• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity Analysis for a New System of Parametric Generalized Mixed Implicity Equilibrium Problems in Banach Spaces

    2014-10-09 01:20:02DINGXieping

    DING Xieping

    (College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610066,Sichuan)

    1 Introduction

    In recent years,much attention has been devoted to developing general methods for the sensitivity analysis of solution set of various variational inclusions and equilibrium problems.From the mathematical and engineering points of view,sensitivity properties of various variational inclusions and equilibrium problems can provide new insight concerning the problem being studied and can stimulate ideas for solving these problems.The sensitivity analysis of solution set for various parametric variational inclusions have been studied extensively by many authors using quite different methods,see [1-21] and the references therein.It is worth mentioning that most of the results in the direction have been obtained in the setting of Hilbert spaces.

    Recently,Kazmi and Khan[22]studied sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-η-accretive mappings and Ding[23]studied sensitivity analysis for a system of parametric generalized implicit quasi-variational-like inclusions involving H-η-monotone mappings in uniformly smooth Banach spaces respectively.By using the Yosida approximation and Wiener-Hopf equation technique,Moudafi[24]and Huang et al[25]studied the sensitivity analysis of solutions for generalized mixed implicit equilibrium problems in Hilbert spaces.By using the technique of the system of auxiliary equation problems,Ding[26]studied sensitivity analysis for a system of generalized mixed implicity equilibrium problems in uniformly smooth Banach spaces.

    Inspired and motivated by the above works,we shall introduce and study a new system of parametric generalized mixed implicit equilibrium problems involving non-monotone set-valued mappings in real Banach spaces.First,an auxiliary mixed equilibrium problem(AMEP) is introduced.The existence and uniqueness of solutions of the AMEP is proved under quite mild assumptions without any coercive conditions.Next,by using the solution mapping of the AMEP,a system of parametric generalized equation problems(SPGEP) is considered and its equivalence with the SPGMIEP is also proved.By using a fixed point formulation of the SPGEP,we study the behavior and sensitivity analysis of solution set of the SPGMIEP.Under suitable assumptions,we prove that the solution set of the SPGMIEP is nonempty,closed and Lipschitz continuous with respect to the parameters.Our results are new,which improve and generalize some known results in this field.

    2 Preliminaries

    Let B be a real Banach space with dual space B*and let‖·‖denote the norm of B and B*and〈· ,· 〉 denote the duality pairing between B*and B.Let R=(-∞,+∞)and C(B)be the family of all nonempty compact subsets of B.

    Definition 2.1Let C be a closed convex subset of a Hausdorff topological vector space E.A real valued bifunction F:C×C→(-∞,∞)is said to be

    (i) monotone if

    (ii) α-strongly monotone if there exists a real α>0 such that

    (iii) δ-Lipschitz continuous if there exists a real δ>0 such that

    Remark 2.1Clearly,strong monotonicity of F implies monotonicity of F.

    Definition 2.2A mapping η:B ×B→B*is said to be

    (i)monotone if

    (ii)δ-strongly monotone if there exists a δ >0 such that

    (iii) τ-Lipschitz continuous if there exists a constant τ>0 such that

    (iv) affine in first argument if

    Definition 2.3The bifunction φ:B ×B→(-∞,+∞]is said to be skew-symmetric if

    The skew-symmetric bifunctions have the properties which can be considered an analogue of monotonicity of gradient and nonnegativity of a second derivative for the convex function.For the properties and applications of the skew-symmetric bifunction,the reader may consult Antipin[27].

    The following result is a direct consequence of Theorem 1 of Ding and Tan[28](also see Lemma 2.2 of Ding[29]).

    Lemma 2.1Let C be a nonempty convex subset of a topological vector space and let f:C×C→[-∞,+∞]be such that

    (i) f(x,x)≥0 for each x∈C;

    (ii) for each y∈C,x→f(x,y) is upper semicontinuous;

    (iii) for each x∈C,y→f(x,y) is convex;

    (iv) there exist a nonempty compact subset K of C and y∈K such that f(x,y) <0,?x∈C\K.

    Then there exists a∈K such that f(,y)≥0 for all y∈C.

