• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nd3+/Yb3+離子共摻的氧化鈦基上轉(zhuǎn)換發(fā)光玻璃的熱學(xué)和力學(xué)性能

    2014-06-23 06:50:28于惠梅潘秀紅張明輝余建定
    物理化學(xué)學(xué)報 2014年2期
    關(guān)鍵詞:氧化鈦張建軍研究所

    于惠梅 潘秀紅 張明輝 劉 巖 余建定

    (1中國科學(xué)院上海硅酸鹽研究所,上海200050;2美國賓州州立大學(xué)能源研究所,賓夕法尼亞州16802,美國)

    1 Introduction

    Upconversion from infrared to visible light in rare earth(RE)ions doped glasses attracted much attention for their potential use in infrared converters and upconversion short wavelength solid-state lasers.1,2The trivalent neodymium ion(Nd3+)was one of the most important active ions in the RE family due to its favorable energy level structure.Spectroscopic results demonstrated that the Nd3+ions were good candidates for upconversion luminescence.3,4Among the glassy materials,the fluoride glasses were notable due to its lower phonon energy,which can reduce the nonradiative loss caused by the multiphonon relaxation and thus realize strong upconversion luminescence.5,6Unfortunately,the fluoride glasses usually performed low mechanical property and thermal stability,and therefore were limited for practical utility.Oxide glasses,on the other hand,might be much better for practical applications because of their high thermal stability,chemical durability and mechanical property.

    Titanium dioxide can be a good candidate matrix for upconversion generation because it has lower cutoff phonons of energy(600-700 cm-1).7,8However,it was difficult to form titanate bulk glass by traditional methods.Aerodynamic levitation is one of the containerless processing methods which can avoid melt contamination from containers and preclude the source for heterogeneous nucleation,resulting in deep undercooling for glass forming in the melt.It is a useful way to fabricate homogenous,high-purity and compact glasses.Therefore,in our previous work,this new containerless method by aerodynamic levitation was successfully used to prepare the Nd3+/Yb3+codoped TiO2-La2O3-ZrO2(TLZ)glasses.9Intense infrared-to-visible upconversion luminescence was observed when Nd3+and Yb3+ions were incorporated upon excitation of 980 nm laser.In this work,in order to estimate the overall performance of the titanate glass for practical application,thermal and mechanical properties of TLZ glasses incorporated with Nd3+and Yb3+ions are investigated by thermal differential analysis(DTA)and micro-hardness test.Besides,the upconversion luminescence property upon 808 nm laser excitation in the rare earth doped TLZ glasses has also been demonstrated.

    2 Experimental

    2.1 Preparation of Nd3+/Yb3+co-doped TLZ glasses

    All the starting materials were of analytical grade and the host composition(molar fraction(x),%)of the titanate glass was 78TiO2-18La2O3-4ZrO2.Neodymium and ytterbium ions in the form of Nd2O3and Yb2O3were added.The concentration of Yb3+ion was fixed at 0.2%(molar fraction)while Nd3+concentration varied as 0.6%,1.2%,1.8%,and 2.4%(x),respectively.Raw materials with stoichiometric compositions were mixed and compressed into small rods.The rods were levitated in an aerodynamic levitation furnace and melted by a CO2laser with temperature of 1700°C.A pyrometer was utilized to measure the temperature of the sample.A high resolution charge-coupled device video camera equipped with telephoto objective lens was employed to obtain a magnified view of the sample.Then the CO2laser power was shut off and spherical sample with a diameter of~3 mm was obtained.The as-prepared spherical sample was polished to be 1.5 mm thick wafer for further measurements.Fig.1 shows the photo of Nd3+/Yb3+co-doped TLZ glass wafers with both sides well polished.Obviously,all the investigated TLZ samples performed high transparency in the region of visible light.

    Fig.1 Photo of Nd3+/Yb3+co-doped TLZ glass wafers with both sides well polished

    2.2 Characterization

    Thermal differential analysis was carried out to characterize the thermal stability10-15by Netzsch STA 449C thermoanalyzer in the experiments.The amorphous structure of TLZ glasses prepared by levitation method has been identified by Bruker D8 Advance X-ray diffractometer(XRD).9,16The mechanical property was estimated by Vickers hardness test which was performed on an Akashi(AVK-A)hardness tester with an applied load of 1 kg for 10 s.Upconversion luminescence spectra were recorded by a spectrofluorometer(Fluorolog-3,Jobin Yvon,France)equipped with Hamamatsu R928 photomultiplier tube.An 808 nm continuous wave diode laser was used as the excitation source.

    3 Results and discussion

    3.1 Thermal stability

    DTA was used to investigate the thermal stability of Nd3+/Yb3+co-doped TLZ glasses.Fig.2 shows the DTA curves at a heating rate(β)of 10 K · min-1.All the curves had similarshapes.The glass transition temperature(Tg),crystallization onset temperature(Tc),and crystallization peak temperature(Tp),for the TLZ glasses can be obtained from Fig.2.

