趙廣高++蘇全生++周石++蘇利強(qiáng)++張瑋
摘 要:通過(guò)游泳訓(xùn)練誘發(fā)大鼠Th1/Th2失衡,觀察和分析JAK2/STAT4通路及其上游因子在該失衡發(fā)展過(guò)程中的變化規(guī)律,探討大運(yùn)動(dòng)量訓(xùn)練導(dǎo)致Th1/Th2失衡的分子機(jī)制。將清潔級(jí)16周齡雄性SD大鼠隨機(jī)分為安靜對(duì)照組(C組)、游泳訓(xùn)練組(T組),每組根據(jù)取材時(shí)間不同又隨機(jī)分為24 h組與7 d組。訓(xùn)練采用4周遞增負(fù)荷游泳訓(xùn)練方法。Western Blotting法測(cè)定心臟血淋巴細(xì)胞pJAK2、pSTAT4、JAK2、STAT4的蛋白表達(dá),ELISA法檢測(cè)心臟血血漿IFN-γ、IL-4、IL-12值。結(jié)果發(fā)現(xiàn):(1)T組大鼠血漿IFN-γ、IFN-γ/IL-4與IL-12(P<0.01)水平均顯著低于C組(P<0.01)、(P<0.05)。C組與T組大鼠血漿IL-12與IFN-γ的質(zhì)量濃度顯著相關(guān)(P<0.01)。(2)T組大鼠血淋巴細(xì)胞pJAK2、pSTAT4蛋白表達(dá)均顯著低于C組(P<0.05)、(P<0.01)。結(jié)果說(shuō)明4周遞增負(fù)荷訓(xùn)練可能通過(guò)減少I(mǎi)L-12的分泌,抑制JAK2/STAT4信號(hào)通路中關(guān)鍵因子JAK2、STAT4的磷酸化過(guò)程,降低Th1類(lèi)細(xì)胞因子IFN-γ的合成,誘發(fā)Th1/Th2失衡。
關(guān) 鍵 詞:運(yùn)動(dòng)生理學(xué);Th1/Th2平衡;Janus激酶-2;信號(hào)傳導(dǎo)與轉(zhuǎn)錄激活因子-4;白細(xì)胞介素-12;γ-干擾素;白細(xì)胞介素-4
中圖分類(lèi)號(hào):G804.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-7116(2014)05-0139-06
Roles played by JAK2/ STAT4 signaling pathways in rats Th1/Th2
imbalance induced by exercising
ZHAO Guang-gao1,SU Quan-sheng2,ZHOU Shi3,SU Li-qiang4,ZHANG Wei4
(1.Department of Physical Education,Nanchang University,Nanchang 330031,China;
2.Chengdu Sport University,Chengdu 610041,China;3.School of Health and Human Sciences,
Southern Cross University,Lismore,NSW 2480,Australia;4.Division of Physical Education,
Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,China)
Abstract: By means of swimming training, the authors induced rats Th1/Th2 imbalance, observed and analyzed the patterns of changing of JAK2/STAT4 pathways and their upstream cytokines in the process of development of such an imbalance, so as to probe into the molecular mechanism of intensive training inducing the Th1/Th2 imbalance. The authors randomly divided 16-week old male SD rats graded clean into a calm control group (group C) and a swimming training group (group T), then randomly divided each of these groups into a 24h group and a 7d group according to different sampling times, carried out the training by using the 4-week load progressively increased swimming training method, measured the protein expressions of pJAK2, pSTAT4, JAK2 and STAT4 in cardiac blood lymphocytes by using the western blotting method, measured the contents of IFN-γ, IL-4 and IL-12 in cardiac blood