    Lemma 2.2Let C be a closed convex subset of a reflexive Banach space B with intC≠?.Let F:C×C→R and φ:B ×B→R be two bifunctions, η:B ×B→B*be a mapping and ρ >0 be a positive number.Suppose the following conditions are satisfied:

    (i) F is monotone and δ-Lipschitz continuous such that F(x,x)≥0 for each x∈C;

    (ii) for each y∈C,x→F(x,y) is upper semicontinuous under weak topology and for each x∈C,y→F(x,y) is convex;

    (iii) ηis σ-strongly monotone and τ-Lipschitz continuous with η(x,y) +η(y,x) =0,?x,y∈B;

    (iv) ηis affine in first argument and continuous from weak topology in B to weak*topology in B*in second argument;

    (v) φis skew symmetric and weakly continuous,and φis proper convex in the first argument.

    Then for each x∈B,the following auxiliary mixed equilibrium problem (AMEP):find z∈C such that

    ProofFor each x∈B,define a bifunction f:C×C→R by

    Since F(z,z)≥0 for each z∈C and η(x,y) +η(y,x) =0,?x,y∈B,we have η(z,z) =0 for all z∈B,by the definition of f,we have that f(z,z)≥0,?z∈C.The condition (i) of Lemma 2.1 is satisfied.Note that for each y∈C,x→F(x,y) is upper semicontinuous under weak topology,φis weakly continuous,and ηis continuous from weak topology in B to weak*topology in B*in second argument,we have for each y∈C,z→f(z,y) is weakly upper semicontinuous and so the condition (ii) of Lemma 2.2 is satisfied.Since for each z∈C,y→F(z,y) is convex and φis convex in first argument,and ηis affine in first argument,we have that for each z∈C,y→f(z,y) is convex.The condition (iii) of Lemma 2.1 is satisfied.By (v),for each y∈C,z→φ(z,y) is proper convex,weakly continuous and int{y∈C:φ(y,y) <∞} =intC≠?.Take y*∈int{y∈C:φ(y,y) <∞}.By Proposition I.2.6 of Pascali and Sburlan[30], φ(· ,y*) is subdifferential at y*.Hence,we have

    Noting that φ(·,· ) is skew symmetric,we have

    Since F is δ-Lipschitz continuous,and ηis σ-strongly monotone and τ-Lipschitz continuous,we have

    Let R =[ρ(δ+‖r‖) +τ‖y*-x‖]/σand K ={z∈C:‖z-y*‖≤R}.Then K is a weakly compact convex subset in C and y*∈K.It follows from (2)that f(z,y*) <0 for all z∈C\K and hence the condition (iv) of Lemma 2.1 is satisfied.For each x∈B,by Lemma 2.1,there exists a point∈C such that f(,y)≥0,?y∈C.By the definition of f,we obtain that for each x∈B,

    i.e.,∈C is a solution of the AMEP(1).Now,we prove the uniqueness of solutions of the AMEP (1).For each x∈B,let z1,z2∈C be any two solutions of the AMEP,then from the condition (i) we have

    Noting η(z1,z2)+η(z2,z1) =0,taking y=z2in (3)and y=z1in(4) and adding these two inequalities,we obtain

    Assume z1≠z2.Noting that F is monotone,φis skew symmetric and ηis σ-strongly monotone,it follows from (5) that

    which is a contraction.Therefore,we must have z1=z2.This completes the proof.

    Remark 2.21)Lemma 2.2 improves Lemma 2.2 of Ding and Ho[21]in the following way:the coercive conditions of Lemma 2.2 in [21] is removed.

    2)By Lemma 2.2,we also obtain that for each x∈B,there exists a uniquesuch that

    and hence the solution mapping:X → C of the AMEP (1) is a well-defined single-valued mapping.

    Theorem 2.1In the assumptions of Lemma 2.2,if further assume that F is θ-strongly monotone,then the solution mapping:X →C of the AMEP

    (1) is τ/(σ+ρθ)-Lipschitz continuous.

    Remark 2.3Theorems 2.1 improves and generalizes Theorem 3.1 of Kazmi and Khan[31]and Theorem 2.1 of Ding and Ho[21]in following way:

    1)from Hilbert spaces to reflexive Banach spaces;

    2) the AMEP (1) is more general than the models in [21,31-33];

    3)the coercive conditions is removed.