    Fig.2 DTAcurves of Nd3+/Yb3+co-doped TLZ glass samples with a heating rate(β)of 10 K·min-1

    It was obvious that the variation of Nd3+content had no significant effect on the values ofTg,Tc,andTpin the investigated scope.Tgwas estimated as high as~1093 K,much higher than that of fluoride or oxy-fluoride glasses which was usually lower than 700 K.13,14Therefore,the upconversion devices based on this glass might be used more widely for technological application.On the other hand,the values ofTcandTpwere 1168 and 1177 K,respectively.Similarly,these two values were also higher than those of fluoride or oxy-fluoride glasses.These results hinted a good thermal stability against high temperature.

    The value of ΔT=Tc-Tg,which is often an important parameter to characterize the glass forming ability has also been calculated.Fig.3 shows the DTA curves of Nd3+/Yb3+co-doped TLZ glass samples at different heating rates.The obtained results are shown in Table 1.The calculated ΔTof present TLZ glasses was much lower than those of most traditional oxide glasses such as silicate or borate glass systems14,15and even lower than some heavy metal oxide glasses.16,17It indicated a comparatively poor glass forming ability for Nd3+/Yb3+co-doped TLZ glass.This makes it difficult to obtain bulk titanate glass by traditional melt-quenching method.Therefore,levitation method has to be introduced to prepare bulk titanate glass in present experiments,because overheated or undercooled melt was achieved more easily by this technique.Non-isothermal kinetic analyses were used in our experiments.18The heating rates were 5,10,15,and 20 K·min-1.The commonly used kinetic equation of solid thermal decomposition under non-isothermal conditions was given as follows:

    Fig.3 DTAcurves of Nd3+/Yb3+co-doped TLZ glass samples at different heating rates

    Table 1 Values of Tg,Tc,and Tpof the Nd3+/Yb3+co-doped TLZ glasses at different heating rates

    Whereαwas the extent of reaction,k(T)=Ae-Ea/RT,Eawas the activation energy,Awas the pre-exponential factor.f(α)was the differential conversion function.Both Kissinger and Friedman methods can calculate the activation energy and lgAof the oxidation process under non-isothermal conditions.Fig.4 shows the average activation energy and lgAobtained by the Kissinger method for the crystallization of Nd3+/Yb3+co-doped TLZ glass.The Kissinger equation19was given as follows:

    The average activation energy andAwere 325 kJ·mol-1and 6.02×1013s-1,respectively.The dependence ofEaand lgAobtained by Friedman analysis for the crystallization of Nd3+/Yb3+co-doped TLZ glass was shown in Fig.5.It can be concluded that large activation energy was required at the beginning of the reaction.As the extent of conversion enhancing,the precipitation was increasingly easy in the Nd3+/Yb3+co-doped TLZ glass.

    3.2 Mechanical property

    Vickers hardness was experimentally measured to evaluate the mechanical property of the Nd3+/Yb3+co-doped TLZ glasses.The Vickers hardness was determined using a micro-hard-ness tester equipped with a Vickers indenter.The indentation was examined by an optical microscopy.Fig.6 shows two typical optical micrographs of Vickers indentations for Nd3+/Yb3+co-doped TLZ glasses.Significant micro-cracks emanating from the corners of the indentations can be observed in both images.In Fig.6(a),no shear bands were observed,while in Fig.6(b)semi-circular shear band mark was visible on the one side of the indentation impression,suggesting an asymmetric deformation of the surface.It should be mentioned that,seldom shear band can be observed in TLZ glass with low Nd3+concentration.Nevertheless,they were observed frequently in TLZ glass with high Nd3+concentration.

    Fig.4 Average activation energy and lgAobtained by the Kissinger method for the crystallization of Nd3+/Yb3+co-doped TLZ glass

    Fig.5 Dependence of Eaand lgAobtained by Friedman analysis for the crystallization of Nd3+/Yb3+co-doped TLZ glass

    Fig.6 Two typical optical micrographs of Vickers indentations for Nd3+/Yb3+co-doped TLZ glasses