plasma by using the ELISA method, and revealed the following findings: 1) the levels of IFN-γ, IFN-γ/IL-4 and IL-12 in blood plasma of the rats in group T were all significantly lowered that those of the rats in group C (P<0.01, P<0.05, P<0.01); the contents of IL-12 and IFN-γ in blood plasma of the rats in groups C and T were significantly correlative (P<0.01); 2) the protein expressions of pJAK2 and pSTAT4 in blood lymphocytes of the rats in group T were all significantly lowered that those of the rats in group C (P<0.05, P<0.01). The said findings indicate that the 4-week load progressively increased training may induce the Th1/Th2 imbalance by reducing the secretion of IL-12, suppressing the process of phosphorylation of key cytokines JAK2 and STAT4 in JAK2/STAT4 signaling pathways, and reducing the synthesis of type Th1 cytokine IFN-γ.endprint
Key words: sports physiology;Th1/Th2 balance;JAK2;STAT4;IL-12;IFN-γ;IL-4
過(guò)量運(yùn)動(dòng)引起的免疫失衡及其分子機(jī)制是目前研究的熱點(diǎn)問(wèn)題[1]。作為反映細(xì)胞免疫與體液免疫平衡關(guān)系的重要指標(biāo),Th1/Th2平衡常用于評(píng)價(jià)運(yùn)動(dòng)中機(jī)體的免疫機(jī)能?,F(xiàn)有的研究成果已基本闡明了Th1/Th2平衡在不同運(yùn)動(dòng)中的變化規(guī)律[1],其中大運(yùn)動(dòng)量訓(xùn)練對(duì)Th1反應(yīng)的抑制作用也已由實(shí)驗(yàn)研究所證實(shí)[2-4]。在此基礎(chǔ)上,研究者們參考了Th1/Th2平衡自身的調(diào)控因素,來(lái)研究大運(yùn)動(dòng)量訓(xùn)練誘發(fā)Th1/Th2失衡過(guò)程中各種調(diào)節(jié)因素的作用[5-7],試圖揭示該失衡發(fā)生的分子機(jī)制。
基礎(chǔ)研究認(rèn)為,細(xì)胞因子介導(dǎo)的Janus激酶/信號(hào)傳導(dǎo)與轉(zhuǎn)錄激活因子(JAK/STAT)信號(hào)通路在Th1、Th2的分化過(guò)程中起決定性作用[8-10]。其中,白細(xì)胞介素(IL)-12介導(dǎo)的JAK2/STAT4通路誘導(dǎo)Th1分化,JAK2、STAT4的磷酸化是該通路激活的重要標(biāo)志[11-12]。而大運(yùn)動(dòng)量訓(xùn)練后Th1/Th2平衡的變化是否與JAK2/STAT4信號(hào)通路的狀態(tài)有關(guān),目前尚需實(shí)驗(yàn)予以證實(shí)。基于此,本研究采用長(zhǎng)時(shí)間遞增負(fù)荷訓(xùn)練的方法建立大鼠Th1反應(yīng)抑制模型,探討JAK2/STAT4通路及其上游細(xì)胞因子在訓(xùn)練中的變化特點(diǎn)及其與Th1反應(yīng)的關(guān)系,旨在為運(yùn)動(dòng)免疫學(xué)相關(guān)理論的建立提供參考。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物與分組
清潔級(jí)16周齡雄性SD大鼠32只,體重(456±38) g,飼養(yǎng)環(huán)境溫度18~25℃,相對(duì)濕度40%~60%,自然光照,自由飲食飲水。將大鼠隨機(jī)分為安靜對(duì)照組(C組,n=16只)、游泳訓(xùn)練組(T組,n=16只)。T組又隨機(jī)分為末次訓(xùn)練后24 h組(T1)與末次訓(xùn)練后7 d組(T2);C組也隨機(jī)分為C1、C2組,每小組各8只,分別與T1、T2組同時(shí)間段取材。
1.2 運(yùn)動(dòng)模型
