1016/j.tca.2012.03.006

    (16)Pan,X.H.;Yu,J.;Liu,Y.;Yoda,S.;Yu,H.M.;Zhang,M.H.;Ai,F.;Jin,F.;Jin,W.Q.J.Alloy.Compd.2011,509,7504.doi:10.1016/j.jallcom.2011.04.104

    (17) Babu,P.;Seo,H.J.;Kesavulu,C.R.;Jang,K.H.;Jayasankar,C.K.J.Lumin.2009,129,444.doi:10.1016/j.jlumin.2008.11.014

    (18) Koepke,C.;Piatkowski,D.;Wisniewski,K.;Naftaly,M.J.Non-Cryst.Solids2010,356,435.doi:10.1016/j.jnoncrysol.2009.12.012

    (19)Abdel-Hameed,S.A.M.;El-kheshen,A.A.Ceram.Int.2003,29,265.doi:10.1016/S0272-8842(02)00114-1

    (20)Xu,T.;Zhang,X.;Dai,S.;Nie,Q.;Shen,X.;Zhang,X.Physica B2007,389,242.doi:10.1016/j.physb.2006.06.156

    (21) Simon,S.;Simon,V.Mater.Lett.2004,58,3778.doi:10.1016/j.matlet.2004.07.042

    (22) Opfermann,J.J.Therm.Anal.Calorim.2000,60,641.doi:10.1023/A:1010167626551

    (23) Hu,R.Z.;Gao,S.L.;Zhao,F.Q.;Shi,Q.Z.;Zhang,T.L.;Zhang,J.J.Thermal Analysis Kinetics;Sciences Press:Beijing,2008;pp 79-80.[胡榮祖,高勝利,趙鳳起,史啟禎,張同來,張建軍.熱分析動力學(xué).北京:科學(xué)出版社,2008:79-80.]

    (24) Lin,M.T.;Jiang,D.Y.;Li,L.;Lu,Z.L.;Lai,T.R.;Shi,J.L.Mater.Sci.Eng.A2003,351,9.doi:10.1016/S0921-5093(01)01772-5

    (25) Delben,A.;Messaddeq,Y.;Caridade,M.D.;Aegerter,M.A.;Eiras,J.A.J.Non-Cryst.Solids1993,161,165.doi:10.1016/0022-3093(93)90691-P

    (26) Sampaio,J.A.;Baesso,M.L.;Gama,S.;Coelho,A.A.;Eiras,J.A.;Santos,I.A.J.Non-Cryst.Solids2002,304,293.doi:10.1016/S0022-3093(02)01037-2

    (27) Evans,A.G.;Charles,E.A.J.Am.Ceram.Soc.1976,59,371.doi:10.1111/jace.1976.59.issue-7-8