    Quantitative value of Vickers hardness was averaged from three data points by the following standard formula:20Hv=1.854P/d2.Here,Hvwas the Vickers hardness,Pwas the applied load,anddwas the mean length of the two diagonal lines of the indentation.The measured values of Vickers hardness were listed in Table 2.No significant correlation seemed to exist between Nd3+concentration and the Vickers hardness since the variation of Nd3+concentration was very weak.However,theHvvalues were higher than 7.50 GPa for all the investigated TLZ glasses.This value was not only much higher than that of the ordinary fluoride glass(~2.0 GPa)21but also higher than that of some traditional oxide glass such as silicate or borate glass system.22Another important parameter characterizing the mechanical property of a material is fracture toughness,which describes the resistance of the material to crack propagation.The fracture toughnessKcfor present Nd3+/Yb3+co-doped TLZ glasses was determined by micro-indentation experiments with Vickers indenter.TheKcvalue was calculated using the following equation:23Kc=P(πb)-3/2(tgγ)-1,wherebwas the crack length,andγ=68°.The calculated results were also illustrated in Table 2,where one can see that theKcvalues of the TLZ glasses varyfrom 1.20 to 1.39 MPa·m1/2.Similarly,theKcvalues for the investigated rare earth doped TLZ glasses were higher than those of ordinary rare earth doped fluoride glasses(~0.60 MPa·m1/2).21The high Vickers hardness as well as high fracture toughness indicated a potential application for upconversion devices made of the Nd3+/Yb3+co-doped TLZ glasses.

    Table 2 Variation of Vickers hardness(Hv)and fracture toughness(Kc)with Nd3+concentrations(molar fraction)in the Nd3+/Yb3+co-doped TLZ glasses

    Fig.7 Upconversion emission spectrum of 1.2%(x)Nd3+/Yb3+co-doped TLZ glasses

    3.3 Upconversion luminescence upon 808 nm laser excitation

    The upconversion emission spectra of Nd3+/Yb3+co-doped TLZ glasses have been recorded at 808 nm excitations.All the spectra showed similar features except for an increase in intensities of the upconversion bands.Fig.7 shows the typical upconversion spectrum of Nd3+/Yb3+co-doped TLZ glass(for the sample of 1.2%(x)Nd3+ions).Three intense emission bands were observed centered at 545,605,and 669 nm,respectively,which were attributed to the Nd3+:4G7/2→4I9/2,2G7/2→4I11/2,and4G7/2→4I13/2transitions,respectively.It was clear that the emissions at 605 and 669 nm had significant shoulder peaks at 615 and 655 nm,respectively.They were possibly due to the energy level splitting of2G7/2and4G7/2levels.The peak intensity of the green emission at 545 nm was almost the same as that of the red emission at 669 nm.However,the band intensity of the orange emission at 605 nm was only a half or so,which was different from the result for 980 nm excitation where the orange emission intensity was much weaker than the green and red emission intensities.9This indicated that more Nd3+ions were populated to2G7/2level by 808 nm laser.

    4 Conclusions

    Nd3+/Yb3+co-doped TiO2-La2O3-ZrO2glasses were prepared by the levitation method.The glasses performed good thermal stability and high mechanical property.The average activation energyEaand the pre-exponential factorAobtained by means of Kissinger were 325 kJ·mol-1and 6.02×1013s-1,respectively.We also obtained the dependence ofEaand lgAon the extent of conversionacalculated by the Friedman method.Vickers hardness and fracture toughness were found higher than 7.50 GPa and 1.20 MPa·m1/2,respectively,indicating high mechanical property.Under 808 nm laser excitation,intensegreen(545 nm),orange(605 nm),and red(669 nm)upconversion emissions were observed,which were attributed to the Nd3+:4G7/2→4I9/2,2G7/2→4I11/2,and4G7/2→4I13/2transitions,respectively.

    (1) Giri,N.K.;Singh,A.K.;Rai,S.B.J.Appl.Phys.2007,101,033102.doi:10.1063/1.2432305

    (2) Silva,D.M.;Kassab,L.R.P.;Luthi,S.R.;Araujo,C.B.;Gomes,A.S.L.;Bell,M.J.V.Appl.Phys.Lett.2007,90,081913.doi:10.1063/1.2679798

    (3) Fernandez,J.;Balda,R.;Mendioroz,A.;Sanz,M.;Adam,J.L.J.Non-Cryst.Solids2001,287,437.doi:10.1016/S0022-3093(01)00597-X

    (4)Som,T.;Karmakar,B.J.Alloy.Compd.2009,476,383.doi:10.1016/j.jallcom.2008.09.006

    (5) Feng,L.;Lai,B.;Wang,J.;Du,G.;Su,Q.J.Lumin.2010,130,2418.doi:10.1016/j.jlumin.2010.08.005

    (6) Karmakar,B.J.Solid State Chem.2005,178,2663.doi:10.1016/j.jssc.2005.06.007

    (7) Porto,S.P.S.;Fleury,P.A.;Damen,T.C.Phys.Rev.1967,154,522.doi:10.1103/PhysRev.154.522

    (8) Mazza,T.;Barborini,E.;Piseri,P.;Milani,P.;Cattaneo,D.;Bassi,A.L.;Bottani,C.E.;Ducati,C.Phys.Rev.B2007,75,045416.doi:10.1103/PhysRevB.75.045416

    (9)Pan,X.H.;Yu,J.;Liu,Y.;Zhang,M.H.J.Mater.Res.2011,26,2907.doi:10.1557/jmr.2011.365

    (10) Plsko,A.;Liska,M.;Pagacova,J.J.Therm.Anal.Calorim.2012,108,505.doi:10.1007/s10973-011-1967-x