大鼠購(gòu)回適應(yīng)性飼養(yǎng)3 d后,T組大鼠進(jìn)行4周遞增負(fù)荷游泳訓(xùn)練(第1周,10~90 min無(wú)負(fù)重;第2周,90~135 min無(wú)負(fù)重;第3周60~105 min,負(fù)重1%體重;第4周,105~180 min,負(fù)重1%體重),每周訓(xùn)練5 d。前2周大鼠為無(wú)負(fù)重游泳,逐日遞增游泳時(shí)間,用以訓(xùn)練大鼠的游泳水平,并逐漸提高其耐力。后兩周負(fù)重1%體重,游泳時(shí)間仍逐漸增加,時(shí)間增加的幅度根據(jù)大鼠每天訓(xùn)練后的疲勞程度與第2天的活動(dòng)狀態(tài)而定。負(fù)重為串有一定重量螺絲帽的鑰匙環(huán),通過(guò)小皮筋綁定于大鼠雙上肢腋下。訓(xùn)練期間未完成規(guī)定運(yùn)動(dòng)時(shí)間就出現(xiàn)動(dòng)作明顯不協(xié)調(diào)、沉入水底后不能保持站立姿勢(shì)的大鼠,迅速撈起后用干毛巾擦干后休息5 min后,再放入水中游泳,并使之總游泳時(shí)間達(dá)到當(dāng)日要求。
1.3 測(cè)試樣本的采集與處理
T組大鼠末次訓(xùn)練后24 h、7 d根據(jù)體重用質(zhì)量分?jǐn)?shù)為10%的水合氯醛(0.0003 mL/g)腹腔注射麻醉并取心臟血。C1、C2組分別與T1、T2組同時(shí)間段取血。共取血2管,每管2.5 mL,均置于EDTA抗凝劑真空管中。一管靜置30 min后,3 000 r/min離心5 min,分離血漿用于檢測(cè)IFN-γ、IL-4、IL-12質(zhì)量;另一管分離淋巴細(xì)胞,用于測(cè)定pJAK2、pSTAT4、JAK2、STAT4蛋白表達(dá)。
1.4 指標(biāo)檢測(cè)方法
1)血漿IFN-γ、IL-4、IL-12質(zhì)量濃度。
血漿細(xì)胞因子IFN-γ、IL-4、IL-12含量均采用ABC-ELISA檢測(cè)。將抗大鼠細(xì)胞因子單抗包被在酶標(biāo)板上,使標(biāo)準(zhǔn)品與樣品中的細(xì)胞因子和單抗結(jié)合,之后加入生物素化的抗大鼠細(xì)胞因子,形成免疫復(fù)合物連接于板上,用辣根過(guò)氧化物酶標(biāo)記的鏈酶親和素與生物素結(jié)合,加入底物工作液后顯藍(lán)色,最后加終止液硫酸,在450 nm處測(cè)光密度,細(xì)胞因子濃度和光密度值成正比,通過(guò)繪制標(biāo)準(zhǔn)曲線來(lái)求出標(biāo)本中的細(xì)胞因子含量。所有檢測(cè)藥盒均由上海西唐生物科技有限公司提供。
2)血淋巴細(xì)胞pJAK2、pSTAT4、JAK2、STAT4蛋白表達(dá)。
血淋巴細(xì)胞pJAK2、pSTAT4、JAK2、STAT4蛋白表達(dá)均采用Western Blotting法。提取后的淋巴細(xì)胞加入細(xì)胞裂解液,勻漿、超聲破碎并離心后取上清得總蛋白,用BCA法測(cè)定蛋白濃度。加5×SDS上樣緩沖液;10% SDS-PAGE分離蛋白樣品,恒流(30 mA)電泳,待Marker開(kāi)始分離,轉(zhuǎn)為恒流(40 mA)電泳;將蛋白質(zhì)分離轉(zhuǎn)移到NC膜上;90 V恒壓轉(zhuǎn)膜,90 min;室溫下將NC膜用5%脫脂牛奶(用TBST配制)封閉1 h;用兔抗JAK2(1︰800)、兔抗pJAK2(1︰500)、兔抗STAT4(1︰800)、兔抗pSTAT4(1︰500)或鼠抗β-actin抗體(1︰5 000) 4℃孵育過(guò)夜;辣根過(guò)氧化物酶標(biāo)記的二抗室溫孵育2 h。之后進(jìn)行化學(xué)發(fā)光、顯影、定影,并用凝膠圖象處理系統(tǒng)分析光密度值。所有檢測(cè)藥盒均由Cell Signaling公司提供,試劑β-actin-Mouse mAb由Sigma公司提供。
1.5 數(shù)據(jù)處理
實(shí)驗(yàn)結(jié)果借助SPSS 17.0軟件進(jìn)行統(tǒng)計(jì)處理。組間比較采用單變量方差分析(Univariate Analysis of Variance),首先檢測(cè)訓(xùn)練效應(yīng)和時(shí)相效應(yīng)兩個(gè)主效應(yīng),之后對(duì)兩種因素的交互作用進(jìn)行檢測(cè)(訓(xùn)練×?xí)r相)。同時(shí)相不同組別與同組別不同時(shí)相間的差異水平用Bonferroni法進(jìn)行多個(gè)比較的調(diào)整。兩種不同測(cè)試指標(biāo)間的相關(guān)系數(shù)通過(guò)Pearson相關(guān)性來(lái)檢驗(yàn)。顯著性差異水平設(shè)定為P<0.05,非常顯著性差異水平設(shè)定為P<0.01。
2 研究結(jié)果
2.1 血漿IFN-γ、IL-4、IFN-γ/IL-4與IL-12水平的變化endprint
主體間效應(yīng)的檢驗(yàn)顯示,訓(xùn)練可導(dǎo)致大鼠血漿IFN-γ、IFN-γ/IL-4與IL-12水平均顯著低于C組(P<0.01、P<0.05、P<0.01),對(duì)大鼠血漿IL-4含量無(wú)顯著影響;4指標(biāo)不同時(shí)相間均無(wú)顯著性變化(圖1)。此外,對(duì)4指標(biāo)兩主效應(yīng)間交互作用的檢驗(yàn)也均未見(jiàn)顯著性差異。