    猜你喜歡
    氧化鈦張建軍研究所
    基于JAK/STAT信號通路研究納米氧化鈦致卵巢損傷的分子機(jī)制*
    保健文匯(2022年4期)2022-06-01 10:06:50
    睡眠研究所·Arch
    Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity*
    頸椎病患者使用X線平片和CT影像診斷的臨床準(zhǔn)確率比照觀察
    睡眠研究所民宿
    未來研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    氧化鈦對陶瓷結(jié)合劑金剛石磨具性能及結(jié)構(gòu)的影響
    A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS?
    巧用反例在概率論教學(xué)中的作用
    鈦表面生物活性榍石/氧化鈦復(fù)合涂層的結(jié)構(gòu)和磷灰石形成機(jī)理
    亚洲av电影在线观看一区二区三区 | 国产av在哪里看| 大香蕉久久网| 18+在线观看网站| 一级毛片aaaaaa免费看小| 美女被艹到高潮喷水动态| 乱码一卡2卡4卡精品| av线在线观看网站| 99热6这里只有精品| 免费黄色在线免费观看| 国产淫片久久久久久久久| 麻豆成人午夜福利视频| 一本久久精品| 一二三四中文在线观看免费高清| 一个人免费在线观看电影| 在线观看美女被高潮喷水网站| 免费看美女性在线毛片视频| av在线天堂中文字幕| 亚洲av福利一区| 在线免费观看的www视频| 久久精品国产自在天天线| 又大又黄又爽视频免费| 久久99蜜桃精品久久| 一区二区三区乱码不卡18| 啦啦啦中文免费视频观看日本| 91精品伊人久久大香线蕉| 欧美zozozo另类| 国产精品久久久久久av不卡| 日韩强制内射视频| 久久久久久久午夜电影| 精品久久久久久久久av| 九九久久精品国产亚洲av麻豆| 久久国产乱子免费精品| 2022亚洲国产成人精品| 2021天堂中文幕一二区在线观| 神马国产精品三级电影在线观看| 男女啪啪激烈高潮av片| 亚洲精品久久久久久婷婷小说| 亚洲成人中文字幕在线播放| 亚洲av成人精品一二三区| 亚洲美女视频黄频| 亚洲精品乱久久久久久| 国产一区亚洲一区在线观看| 国产国拍精品亚洲av在线观看| 亚洲欧洲日产国产| 久久人人爽人人爽人人片va| 色哟哟·www| 免费看美女性在线毛片视频| 午夜福利视频精品| 97热精品久久久久久| 一本久久精品| 欧美xxxx黑人xx丫x性爽| 精品欧美国产一区二区三| 最近的中文字幕免费完整| 婷婷色av中文字幕| 精品99又大又爽又粗少妇毛片| 最近最新中文字幕大全电影3| 免费少妇av软件| 成人午夜精彩视频在线观看| 高清视频免费观看一区二区 | 亚洲国产av新网站| 亚洲精品乱久久久久久| or卡值多少钱| 日本免费a在线| 久久韩国三级中文字幕| 中文乱码字字幕精品一区二区三区 | 久久久久精品性色| 好男人在线观看高清免费视频| 青春草国产在线视频| 蜜桃久久精品国产亚洲av| 精品国内亚洲2022精品成人| 91精品一卡2卡3卡4卡| 精品少妇黑人巨大在线播放| 免费看光身美女| 欧美区成人在线视频| 在线观看av片永久免费下载| 亚洲熟女精品中文字幕| 亚洲精品色激情综合| av在线天堂中文字幕| 一区二区三区四区激情视频| 大片免费播放器 马上看| 久久午夜福利片| 久久久久网色| 国产美女午夜福利| 如何舔出高潮| 乱码一卡2卡4卡精品| 联通29元200g的流量卡| 国产伦理片在线播放av一区| 成年版毛片免费区| 22中文网久久字幕| 亚洲国产精品sss在线观看| 免费电影在线观看免费观看| 丰满乱子伦码专区| 