    (11) Jaqueline,L.M.;Antonio,R.S.;Aurelio,H.R.;Beatriz,Z.;Carlos,G.Y.;Roberto,M.S.Thermochim.Acta2011,516,35.doi:10.1016/j.tca.2011.01.008

    (12)Yu,H.M.;Qi,L.J.;Zhang,Q.H.;Jiang,D.Y.;Lu,C.L.J.Therm.Anal.Calorim.2011,106,47.doi:10.1007/s10973-010-1280-0

    (13) Zhang,K.;Liu,Q.;Su,X.B.;Zhong,H.M.;Shi,Y.;Pan,Y.B.Acta Phys.-Chim.Sin.2011,27(8),2001.[張 孔,劉 茜,蘇曉彬,鐘紅梅,石 云,潘裕柏.物理化學(xué)學(xué)報,2011,27(8),2001.]doi:10.3866/PKU.WHXB20110732

    (14)Yu,D.W.;Zhu,M.Q.;Utigard,T.A.;Barati,M.Thermochim.Acta2014,575,1.doi:10.1016/j.tca.2013.10.015

    (15)Abdel-Rehim,A.M.Thermochim.Acta2012,538,29.doi:10.1016/j.tca.2012.03.006

    (16)Pan,X.H.;Yu,J.;Liu,Y.;Yoda,S.;Yu,H.M.;Zhang,M.H.;Ai,F.;Jin,F.;Jin,W.Q.J.Alloy.Compd.2011,509,7504.doi:10.1016/j.jallcom.2011.04.104

    (17) Babu,P.;Seo,H.J.;Kesavulu,C.R.;Jang,K.H.;Jayasankar,C.K.J.Lumin.2009,129,444.doi:10.1016/j.jlumin.2008.11.014

    (18) Koepke,C.;Piatkowski,D.;Wisniewski,K.;Naftaly,M.J.Non-Cryst.Solids2010,356,435.doi:10.1016/j.jnoncrysol.2009.12.012

    (19)Abdel-Hameed,S.A.M.;El-kheshen,A.A.Ceram.Int.2003,29,265.doi:10.1016/S0272-8842(02)00114-1

    (20)Xu,T.;Zhang,X.;Dai,S.;Nie,Q.;Shen,X.;Zhang,X.Physica B2007,389,242.doi:10.1016/j.physb.2006.06.156

    (21) Simon,S.;Simon,V.Mater.Lett.2004,58,3778.doi:10.1016/j.matlet.2004.07.042

    (22) Opfermann,J.J.Therm.Anal.Calorim.2000,60,641.doi:10.1023/A:1010167626551

    (23) Hu,R.Z.;Gao,S.L.;Zhao,F.Q.;Shi,Q.Z.;Zhang,T.L.;Zhang,J.J.Thermal Analysis Kinetics;Sciences Press:Beijing,2008;pp 79-80.[胡榮祖,高勝利,趙鳳起,史啟禎,張同來,張建軍.熱分析動力學(xué).北京:科學(xué)出版社,2008:79-80.]

    (24) Lin,M.T.;Jiang,D.Y.;Li,L.;Lu,Z.L.;Lai,T.R.;Shi,J.L.Mater.Sci.Eng.A2003,351,9.doi:10.1016/S0921-5093(01)01772-5

    (25) Delben,A.;Messaddeq,Y.;Caridade,M.D.;Aegerter,M.A.;Eiras,J.A.J.Non-Cryst.Solids1993,161,165.doi:10.1016/0022-3093(93)90691-P

    (26) Sampaio,J.A.;Baesso,M.L.;Gama,S.;Coelho,A.A.;Eiras,J.A.;Santos,I.A.J.Non-Cryst.Solids2002,304,293.doi:10.1016/S0022-3093(02)01037-2

    (27) Evans,A.G.;Charles,E.A.J.Am.Ceram.Soc.1976,59,371.doi:10.1111/jace.1976.59.issue-7-8