從同時(shí)相不同組別間的比較來(lái)看,訓(xùn)練后24 h與7 d血漿IFN-γ、IL-4、IFN-γ/IL-4與IL-12水平均分別低于安靜對(duì)照組同時(shí)相,其中訓(xùn)練后24 h、7 d血漿IFN-γ質(zhì)量濃度與訓(xùn)練后7 d血漿 IL-12含量變化差異顯著。同組別不同時(shí)相間,訓(xùn)練后7 d血漿IFN-γ、IL-4、IFN-γ/IL-4與IL-12水平均低于訓(xùn)練后24 h時(shí)相(P>0.05)(見(jiàn)圖1)。
T組與C組比較:1)P<0.05;2)P<0.01
圖1 T組與C組血漿IFN-γ、IL-4、IL-12質(zhì)量濃度及IFN-γ/IL-4值的比較
2.2 血漿IL-12與IFN-γ含量的相關(guān)性
從Pearson相關(guān)性檢驗(yàn)結(jié)果來(lái)看,統(tǒng)計(jì)范圍為全部大鼠的血漿IL-12與IFN-γ的質(zhì)量濃度顯著相關(guān)(r=0.907,P<0.01),統(tǒng)計(jì)范圍為兩安靜對(duì)照組大鼠的兩指標(biāo)質(zhì)量濃度也顯著相關(guān)(r=0.913,P<0.01),統(tǒng)計(jì)范圍為兩訓(xùn)練組大鼠的兩指標(biāo)質(zhì)量濃度同樣呈顯著相關(guān)(r=0.857,P<0.01)。
2.3 大鼠血淋巴細(xì)胞JAK2、pJAK2、STAT4、pSTAT4水平的變化
從主體間效應(yīng)的檢驗(yàn)結(jié)果來(lái)看,訓(xùn)練可導(dǎo)致血淋巴細(xì)胞pJAK2與pSTAT4蛋白表達(dá)顯著下調(diào)(P<0.05、P<0.01),對(duì)JAK2與STAT4無(wú)顯著性影響;4指標(biāo)不同時(shí)相間均無(wú)顯著性變化(見(jiàn)圖2)。此外,對(duì)4指標(biāo)兩主效應(yīng)間交互作用的檢驗(yàn)也均未見(jiàn)顯著性差異。
在同時(shí)相不同組別間的比較上,訓(xùn)練后24 h與7 d血淋巴細(xì)胞pJAK2與pSTAT4蛋白表達(dá)均低于安靜對(duì)照組同時(shí)相,其中訓(xùn)練后7 d血淋巴細(xì)胞pSTAT4表達(dá)變化差異顯著。同組別不同時(shí)相間,訓(xùn)練后7 d血淋巴細(xì)胞pJAK2與pSTAT4蛋白表達(dá)水平低于訓(xùn)練后24 h時(shí)相,但未呈現(xiàn)顯著性差異(見(jiàn)圖2)。
T組與C組比較:1)P<0.05,2)P<0.01
圖2 T組與C組血淋巴細(xì)胞JAK2、pJAK2、STAT4、pSTAT蛋白表達(dá)的比較
3 討論
3.1 訓(xùn)練對(duì)Th1/Th2平衡的影響
長(zhǎng)周期、大運(yùn)動(dòng)量訓(xùn)練可導(dǎo)致受試機(jī)體脾臟或外周血淋巴細(xì)胞中Th1細(xì)胞數(shù)量、Th1細(xì)胞分泌IFN-γ的水平或外周血IFN-γ含量顯著降低,引起Th1反應(yīng)抑制,誘發(fā)Th1/Th2失衡[2-4]。在Th1/Th2平衡的評(píng)價(jià)方法中,外周血細(xì)胞因子IFN-γ、IL-4含量也已被許多學(xué)者在運(yùn)動(dòng)科學(xué)研究中逐漸采用[4,13]。本研究結(jié)果顯示,4周遞增負(fù)荷訓(xùn)練可引起大鼠血漿IFN-γ質(zhì)量濃度顯著降低(P<0.01)(見(jiàn)圖1),提示本實(shí)驗(yàn)訓(xùn)練方案可有效抑制Th1反應(yīng),導(dǎo)致細(xì)胞免疫功能低下。比較訓(xùn)練后兩個(gè)取材時(shí)相的實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),訓(xùn)練后7 d血漿IFN-γ質(zhì)量濃度低于訓(xùn)練后24 h時(shí)相,比安靜對(duì)照組的抑制作用也更為顯著,提示Th1反應(yīng)的抑制作用在訓(xùn)練之后的一段時(shí)間內(nèi)呈加重趨勢(shì),該實(shí)驗(yàn)結(jié)果與Wang Ru等[3]的研究結(jié)果相一致。
為了更直觀地反映運(yùn)動(dòng)過(guò)程中的Th1/Th2平衡,有學(xué)者將運(yùn)動(dòng)前后Th1、Th2細(xì)胞數(shù)量的比例或IFN-γ、IL-4含量的比值(或IFN-γ mRNA/IL-4 mRNA值)作為T(mén)h1/Th2平衡的一個(gè)評(píng)價(jià)指標(biāo)[4,14-15]。本研究測(cè)定了4周遞增負(fù)荷訓(xùn)練后血漿IFN-γ/IL-4比值的變化情況,結(jié)果發(fā)現(xiàn),訓(xùn)練可引起大鼠血漿IFN-γ/IL-4值顯著降低(P<0.05),與蘇利強(qiáng)等[4]的研究結(jié)果相一致。而訓(xùn)練后7 d IFN-γ/IL-4值則低于訓(xùn)練后24 h時(shí)相(見(jiàn)圖1)。該結(jié)果進(jìn)一步說(shuō)明4周遞增負(fù)荷訓(xùn)練可導(dǎo)致Th1型免疫反應(yīng)抑制為主的Th1/Th2失衡,該失衡在訓(xùn)練后24 h至7 d階段呈加重的趨勢(shì)。