视频中文字幕在线观看| 国产免费视频播放在线视频 | 日韩一区二区视频免费看| 久久久久久久久久成人| av福利片在线观看| 亚洲av国产av综合av卡| 男女下面进入的视频免费午夜| 日韩三级伦理在线观看| 国产高清国产精品国产三级 | 全区人妻精品视频| 亚洲精品亚洲一区二区| 国内揄拍国产精品人妻在线| 有码 亚洲区| 天美传媒精品一区二区| 毛片女人毛片| 国产片特级美女逼逼视频| 成年免费大片在线观看| 亚洲av在线观看美女高潮| 中文字幕久久专区| 欧美日本视频| 国产高清不卡午夜福利| 久久精品人妻少妇| 亚洲av男天堂| 嫩草影院精品99| 久久午夜福利片| 国产中年淑女户外野战色| 直男gayav资源| 国产在线男女| 一个人看的www免费观看视频| 91久久精品电影网| 黄片无遮挡物在线观看| 亚洲18禁久久av| 晚上一个人看的免费电影| 在线观看人妻少妇| 久久亚洲国产成人精品v| 亚洲欧美一区二区三区黑人 | 婷婷色麻豆天堂久久| 99热网站在线观看| 少妇裸体淫交视频免费看高清| 好男人在线观看高清免费视频| 免费黄网站久久成人精品| 免费av观看视频| 亚洲欧美精品自产自拍| eeuss影院久久| 舔av片在线| 亚洲成人久久爱视频| 免费少妇av软件| 国产av码专区亚洲av| 免费看a级黄色片| 欧美另类一区| 五月天丁香电影| 久久久久久久久中文| 中文欧美无线码| 大片免费播放器 马上看| 黄色欧美视频在线观看| 五月伊人婷婷丁香| 亚洲国产最新在线播放| 亚洲无线观看免费| 亚洲一级一片aⅴ在线观看| 国产精品美女特级片免费视频播放器| 伦理电影大哥的女人| 国产精品国产三级国产av玫瑰| 简卡轻食公司| 国产高清不卡午夜福利| 亚洲最大成人av| 亚洲精品456在线播放app| 99久久九九国产精品国产免费| 七月丁香在线播放| 青春草国产在线视频| 中国美白少妇内射xxxbb| 热99在线观看视频| 亚洲精品第二区| 搞女人的毛片| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| av天堂中文字幕网| 舔av片在线| 直男gayav资源| 在线观看av片永久免费下载| 六月丁香七月| 免费人成在线观看视频色| 免费看a级黄色片| 国产精品久久久久久av不卡| 久久久久久久久中文| 日韩精品有码人妻一区| 麻豆乱淫一区二区| 大香蕉久久网| 成人特级av手机在线观看| 国产精品久久久久久久久免| 夜夜看夜夜爽夜夜摸| 亚洲最大成人av| 国产久久久一区二区三区| 国产精品久久久久久久电影| 91在线精品国自产拍蜜月| 天堂影院成人在线观看| 国产爱豆传媒在线观看| 久久午夜福利片| 80岁老熟妇乱子伦牲交| 久久久成人免费电影| 成人性生交大片免费视频hd| 久久久久久久久久人人人人人人| 国产精品日韩av在线免费观看| 蜜桃亚洲精品一区二区三区| 一区二区三区高清视频在线| 午夜亚洲福利在线播放| 日韩电影二区| 美女国产视频在线观看| 青春草国产在线视频| 精品国产一区二区三区久久久樱花 | 国产亚洲av片在线观看秒播厂 | 一级毛片我不卡| 午夜免费观看性视频| 深夜a级毛片| 久久久久九九精品影院| 看免费成人av毛片| 亚洲最大成人av| 亚洲天堂国产精品一区在线| 欧美xxⅹ黑人| 观看美女的网站| 国产精品麻豆人妻色哟哟久久 | 久久草成人影院| 九九在线视频观看精品| 搡老妇女老女人老熟妇| 亚洲av中文字字幕乱码综合| 日韩精品有码人妻一区| 欧美xxxx性猛交bbbb| 国产精品1区2区在线观看.