    猜你喜歡
    氧化鈦張建軍研究所
    基于JAK/STAT信號通路研究納米氧化鈦致卵巢損傷的分子機(jī)制*
    保健文匯(2022年4期)2022-06-01 10:06:50
    睡眠研究所·Arch
    Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity*
    頸椎病患者使用X線平片和CT影像診斷的臨床準(zhǔn)確率比照觀察
    睡眠研究所民宿
    未來研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    氧化鈦對陶瓷結(jié)合劑金剛石磨具性能及結(jié)構(gòu)的影響
    A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS?
    巧用反例在概率論教學(xué)中的作用
    鈦表面生物活性榍石/氧化鈦復(fù)合涂層的結(jié)構(gòu)和磷灰石形成機(jī)理
    啦啦啦 在线观看视频| 99精品久久久久人妻精品| 一区二区日韩欧美中文字幕| 国产亚洲av片在线观看秒播厂| 美女午夜性视频免费| av在线老鸭窝| 国产亚洲精品一区二区www | 色视频在线一区二区三区| 欧美国产精品一级二级三级| e午夜精品久久久久久久| 国产欧美日韩一区二区精品| 99精国产麻豆久久婷婷| 国产有黄有色有爽视频| 亚洲av日韩精品久久久久久密| 日韩欧美一区视频在线观看| 热99久久久久精品小说推荐| 天天影视国产精品| 成人国产一区最新在线观看| 精品亚洲乱码少妇综合久久| 男人添女人高潮全过程视频| 亚洲成人国产一区在线观看| 80岁老熟妇乱子伦牲交| 久久天堂一区二区三区四区| 亚洲九九香蕉| 色精品久久人妻99蜜桃| 国产极品粉嫩免费观看在线| 免费在线观看黄色视频的| 菩萨蛮人人尽说江南好唐韦庄| 久久久国产一区二区| 精品熟女少妇八av免费久了| 国产黄色免费在线视频| 成年人黄色毛片网站| 大码成人一级视频| 婷婷丁香在线五月| av国产精品久久久久影院| 91九色精品人成在线观看| 亚洲精品国产色婷婷电影| 少妇猛男粗大的猛烈进出视频| 色老头精品视频在线观看| 成人av一区二区三区在线看 | 色婷婷av一区二区三区视频| 大片电影免费在线观看免费| av网站免费在线观看视频| 成人免费观看视频高清| 国产免费现黄频在线看| 高清黄色对白视频在线免费看| 啦啦啦 在线观看视频| 男人操女人黄网站| 国产1区2区3区精品| 悠悠久久av| 欧美黑人欧美精品刺激| 国产欧美日韩一区二区精品| av国产精品久久久久影院| 激情视频va一区二区三区| 久久久精品免费免费高清| 99香蕉大伊视频| 各种免费的搞黄视频| 欧美日韩国产mv在线观看视频| 国产精品国产三级国产专区5o| 他把我摸到了高潮在线观看 | 亚洲免费av在线视频| 一区二区三区四区激情视频| www.自偷自拍.com| 99精国产麻豆久久婷婷| 777米奇影视久久| 99久久99久久久精品蜜桃| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 午夜老司机福利片| 午夜福利影视在线免费观看| 久久狼人影院| 免费高清在线观看视频在线观看| 亚洲欧美日韩高清在线视频 | 十八禁网站网址无遮挡| 国产熟女午夜一区二区三区| 中文字幕高清在线视频| 亚洲精品国产区一区二| 精品少妇黑人巨大在线播放| 三级毛片av免费| 9色porny在线观看| 欧美+亚洲+日韩+国产| 大香蕉久久网| 日韩制服骚丝袜av| 99国产精品一区二区三区| 新久久久久国产一级毛片| 90打野战视频偷拍视频| 别揉我奶头~嗯~啊~动态视频 | 欧美xxⅹ黑人| 欧美少妇被猛烈插入视频| 手机成人av网站| 国产日韩欧美在线精品| 这个男人来自地球电影免费观看| 精品少妇久久久久久888优播| 美女视频免费永久观看网站| 欧美日韩亚洲综合一区二区三区_| 久久久精品国产亚洲av高清涩受| 国产免费视频播放在线视频| 在线亚洲精品国产二区图片欧美| 十八禁网站网址无遮挡| 两性夫妻黄色片| 久久午夜综合久久蜜桃| 国产成人欧美| 久久久久精品人妻al黑| 亚洲九九香蕉| 国产成人啪精品午夜网站| 两性午夜刺激爽爽歪歪视频在线观看 | 精品人妻熟女毛片av久久网站| 亚洲熟女精品中文字幕| 亚洲精品av麻豆狂野| 丝袜在线中文字幕| 国产欧美亚洲国产| 99久久精品国产亚洲精品| 9191精品国产免费久久| 国产精品久久久av美女十八| 国产精品久久久久久人妻精品电影 | 男女国产视频网站| 黄色 视频免费看| 老汉色av国产亚洲站长工具| 三级毛片av免费| 大片免费播放器 马上看| 丝瓜视频免费看黄片| 岛国毛片在线播放| 日本撒尿小便嘘嘘汇集6| 一本久久精品| 天天影视国产精品| 如日韩欧美国产精品一区二区三区| xxxhd国产人妻xxx| 波多野结衣av一区二区av| 黄频高清免费视频| 欧美另类一区| 日韩一区二区三区影片| 十八禁网站免费在线| 国产色视频综合| 