3.2 訓(xùn)練對(duì)IL-12介導(dǎo)的JAK2/STAT4通路的影響
在Th細(xì)胞分化的過(guò)程中,細(xì)胞因子啟動(dòng)的JAK/STAT信號(hào)通路的狀態(tài)起關(guān)鍵作用。其中,IL-12啟動(dòng)的JAK2/STAT4通路介導(dǎo)Th1細(xì)胞分化[116]。IL-12主要由抗原提呈細(xì)胞(APC)中的樹(shù)突狀細(xì)胞分泌,是啟動(dòng)Th1細(xì)胞分化過(guò)程的關(guān)鍵細(xì)胞因子[17]。研究表明,當(dāng)用抗IL-12的抗血清耗盡IL-12或基因敲除IL-12時(shí),Th1細(xì)胞的分化便受到抑制[18]。JAK2/STAT4信號(hào)通路歸屬于非受體酪氨酸激酶信號(hào)通路,是細(xì)胞因子IL-12誘導(dǎo)Th1細(xì)胞分化過(guò)程中非常重要的傳導(dǎo)途徑。其中,JAK2是一種胞質(zhì)內(nèi)的非受體型可溶性酪氨酸蛋白激酶,是JAK的家族成員之一。研究表明,JAK2缺失細(xì)胞不能表達(dá)Th1類(lèi)細(xì)胞因子IFN-γ[19]。STAT4歸屬于一種能與靶基因調(diào)控區(qū)DNA結(jié)合的胞漿蛋白家族——STAT。當(dāng)STAT4基因被敲除時(shí),小鼠會(huì)發(fā)生Th1細(xì)胞生成障礙與Th1細(xì)胞缺陷的臨床表現(xiàn)[20]。
目前,運(yùn)動(dòng)科學(xué)領(lǐng)域中對(duì)IL-12與Th1/Th2平衡關(guān)系的研究還不多見(jiàn)。西班牙學(xué)者Giraldo等[21]發(fā)現(xiàn),無(wú)論是在55%VO2max強(qiáng)度下持續(xù)45 min,還是在70%VO2max強(qiáng)度下持續(xù)1 h的自行車(chē)運(yùn)動(dòng)后,健康女性外周血血清IL-12與IFN-γ的含量在運(yùn)動(dòng)后即刻與24 h的變化趨勢(shì)均相一致。美國(guó)學(xué)者Kohut等[22]發(fā)現(xiàn),一次遞增跑臺(tái)速度至力竭的運(yùn)動(dòng)后,對(duì)實(shí)驗(yàn)小鼠施加HSV-1病毒感染,病毒感染2 d后小鼠脾細(xì)胞分泌的IL-12與IFN-γ均顯著降低;感染7 d后IL-12仍顯著低于對(duì)照組,體現(xiàn)了它對(duì)Th1分化抑制的長(zhǎng)效性,但I(xiàn)FN-γ恢復(fù)至安靜組水平,其原因尚不清楚。此外,日本學(xué)者Suzuki等[23]測(cè)定了力竭運(yùn)動(dòng)后運(yùn)動(dòng)員血漿細(xì)胞因子含量的變化。結(jié)果發(fā)現(xiàn),作為IL-12的拮抗劑[24],血漿IL-12p40在運(yùn)動(dòng)后顯著升高,而IFN-γ活性下降,但血漿IL-12的含量在實(shí)驗(yàn)中未檢出。目前尚未見(jiàn)長(zhǎng)時(shí)間運(yùn)動(dòng)訓(xùn)練干預(yù)機(jī)體IL-12的實(shí)驗(yàn)報(bào)道。endprint
運(yùn)動(dòng)條件下Th1/Th2平衡與JAK2/STAT4信號(hào)通路關(guān)系方面,目前未見(jiàn)到JAK2測(cè)定的相關(guān)實(shí)驗(yàn)報(bào)道。STAT4方面,研究者將分別誘導(dǎo)Th1和Th2應(yīng)答的轉(zhuǎn)錄因子STAT4和GATA3作為一對(duì)指標(biāo),用PCR實(shí)驗(yàn)技術(shù)探討了9周遞增負(fù)荷運(yùn)動(dòng)過(guò)程中大鼠外周血白細(xì)胞STAT4 mRNA、GATA3 mRNA表達(dá)量的變化情況[7]。結(jié)果發(fā)現(xiàn),9周訓(xùn)練后大鼠STAT4/GATA3顯著低于對(duì)照組同時(shí)相,而1周的中等強(qiáng)度運(yùn)動(dòng)后大鼠STAT4/GATA3高于對(duì)照組同時(shí)相,且STAT4/GATA3與IFN-γ/IL-4的變化趨勢(shì)相一致。然而,STAT4 mRNA指標(biāo)本身的變化情況文獻(xiàn)并未報(bào)道。
本研究在測(cè)定血漿IFN-γ質(zhì)量濃度的同時(shí),測(cè)定了同一血樣血漿IL-12質(zhì)量濃度量與血淋巴細(xì)胞pJAK2、pSTAT4表達(dá)的變化情況。結(jié)果發(fā)現(xiàn),4周遞增負(fù)荷訓(xùn)練可導(dǎo)致大鼠血漿IL-12含量顯著降低(P<0.01),訓(xùn)練后7 d血漿IL-12質(zhì)量濃度量低于訓(xùn)練后24 h時(shí)相(見(jiàn)圖1)。且各實(shí)驗(yàn)大鼠血漿IL-12與IFN-γ的質(zhì)量濃度顯著相關(guān)(r=0.907,P<0.01)。此外,訓(xùn)練還導(dǎo)致了血淋巴細(xì)胞pJAK2與pSTAT4蛋白表達(dá)顯著下調(diào),而訓(xùn)練后7 d血淋巴細(xì)胞pJAK2與pSTAT4的蛋白表達(dá)水平均低于訓(xùn)練后24 h時(shí)相(圖2)。