| a级毛片免费高清观看在线播放| 日本三级黄在线观看| 日韩精品青青久久久久久| av在线播放精品| 免费黄频网站在线观看国产| eeuss影院久久| 乱系列少妇在线播放| 91狼人影院| 又大又黄又爽视频免费| 人妻系列 视频| 最近中文字幕2019免费版| 国产视频首页在线观看| 中文字幕久久专区| 亚洲国产精品专区欧美| 99热6这里只有精品| 波野结衣二区三区在线| 天美传媒精品一区二区| 少妇的逼水好多| 精品久久久久久电影网| 久久草成人影院| 国产精品综合久久久久久久免费| 18禁在线无遮挡免费观看视频| 免费看不卡的av| 3wmmmm亚洲av在线观看| 青春草国产在线视频| 高清午夜精品一区二区三区| 一个人免费在线观看电影| 日韩电影二区| 日韩三级伦理在线观看| 日韩欧美国产在线观看| 国产不卡一卡二| 亚洲成人久久爱视频| 最近中文字幕2019免费版| 国产综合精华液| 大又大粗又爽又黄少妇毛片口| 精华霜和精华液先用哪个| 亚洲成人久久爱视频| 精品国产一区二区三区久久久樱花 | 精品酒店卫生间| 一级a做视频免费观看| 亚洲图色成人| 精华霜和精华液先用哪个| 国产精品久久久久久精品电影小说 | 亚洲欧美清纯卡通| 久久鲁丝午夜福利片| 亚洲内射少妇av| 高清在线视频一区二区三区| 少妇高潮的动态图| 国产成人免费观看mmmm| 久久草成人影院| 久久久亚洲精品成人影院| 一区二区三区乱码不卡18| 伊人久久精品亚洲午夜| 青春草亚洲视频在线观看| 黄色欧美视频在线观看| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 亚洲精品亚洲一区二区| 国产片特级美女逼逼视频| 少妇熟女aⅴ在线视频| 国产精品一及| 亚洲av电影不卡..在线观看| 国产精品无大码| 国产人妻一区二区三区在| 色网站视频免费| 啦啦啦中文免费视频观看日本| 国产伦精品一区二区三区四那| 最近最新中文字幕免费大全7| 99久国产av精品| 亚洲精品乱码久久久久久按摩| 精品久久久精品久久久| 国产白丝娇喘喷水9色精品| 色综合站精品国产| 午夜免费观看性视频| 丰满人妻一区二区三区视频av| 午夜精品国产一区二区电影 | 婷婷六月久久综合丁香| 特大巨黑吊av在线直播| 亚洲自拍偷在线| 国产精品一区www在线观看| 国产精品久久久久久久电影| 插阴视频在线观看视频| 国产av码专区亚洲av| 久久韩国三级中文字幕| 女人久久www免费人成看片| 国产综合精华液| 人人妻人人看人人澡| 一级片'在线观看视频| 伊人久久国产一区二区| 国产精品久久久久久精品电影| 如何舔出高潮| 亚洲成人精品中文字幕电影| 少妇熟女欧美另类| 久久久午夜欧美精品| 中文乱码字字幕精品一区二区三区 | 综合色丁香网| 特级一级黄色大片| 美女xxoo啪啪120秒动态图| 啦啦啦韩国在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利高清视频| 精品一区二区三区视频在线| 欧美精品一区二区大全| 久99久视频精品免费| 亚洲电影在线观看av| 欧美xxxx黑人xx丫x性爽| 99久久九九国产精品国产免费| 天美传媒精品一区二区| 特级一级黄色大片| 久久99热这里只频精品6学生| kizo精华| 91久久精品国产一区二区三区| av又黄又爽大尺度在线免费看| 3wmmmm亚洲av在线观看| 欧美日韩亚洲高清精品| 91av网一区二区| 天堂俺去俺来也www色官网 | 听说在线观看完整版免费高清| 亚洲av中文字字幕乱码综合| 日韩强制内射视频| 久久久久免费精品人妻一区二区| 一级二级三级毛片免费看| 亚洲av中文字字幕乱码综合| 2018国产大陆天天弄谢| 免费人成在线观看视频色| 国产男人的电影天堂91| 国产免费又黄又爽又色| 国产av不卡久久| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 久久久a久久爽久久v久久| 七月丁香在线播放| videos熟女内射| 