精品一区二区三区av网在线观看 | 伊人久久大香线蕉亚洲五| 视频区欧美日本亚洲| 日本wwww免费看| 热re99久久国产66热| 精品亚洲成a人片在线观看| 老司机影院毛片| 国产97色在线日韩免费| 水蜜桃什么品种好| 国产欧美日韩一区二区三 | 色老头精品视频在线观看| 80岁老熟妇乱子伦牲交| 精品熟女少妇八av免费久了| 国产在视频线精品| 日韩欧美一区二区三区在线观看 | 18禁国产床啪视频网站| 亚洲国产av新网站| av免费在线观看网站| 免费在线观看完整版高清| 日本av免费视频播放| 日日爽夜夜爽网站| 十八禁高潮呻吟视频| 狠狠婷婷综合久久久久久88av| 国产亚洲欧美精品永久| 一区二区三区四区激情视频| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 又大又爽又粗| 两个人看的免费小视频| 精品亚洲成a人片在线观看| 99国产精品一区二区蜜桃av | 亚洲精品乱久久久久久| 一级黄色大片毛片| 久久精品人人爽人人爽视色| 亚洲综合色网址| 国产精品免费视频内射| 亚洲国产精品999| 欧美人与性动交α欧美精品济南到| 少妇猛男粗大的猛烈进出视频| 国产真人三级小视频在线观看| 国产精品成人在线| 午夜福利影视在线免费观看| 男女床上黄色一级片免费看| 亚洲国产欧美在线一区| 中文字幕制服av| 免费观看av网站的网址| 日本av手机在线免费观看| av线在线观看网站| 久久天躁狠狠躁夜夜2o2o| 女人精品久久久久毛片| 婷婷色av中文字幕| a级毛片在线看网站| 精品一区二区三区av网在线观看 | 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 老熟妇乱子伦视频在线观看 | 高清av免费在线| 动漫黄色视频在线观看| 人成视频在线观看免费观看| 啦啦啦视频在线资源免费观看| 丁香六月天网| 国产av又大| 午夜日韩欧美国产| 亚洲成av片中文字幕在线观看| 少妇人妻久久综合中文| 亚洲三区欧美一区| 91av网站免费观看| 91大片在线观看| 嫩草影视91久久| 交换朋友夫妻互换小说| 国产成人免费无遮挡视频| 一个人免费看片子| 亚洲美女黄色视频免费看| 咕卡用的链子| 亚洲男人天堂网一区| 午夜老司机福利片| 天堂俺去俺来也www色官网| 十八禁网站免费在线| 日韩有码中文字幕| 国产成人av激情在线播放| 天堂俺去俺来也www色官网| 久久久久久久大尺度免费视频| 一二三四社区在线视频社区8| 欧美日韩成人在线一区二区| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 精品久久久久久久毛片微露脸 | 伦理电影免费视频| 在线亚洲精品国产二区图片欧美| 久久精品国产亚洲av香蕉五月 | 久久久久视频综合| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久男人| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 久久性视频一级片| 久久综合国产亚洲精品| 亚洲 国产 在线| 天天添夜夜摸| 精品第一国产精品| 伊人久久大香线蕉亚洲五| 国产在线免费精品| 国产成人av教育| 欧美国产精品一级二级三级| 精品亚洲成a人片在线观看| 日韩欧美免费精品| 老司机午夜福利在线观看视频 | 99热网站在线观看| 丝袜在线中文字幕| 女性生殖器流出的白浆| 最新在线观看一区二区三区| 国产精品久久久久久精品电影小说| 日韩三级视频一区二区三区| 两人在一起打扑克的视频| 亚洲精品国产av成人精品| 精品国产一区二区三区四区第35| 久久99一区二区三区| 91大片在线观看| 99热全是精品| 在线永久观看黄色视频| 国产精品成人在线| 国产精品99久久99久久久不卡| 日韩精品免费视频一区二区三区| 亚洲人成电影观看| 精品国内亚洲2022精品成人 | 午夜激情久久久久久久| 9热在线视频观看99| 80岁老熟妇乱子伦牲交| 十八禁人妻一区二区| 女人爽到高潮嗷嗷叫在线视频| 一个人免费看片子| 成人手机av| 亚洲色图综合在线观看| 亚洲av美国av| 最黄视频免费看| 女人爽到高潮嗷嗷叫在线视频| tube8黄色片| 欧美日韩一级在线毛片| 成年人午夜在线观看视频| 国产一卡二卡三卡精品| 一本色道久久久久久精品综合| 不卡av一区二区三区| 精品人妻在线不人妻| 麻豆av在线久日| 欧美大码av| 久久久国产欧美日韩av| 免费高清在线观看视频在线观看| 99九九在线精品视频| 亚洲精品一二三| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 另类亚洲欧美激情| 久久久久视频综合| 国产精品国产三级国产专区5o| 成年人免费黄色播放视频| 精品国产一区二区久久| 亚洲精品第二区| www.999成人在线观看| 精品国产乱码久久久久久小说| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃| a在线观看视频网站| 