以上結(jié)果提示:4周遞增負(fù)荷訓(xùn)練可能影響了APC細(xì)胞的分泌作用,導(dǎo)致IL-12生成減少。在與Th1細(xì)胞細(xì)胞膜上IL-12R發(fā)生作用時(shí),不能提供充足的p35來(lái)結(jié)合IL-12R2,一定程度上抑制了JAK2相互聚集,并通過(guò)交互自身磷酸化作用而活化的反應(yīng)過(guò)程。同時(shí),IL-12R上的酪氨酸殘基的磷酸化作用也減弱,無(wú)法為STAT4提供足夠的停泊位點(diǎn)。在這樣的內(nèi)環(huán)境中,STAT4羥基酪氨酸磷酸化而激活為pSTAT4的作用受到抑制。由pSTAT4單體聚合形成的、用于穿越核膜識(shí)別其特異的DNA上的靶序列、啟動(dòng)IFN-γ mRNA轉(zhuǎn)錄的pSTAT4同源二聚體也生成減少(見(jiàn)圖3)。因此,Th1細(xì)胞合成IFN-γ的能力相對(duì)降低,分泌到血漿中的IFN-γ質(zhì)量濃度也顯著下降。訓(xùn)練對(duì)這一過(guò)程的抑制作用可以持續(xù)到末次訓(xùn)練后7 d。需要指出的是,本研究盡管為JAK2/STAT4通路及其上游因子在運(yùn)動(dòng)中Th1/Th2失衡的作用機(jī)制提供了實(shí)驗(yàn)依據(jù),但仍存在著不足之處:如研究中缺乏Th1細(xì)胞功能抑制的直接證據(jù)——Th1細(xì)胞分泌IFN-γ的水平與IFN-γ mRNA表達(dá)的變化指標(biāo),這也將是我們下一步研究需要解決的問(wèn)題之一。
Y代表酪氨酸殘基,P代表磷酸化過(guò)程,↓代表顯著降低,
-代表抑制作用
圖3 4周遞增負(fù)荷訓(xùn)練后JAK2/STAT4通路及
上游細(xì)胞因子的變化
此外,本研究還測(cè)定了各組大鼠血淋巴細(xì)胞JAK2、STAT4的表達(dá)情況。結(jié)果發(fā)現(xiàn),4周遞增負(fù)荷訓(xùn)練對(duì)血淋巴細(xì)胞JAK2與STAT4蛋白表達(dá)并無(wú)顯著影響(見(jiàn)圖2)。由此可見(jiàn),訓(xùn)練對(duì)JAK2與STAT4的表達(dá)影響不大,主要通過(guò)抑制其磷酸化過(guò)程,來(lái)抑制JAK2/STAT4信號(hào)通路的作用。
4周遞增負(fù)荷訓(xùn)練可有效抑制大鼠Th1免疫反應(yīng),誘發(fā)Th1/Th2平衡向Th2方向漂移,導(dǎo)致免疫失衡。該失衡作用可在訓(xùn)練后維持一段時(shí)間。
4周遞增負(fù)荷訓(xùn)練可能通過(guò)減少大鼠Th1細(xì)胞啟動(dòng)因子IL-12的分泌,抑制JAK2/STAT4信號(hào)通路中關(guān)鍵因子JAK2、STAT4的磷酸化過(guò)程,降低Th1類(lèi)細(xì)胞因子IFN-γ的合成。IL-12介導(dǎo)的JAK2/STAT4通路的抑制可能是大運(yùn)動(dòng)量訓(xùn)練導(dǎo)致Th1/Th2失衡的分子機(jī)制之一。
參考文獻(xiàn):
[1] Zhao G,Zhou S,Davie A,et al. Effects of moderate and high intensity exercise on T1/T2 balance[J]. Exerc Immunol Rev,2012,18:98-114.
[2] Lancaster G I,Halson S L,Khan Q,et al. Effects of acute exhaustive exercise and chronic exercise training on type 1 and type 2 T lymphocytes[J]. Exerc Immunol Rev,2004,10:91-106.
[3] Wang R,Chen P. Modulation of NKT cells and Th1/Th2 imbalance after alpha-GalCer treatment in progressive load-trained rats[J]. Int J Biol Sci,2009,5(4):338-343.
[4] 蘇利強(qiáng),張瑋,趙廣高,等. PKC在運(yùn)動(dòng)性免疫抑制發(fā)生過(guò)程中的作用[J]. 上海體育學(xué)院學(xué)報(bào),2011,35(3):56-59.
[5] Kohut M L,Martin A E,Senchina D S,et al. Glucocorticoids produced during exercise may be necessary for optimal virus-induced IL-2 and cell proliferation whereas both catecholamines and glucocorticoids may be required for adequate immune defense to viral infection [J]. Brain Behav Immun,2005,19(5):423-435.