国产精品av视频在线免费观看| 99热这里只有精品一区| 99久久精品热视频| 老女人水多毛片| 一级毛片 在线播放| 久久精品国产亚洲av天美| 精华霜和精华液先用哪个| 极品教师在线视频| 国产不卡一卡二| 中文字幕制服av| 97人妻精品一区二区三区麻豆| 国产一级毛片在线| 看非洲黑人一级黄片| 色视频www国产| 久久99精品国语久久久| 久久草成人影院| av免费观看日本| 特大巨黑吊av在线直播| 草草在线视频免费看| 亚洲精品国产av蜜桃| av国产免费在线观看| 午夜福利成人在线免费观看| 久久久成人免费电影| av黄色大香蕉| 亚洲熟妇中文字幕五十中出| 久久久精品免费免费高清| 欧美另类一区| 国产伦一二天堂av在线观看| 免费观看无遮挡的男女| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 国产老妇女一区| 能在线免费看毛片的网站| 插逼视频在线观看| 大香蕉97超碰在线| 国产乱人视频| 色视频www国产| 美女大奶头视频| 特大巨黑吊av在线直播| 亚洲国产精品专区欧美| 国产免费又黄又爽又色| 精品一区在线观看国产| 亚洲在久久综合| 久久精品久久精品一区二区三区| 国产精品一区二区在线观看99 | 黄色一级大片看看| 亚洲国产最新在线播放| 麻豆久久精品国产亚洲av| 五月天丁香电影| 国产永久视频网站| 97精品久久久久久久久久精品| 国产精品麻豆人妻色哟哟久久 | 国产精品不卡视频一区二区| 观看美女的网站| 久久久久国产网址| 六月丁香七月| 亚洲av日韩在线播放| 国产精品一区www在线观看| 亚洲精品日韩在线中文字幕| 免费看av在线观看网站| 搡女人真爽免费视频火全软件| 99久久人妻综合| 国产 亚洲一区二区三区 | 国产 一区 欧美 日韩| 五月玫瑰六月丁香| 免费看不卡的av| 日本免费a在线| 黄色一级大片看看| 美女cb高潮喷水在线观看| 国产午夜福利久久久久久| 在线 av 中文字幕| 亚洲真实伦在线观看| 啦啦啦啦在线视频资源| 国产伦精品一区二区三区视频9| 最近最新中文字幕大全电影3| 国产成人精品婷婷| 日韩一区二区视频免费看| 国国产精品蜜臀av免费| 伊人久久精品亚洲午夜| 一级毛片我不卡| 亚洲av日韩在线播放| 久久精品夜色国产| 欧美日韩精品成人综合77777| 直男gayav资源| 五月玫瑰六月丁香| 97超碰精品成人国产| 日本av手机在线免费观看| 国产毛片a区久久久久| 精品久久久精品久久久| 精品人妻偷拍中文字幕| 国产精品国产三级国产专区5o| 国产精品无大码| 九九爱精品视频在线观看| 国产成人免费观看mmmm| 国产激情偷乱视频一区二区| 一级毛片电影观看| 搞女人的毛片| 18禁在线无遮挡免费观看视频| 国产一级毛片七仙女欲春2| 国产精品一区www在线观看| 国产黄频视频在线观看| 亚洲国产成人一精品久久久| 日日撸夜夜添| 成人一区二区视频在线观看| 欧美日韩视频高清一区二区三区二| 国产精品不卡视频一区二区| 男女视频在线观看网站免费| 国产免费一级a男人的天堂| 最近2019中文字幕mv第一页| eeuss影院久久| 久久久a久久爽久久v久久| 国产亚洲午夜精品一区二区久久 | 男女下面进入的视频免费午夜| 晚上一个人看的免费电影| 亚洲综合色惰| 小蜜桃在线观看免费完整版高清| 久久6这里有精品| 人人妻人人澡人人爽人人夜夜 | av天堂中文字幕网| 能在线免费观看的黄片| 国产一区二区三区av在线| 九九爱精品视频在线观看| 欧美精品国产亚洲| 亚洲欧美成人精品一区二区| 日日摸夜夜添夜夜爱| 在线天堂最新版资源| 最近2019中文字幕mv第一页| 看非洲黑人一级黄片| 日本一本二区三区精品| 国产高清国产精品国产三级 | 麻豆成人av视频| 91精品伊人久久大香线蕉| 