天堂8中文在线网| 纯流量卡能插随身wifi吗| 视频区欧美日本亚洲| e午夜精品久久久久久久| 蜜桃国产av成人99| 99精国产麻豆久久婷婷| 中国国产av一级| 亚洲精品国产av蜜桃| 免费人妻精品一区二区三区视频| av电影中文网址| 国产精品久久久人人做人人爽| 免费不卡黄色视频| 黑人巨大精品欧美一区二区mp4| 十八禁网站网址无遮挡| 中文字幕色久视频| 午夜免费成人在线视频| 欧美亚洲 丝袜 人妻 在线| 一级毛片女人18水好多| 国产精品久久久av美女十八| 精品久久久久久电影网| 少妇 在线观看| 久久久国产精品麻豆| av一本久久久久| 久久人人爽人人片av| 99re6热这里在线精品视频| 国产激情久久老熟女| 天堂俺去俺来也www色官网| 91成年电影在线观看| 亚洲第一欧美日韩一区二区三区 | 在线十欧美十亚洲十日本专区| 亚洲精品美女久久av网站| 成人国语在线视频| 九色亚洲精品在线播放| 免费高清在线观看日韩| 老司机午夜福利在线观看视频 | av在线播放精品| 久久精品aⅴ一区二区三区四区| 最黄视频免费看| 午夜福利影视在线免费观看| 亚洲成人国产一区在线观看| 成人影院久久| 青春草视频在线免费观看| 后天国语完整版免费观看| 老司机在亚洲福利影院| 国产一区二区激情短视频 | 777久久人妻少妇嫩草av网站| 国产伦人伦偷精品视频| xxxhd国产人妻xxx| 国产真人三级小视频在线观看| 黄片大片在线免费观看| 777久久人妻少妇嫩草av网站| 成年人免费黄色播放视频| 91麻豆av在线| 在线观看一区二区三区激情| 69精品国产乱码久久久| 秋霞在线观看毛片| 视频在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| av视频免费观看在线观看| 国产国语露脸激情在线看| 不卡一级毛片| 免费女性裸体啪啪无遮挡网站| 国产成人av激情在线播放| 欧美在线黄色| 日本猛色少妇xxxxx猛交久久| 欧美日韩亚洲高清精品| 欧美精品人与动牲交sv欧美| 国产老妇伦熟女老妇高清| 五月开心婷婷网| 大片电影免费在线观看免费| 蜜桃国产av成人99| 国产熟女午夜一区二区三区| 曰老女人黄片| 国产免费现黄频在线看| 亚洲成人手机| 日韩精品免费视频一区二区三区| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三区在线| a在线观看视频网站| 久久精品国产综合久久久| 成年动漫av网址| 最黄视频免费看| 777久久人妻少妇嫩草av网站| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 免费黄频网站在线观看国产| 国产黄频视频在线观看| 曰老女人黄片| 老鸭窝网址在线观看| 王馨瑶露胸无遮挡在线观看| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 男女无遮挡免费网站观看| 色婷婷av一区二区三区视频| 亚洲少妇的诱惑av| 免费在线观看黄色视频的| 下体分泌物呈黄色| 一级,二级,三级黄色视频| 久久精品国产综合久久久| 国产伦理片在线播放av一区| 国产片内射在线| 在线观看人妻少妇| 国产黄频视频在线观看| 不卡av一区二区三区| 午夜福利在线免费观看网站| 久久久久久久久免费视频了| 久久精品国产亚洲av香蕉五月 | 18禁国产床啪视频网站| 可以免费在线观看a视频的电影网站| 精品国产超薄肉色丝袜足j| 欧美日韩成人在线一区二区| 手机成人av网站| 成在线人永久免费视频| 欧美 亚洲 国产 日韩一| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久精品精品| 日本黄色日本黄色录像| 久久久久视频综合| 亚洲精品一区蜜桃| 一本—道久久a久久精品蜜桃钙片| 国产亚洲一区二区精品| 日韩欧美免费精品| 国产精品熟女久久久久浪| 国产精品九九99| 美女扒开内裤让男人捅视频| 1024香蕉在线观看| 国产精品免费大片| 91字幕亚洲| 1024视频免费在线观看| 亚洲国产精品成人久久小说| 国内毛片毛片毛片毛片毛片| 亚洲国产精品成人久久小说| 天堂中文最新版在线下载| 丝袜美足系列| 亚洲七黄色美女视频| 国产av国产精品国产| 国产淫语在线视频| 亚洲国产av新网站| 国产在线观看jvid| 操美女的视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产极品粉嫩免费观看在线| 飞空精品影院首页| 黄色视频不卡| 亚洲国产精品一区三区| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 老熟女久久久| 久久久国产成人免费| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 成年人午夜在线观看视频| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| 欧美97在线视频| 