[6] Yeh S H,Chuang H,Lin L W,et al. Regular Tai Chi Chuan exercise improves T cell helper function of patients with type 2 diabetes mellitus with an increase in T-bet transcription factor and IL-12 production[J]. Br J Sports Med,2009,43(11):845-850.endprint
[7] 趙影,陳佩杰,王茹. 運(yùn)動(dòng)性免疫失衡過(guò)程中轉(zhuǎn)錄因子的變化[J]. 體育科學(xué),2010,30(3):64-67.
[8] Jia Y,Jing J,Bai Y,et al. Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-κB signaling pathways [J]. Plos One,2011,6(10):e27006.
[9] Kim S,Oh J,Choi J,et al. Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production [J]. BMC Immunol,2008,9:64.
[10] Muthian G,Raikwar H P,Rajasingh J,et al. 1, 25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Th1 response in experimental allergic encephalomyelitis [J]. J Neurosci Res,2006,83(7):1299-1309.
[11] Kim H J,Chung D H,Kim M J,et al. Decreased phosphorylation of STAT-1,STAT-4 and cytokine release in MDR-TB patients with primary resistance[J]. Int J Tuberc Lung Dis,2008,12(9):1071-1076.
[12] Noon-Song E N,Ahmed C M,Dabelic R,et al. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ[J]. Biochem Biophys Res Commun,2011,410(3):648-653.
[13] Wang J S,Chen W L,Weng T P. Hypoxic exercise training reduces senescent t-lymphocyte subsets in blood [J]. Brain Behav Immun,2011,25(2):270-278.
[14] 何偉. 運(yùn)動(dòng)對(duì)人體免疫穩(wěn)態(tài)的影響的研究[D]. 成都:四川大學(xué),2006.
[15] Ogawa K,Oka J,Yamakawa J,et al. Habitual exercise did not affect the balance of type 1 and type 2 cytokines in elderly people[J]. Mech Ageing Dev,2003,124(8-9):951-956.
[16] Kotanides H,Reich N C. Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4 [J]. Science,1993,262(5137):1265-1267.
[17] Moser M,Murphy K M. Dendritic cell regulation of TH1-TH2 development[J]. Nat Immunol,2000,1(3):199-205.
[18] Magram J,Connaughton S E,Warrier R R,et al. IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses[J]. Immunity,1996,4(5):471-481.
[19] Neubauer H,Cumano A,Müller M,et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis[J]. Cell,1998,93(3):397-409.
[20] Kaplan M H,Wurster A L,Grusby M J. A signal transducer and activator of transcription (Stat) 4-independent pathway for the development of T helper type 1 cells[J]. J Exp Med,1998,188(6):1191-1196.
[21] Giraldo E,Garcia J J,Hinchado M D,et al. Exercise intensity-dependent changes in the inflammatory response in sedentary women: role of neuroendocrine parameters in the neutrophil phagocytic process and the pro-/anti-inflammatory cytokine balance[J]. Neuroimmunomodulation,2009,16(4):237-244.
[22] Kohut M L,Boehm G W,Moynihan J A. Prolonged exercise suppresses antigen-specific cytokine response to upper respiratory infection[J]. J Appl Physiol,2001,90(2):678-684.
[23] Suzuki K,Nakaji S,Kurakake S,et al. Exhaustive exercise and type-1/type-2 cytokine balance with special focus on interleukin-12 p40/p70[J]. Exerc Immunol Rev,2003,9:48-57.
[24] Gately M K,Carvajal D M,Connaughton S E,et al. Interleukin-12 antagonist activity of mouse interleukin-12 p40 homodimer in vitro and in vivo[J]. Ann N Y Acad Sci,1996,795:1-12.endprint
[7] 趙影,陳佩杰,王茹. 運(yùn)動(dòng)性免疫失衡過(guò)程中轉(zhuǎn)錄因子的變化[J]. 體育科學(xué),2010,30(3):64-67.
[8] Jia Y,Jing J,Bai Y,et al. Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-κB signaling pathways [J]. Plos One,2011,6(10):e27006.
[9] Kim S,Oh J,Choi J,et al. Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production [J]. BMC Immunol,2008,9:64.
[10] Muthian G,Raikwar H P,Rajasingh J,et al. 1, 25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Th1 response in experimental allergic encephalomyelitis [J]. J Neurosci Res,2006,83(7):1299-1309.
[11] Kim H J,Chung D H,Kim M J,et al. Decreased phosphorylation of STAT-1,STAT-4 and cytokine release in MDR-TB patients with primary resistance[J]. Int J Tuberc Lung Dis,2008,12(9):1071-1076.
[12] Noon-Song E N,Ahmed C M,Dabelic R,et al. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ[J]. Biochem Biophys Res Commun,2011,410(3):648-653.
[13] Wang J S,Chen W L,Weng T P. Hypoxic exercise training reduces senescent t-lymphocyte subsets in blood [J]. Brain Behav Immun,2011,25(2):270-278.
[14] 何偉. 運(yùn)動(dòng)對(duì)人體免疫穩(wěn)態(tài)的影響的研究[D]. 成都:四川大學(xué),2006.
[15] Ogawa K,Oka J,Yamakawa J,et al. Habitual exercise did not affect the balance of type 1 and type 2 cytokines in elderly people[J]. Mech Ageing Dev,2003,124(8-9):951-956.