亚洲第一区二区三区不卡| 97精品久久久久久久久久精品| 欧美日韩精品成人综合77777| 免费黄频网站在线观看国产| 舔av片在线| 黄色日韩在线| 能在线免费观看的黄片| 欧美bdsm另类| 欧美97在线视频| 亚洲av一区综合| 大陆偷拍与自拍| 欧美xxxx性猛交bbbb| 少妇丰满av| 免费少妇av软件| 免费大片18禁| 一级毛片黄色毛片免费观看视频| 久久久久性生活片| 国产精品av视频在线免费观看| 日韩电影二区| 国精品久久久久久国模美| 国产一级毛片七仙女欲春2| 乱系列少妇在线播放| 黄片wwwwww| 欧美97在线视频| 18禁在线播放成人免费| 国产高清不卡午夜福利| 成年人午夜在线观看视频 | 欧美成人a在线观看| 中文天堂在线官网| 国产v大片淫在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 麻豆成人av视频| 婷婷色综合www| 国产三级在线视频| 最近最新中文字幕大全电影3| 亚洲最大成人av| 在线a可以看的网站| 亚洲国产精品成人久久小说| 看非洲黑人一级黄片| 大又大粗又爽又黄少妇毛片口| 国产亚洲午夜精品一区二区久久 | 久久久成人免费电影| 中文字幕av在线有码专区| 一二三四中文在线观看免费高清| 91久久精品电影网| 蜜桃久久精品国产亚洲av| 国产精品三级大全| 欧美不卡视频在线免费观看| 国产美女午夜福利| 国内揄拍国产精品人妻在线| a级一级毛片免费在线观看| 午夜福利视频精品| 男人舔奶头视频| 亚洲精品影视一区二区三区av| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| av一本久久久久| 精品酒店卫生间| 亚洲欧美中文字幕日韩二区| eeuss影院久久| 可以在线观看毛片的网站| 日日摸夜夜添夜夜爱| 中文天堂在线官网| 亚洲美女搞黄在线观看| 久久久久久久午夜电影| av天堂中文字幕网| 青春草国产在线视频| 丰满人妻一区二区三区视频av| 麻豆成人av视频| 国产亚洲精品久久久com| 国产黄频视频在线观看| 久久久久久久亚洲中文字幕| 久久精品久久精品一区二区三区| 91久久精品电影网| 日本三级黄在线观看| 91久久精品国产一区二区三区| 色网站视频免费| 国产亚洲一区二区精品| 亚洲精品色激情综合| 亚洲最大成人中文| 麻豆成人午夜福利视频| 国产精品av视频在线免费观看| 欧美高清成人免费视频www| 成人无遮挡网站| 黄片无遮挡物在线观看| 欧美97在线视频| 色播亚洲综合网| 亚洲av国产av综合av卡| 国产 一区 欧美 日韩| 天美传媒精品一区二区| 男的添女的下面高潮视频| 色尼玛亚洲综合影院| 99九九线精品视频在线观看视频| 亚洲欧美精品自产自拍| 精品99又大又爽又粗少妇毛片| 精品一区在线观看国产| 日本免费在线观看一区| 91精品国产九色| 夫妻午夜视频| 国产男女超爽视频在线观看| 亚洲精品成人av观看孕妇| 国产精品国产三级国产av玫瑰| 天天一区二区日本电影三级| 国产精品美女特级片免费视频播放器| 国产成人91sexporn| 搞女人的毛片| 日韩 亚洲 欧美在线| 一级毛片 在线播放| 天天一区二区日本电影三级| 国产麻豆成人av免费视频| 亚洲综合色惰| 国产一区二区三区综合在线观看 | 亚洲最大成人av| 欧美xxⅹ黑人| 欧美成人午夜免费资源| 深爱激情五月婷婷| 日本黄大片高清| 久久精品国产亚洲av天美| 深爱激情五月婷婷| 国产女主播在线喷水免费视频网站 | 不卡视频在线观看欧美| 国内精品宾馆在线| 亚洲av成人精品一二三区| 国产淫语在线视频| 国产精品女同一区二区软件| av天堂中文字幕网| 国产69精品久久久久777片| 亚洲内射少妇av| 成年版毛片免费区| av女优亚洲男人天堂|