欧美成狂野欧美在线观看| 久久香蕉激情| 免费av中文字幕在线| 黄色视频在线播放观看不卡| 国产精品自产拍在线观看55亚洲 | 午夜精品久久久久久毛片777| 精品一区在线观看国产| 久久免费观看电影| 淫妇啪啪啪对白视频 | 99re6热这里在线精品视频| 日本vs欧美在线观看视频| 日韩免费高清中文字幕av| 国产主播在线观看一区二区| 伊人亚洲综合成人网| 看免费av毛片| 国产野战对白在线观看| 两性夫妻黄色片| 超碰成人久久| 久久精品aⅴ一区二区三区四区| 男女免费视频国产| 亚洲av成人一区二区三| 一区二区日韩欧美中文字幕| 久久久国产成人免费| 搡老熟女国产l中国老女人| 久久精品国产亚洲av香蕉五月 | 亚洲精品粉嫩美女一区| 9色porny在线观看| 人妻一区二区av| 国产精品一区二区免费欧美 | 中文字幕另类日韩欧美亚洲嫩草| 黑人巨大精品欧美一区二区mp4| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人久久小说| 午夜精品久久久久久毛片777| 丰满饥渴人妻一区二区三| 免费人妻精品一区二区三区视频| 人人妻,人人澡人人爽秒播| 成年人黄色毛片网站| 欧美日韩黄片免| 最新在线观看一区二区三区| 少妇精品久久久久久久| 一进一出抽搐动态| 美女午夜性视频免费| 在线av久久热| 国产野战对白在线观看| www.熟女人妻精品国产| 欧美老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 一区二区日韩欧美中文字幕| 午夜成年电影在线免费观看| 国产欧美日韩精品亚洲av| 人人澡人人妻人| 亚洲精品美女久久久久99蜜臀| 一本大道久久a久久精品| 午夜福利免费观看在线| 国产成人精品久久二区二区免费| 黄频高清免费视频| 美女国产高潮福利片在线看| 91成年电影在线观看| 日韩 亚洲 欧美在线| 一级片免费观看大全| 欧美精品啪啪一区二区三区 | 国产免费av片在线观看野外av| 天天影视国产精品| 亚洲精品久久久久久婷婷小说| 热re99久久国产66热| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 黄色毛片三级朝国网站| 日本欧美视频一区| 99热网站在线观看| 久久人人爽人人片av| 久久国产精品大桥未久av| 深夜精品福利| 亚洲,欧美精品.| 丝袜人妻中文字幕| 999精品在线视频| 91国产中文字幕| 亚洲国产精品成人久久小说| 亚洲熟女精品中文字幕| 亚洲精品在线美女| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 国产精品久久久久久人妻精品电影 | 久久精品国产a三级三级三级| 在线天堂中文资源库| 色婷婷av一区二区三区视频| 国产精品99久久99久久久不卡| 国产福利在线免费观看视频| 国产极品粉嫩免费观看在线| 99久久人妻综合| 久久九九热精品免费| 久久久久久久精品精品| 叶爱在线成人免费视频播放| 欧美日韩国产mv在线观看视频| 亚洲中文字幕日韩| 亚洲国产av新网站| 新久久久久国产一级毛片| 又大又爽又粗| 多毛熟女@视频| 午夜两性在线视频| 欧美激情极品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 欧美黑人欧美精品刺激| 人人妻人人澡人人爽人人夜夜| 丝袜人妻中文字幕| 青春草亚洲视频在线观看| 多毛熟女@视频| 性色av一级| 欧美日韩亚洲高清精品| 亚洲男人天堂网一区| 最近中文字幕2019免费版| 大片电影免费在线观看免费| 亚洲午夜精品一区,二区,三区| kizo精华| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲精品一区二区www | av视频免费观看在线观看| 伦理电影免费视频| 欧美日韩黄片免| 国产熟女午夜一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| 精品人妻1区二区| 日韩制服骚丝袜av| 久久久久视频综合| 成年动漫av网址| 免费av中文字幕在线| 女人高潮潮喷娇喘18禁视频| 成人手机av| 亚洲午夜精品一区,二区,三区| 国内毛片毛片毛片毛片毛片| 曰老女人黄片| 国产成人精品无人区| 天堂俺去俺来也www色官网| 久久女婷五月综合色啪小说| netflix在线观看网站| 久久亚洲国产成人精品v| 两性夫妻黄色片| 欧美 亚洲 国产 日韩一| 啦啦啦 在线观看视频| 国产欧美日韩综合在线一区二区| 岛国在线观看网站| 捣出白浆h1v1| 欧美黑人精品巨大| 国产精品久久久久久精品古装| 中文字幕人妻丝袜一区二区| 成人手机av| 亚洲国产欧美网| 日本a在线网址| 国产亚洲精品一区二区www | 精品一区二区三区av网在线观看 | 岛国在线观看网站| 精品一品国产午夜福利视频| av超薄肉色丝袜交足视频| 欧美日韩国产mv在线观看视频| 男人添女人高潮全过程视频| 日韩一卡2卡3卡4卡2021年| 女人被躁到高潮嗷嗷叫费观|