[16] Kotanides H,Reich N C. Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4 [J]. Science,1993,262(5137):1265-1267.
[17] Moser M,Murphy K M. Dendritic cell regulation of TH1-TH2 development[J]. Nat Immunol,2000,1(3):199-205.
[18] Magram J,Connaughton S E,Warrier R R,et al. IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses[J]. Immunity,1996,4(5):471-481.
[19] Neubauer H,Cumano A,Müller M,et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis[J]. Cell,1998,93(3):397-409.
[20] Kaplan M H,Wurster A L,Grusby M J. A signal transducer and activator of transcription (Stat) 4-independent pathway for the development of T helper type 1 cells[J]. J Exp Med,1998,188(6):1191-1196.
[21] Giraldo E,Garcia J J,Hinchado M D,et al. Exercise intensity-dependent changes in the inflammatory response in sedentary women: role of neuroendocrine parameters in the neutrophil phagocytic process and the pro-/anti-inflammatory cytokine balance[J]. Neuroimmunomodulation,2009,16(4):237-244.
[22] Kohut M L,Boehm G W,Moynihan J A. Prolonged exercise suppresses antigen-specific cytokine response to upper respiratory infection[J]. J Appl Physiol,2001,90(2):678-684.
[23] Suzuki K,Nakaji S,Kurakake S,et al. Exhaustive exercise and type-1/type-2 cytokine balance with special focus on interleukin-12 p40/p70[J]. Exerc Immunol Rev,2003,9:48-57.
[24] Gately M K,Carvajal D M,Connaughton S E,et al. Interleukin-12 antagonist activity of mouse interleukin-12 p40 homodimer in vitro and in vivo[J]. Ann N Y Acad Sci,1996,795:1-12.endprint
[7] 趙影,陳佩杰,王茹. 運(yùn)動(dòng)性免疫失衡過(guò)程中轉(zhuǎn)錄因子的變化[J]. 體育科學(xué),2010,30(3):64-67.
[8] Jia Y,Jing J,Bai Y,et al. Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-κB signaling pathways [J]. Plos One,2011,6(10):e27006.
[9] Kim S,Oh J,Choi J,et al. Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production [J]. BMC Immunol,2008,9:64.
[10] Muthian G,Raikwar H P,Rajasingh J,et al. 1, 25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Th1 response in experimental allergic encephalomyelitis [J]. J Neurosci Res,2006,83(7):1299-1309.
[11] Kim H J,Chung D H,Kim M J,et al. Decreased phosphorylation of STAT-1,STAT-4 and cytokine release in MDR-TB patients with primary resistance[J]. Int J Tuberc Lung Dis,2008,12(9):1071-1076.
[12] Noon-Song E N,Ahmed C M,Dabelic R,et al. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ[J]. Biochem Biophys Res Commun,2011,410(3):648-653.
[13] Wang J S,Chen W L,Weng T P. Hypoxic exercise training reduces senescent t-lymphocyte subsets in blood [J]. Brain Behav Immun,2011,25(2):270-278.
[14] 何偉. 運(yùn)動(dòng)對(duì)人體免疫穩(wěn)態(tài)的影響的研究[D]. 成都:四川大學(xué),2006.
[15] Ogawa K,Oka J,Yamakawa J,et al. Habitual exercise did not affect the balance of type 1 and type 2 cytokines in elderly people[J]. Mech Ageing Dev,2003,124(8-9):951-956.
[16] Kotanides H,Reich N C. Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4 [J]. Science,1993,262(5137):1265-1267.
[17] Moser M,Murphy K M. Dendritic cell regulation of TH1-TH2 development[J]. Nat Immunol,2000,1(3):199-205.
[18] Magram J,Connaughton S E,Warrier R R,et al. IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses[J]. Immunity,1996,4(5):471-481.
[19] Neubauer H,Cumano A,Müller M,et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis[J]. Cell,1998,93(3):397-409.
[20] Kaplan M H,Wurster A L,Grusby M J. A signal transducer and activator of transcription (Stat) 4-independent pathway for the development of T helper type 1 cells[J]. J Exp Med,1998,188(6):1191-1196.
[21] Giraldo E,Garcia J J,Hinchado M D,et al. Exercise intensity-dependent changes in the inflammatory response in sedentary women: role of neuroendocrine parameters in the neutrophil phagocytic process and the pro-/anti-inflammatory cytokine balance[J]. Neuroimmunomodulation,2009,16(4):237-244.
[22] Kohut M L,Boehm G W,Moynihan J A. Prolonged exercise suppresses antigen-specific cytokine response to upper respiratory infection[J]. J Appl Physiol,2001,90(2):678-684.
[23] Suzuki K,Nakaji S,Kurakake S,et al. Exhaustive exercise and type-1/type-2 cytokine balance with special focus on interleukin-12 p40/p70[J]. Exerc Immunol Rev,2003,9:48-57.
[24] Gately M K,Carvajal D M,Connaughton S E,et al. Interleukin-12 antagonist activity of mouse interleukin-12 p40 homodimer in vitro and in vivo[J]. Ann N Y Acad Sci,1996,795:1-12.endprint