    3 System of parametric generalized mixed implicit equilibrium problems

    In what follows,unless other specified,let R=( -∞,+∞).For each i∈{1,2},let Bibe a real reflexive Banach space with norm‖·‖iand the dual spacebe the dual pair betweenand Bi, Λiand Ωibe two open subsets of Biin which parameters λiand ωitakes the values,C(Bi) denotes the family of all nonempty compact subsets of Bi,and(· ,· ) be the Hausdorff metric on C(Bi) defined by

    For each i∈{1,2},let Cibe a nonempty closed convex subset of Biwith intCi≠?,Fi:Ci×Ci×Λi→R and φi:Ci×Ci→R be functions.For each i∈{1,2},let gi:Ci×Λi→Ciwith gi(Ci,λi) =Ci,?λi∈Λi, ηi:Bi×Bi×Ωi→and Mi:C1×C2×B1×B2×Ω1×Ω2→Bibe single-valued mappings,and Ti:C1×Ω1→C(B1) and Si:C2×Ω2→C(B2) be set-valued mappings.

    We consider the following system of parametric generalized mixed implicit equilibrium problems(SPGMIEP):for i∈{1,2} and given (λi,ωi)∈Λi×Ωi,find (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1)×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2)such that

    Special cases:

    (I) If for i∈{1,2},Let M1(x1,x2,u1,v1,ω1,ω2) =G1(x1,x2,ω1) +N1(u1,v1,ω1)and M2(x1,x2,u2,v2,ω1,ω2) =G2(x1,x2,ω2) +N2(u2,v2,ω2),where Gi:C1×C2×Ωi→Biand Ni:B1×B2×Ωi→Biand φi≡0,then the SPGMIEP (1) reduces to the following parametric problem:for given (λi,ωi)∈Λi×Ωi,find (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) such that

    (II) If for i∈{1,2},let Bi=B,Ci=C, Λi=Λ, Ωi=Ω,Fi=F,Mi=M,Ti=T,Si=S, ηi=η,gi=g and φi=φ,then the SPGMIEP (1) reduces to the following parametric problem:for given (λ,ω)∈Λ×Ω,find x∈C, (u,v)∈T(x,ω) ×S(x,ω) such that

    The problems(2) and (3) include many(parametric)generalized mixed equilibrium problems as special cases,for examples,see [21-26,31-33]and the references therein.

    Now,for i∈{1,2} and fixed (λi,ωi)∈Λi×Ωi,we assume that Fi(· ,· ,λi), η(· ,· ,ωi)and φisatisfy all conditions of Lemma 2.2.Related to SPGMIEP (1),we consider the following system of parametric equation problems (SPEP):find (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2),(u2,v2)∈T2(x1,ω1) ×S2(x2,ω2),such that

    Lemma 3.1For fixed (λi,ωi)∈Λi×Ωi,(x1,x2,u1,v1,u2,v2) with (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1)×S2(x2,ω2) is a solution of the SPEP (4) if and only if(x1,x2,u1,v1,u2,v2) with (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1)×S2(x2,ω2) is a solution of the SGMIEP (1).

    ProofFor fixed (λi,ωi)∈Λi×Ωi,if(x1,x2,u1,v1,u2,v2)with (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) is a solution of the SPEP (4),then we have

    Hence (x1,x2,u1,v1,u2,v2) with (x1,x2)∈C1×C2,(u1,v1)∈T1(x1) ×S1(x2), (u2,v2)∈T2(x1) ×S2(x2) is a solution of the SGMIEP (1).

    Conversely,for fixed (λi,ωi)∈Λi×Ωi,if(x1,x2,u1,v1,u2,v2) with (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) is a solution of the SGMIEP (1),then the system of inequalities (6) holds.For ρ1,ρ2>0,it follows from (6) that

    Let z1=g1(x1,λ1) -ρ1M1(x1,x2,u1,v1,ω1)∈B1and z2=g2(x2,λ2) -ρ2M2(x1,x2,u2,v2,ω2)∈B2,then we have

    Remark 3.1Lemma 3.1 improves Lemma 3.1 of Ding and Ho[21]and generalizes Lemma 2.3 of Huang et al[25]and Lemma 3.1 of Kazmi and Khan[31]in the following ways:

    1)from Hilbert spaces to Reflexive Banach spaces;

    2)from a generalized mixed equilibrium problem to the more general system of generalized mixed implicit equilibrium problems.

    Now,by Lemma 3.1,for each i∈{1,2} and given (λi,ωi)∈Λi×Ωi,we can define the solution set S(λ1,λ2,ω1,ω2) of the SPGMIEP (1) as follows:

    For i∈{1,2},we define the mappings Φ1:C1×C2×Λ1×Ω1×Ω2→2C1and Φ2:C1×C2×Λ2×Ω1×Ω2→2C2as follows:

    Again define a mapping Ψ:C1×C2×Λ1×Λ2×Ω1×Ω2→2B1×B2as follows:

    Lemma 3.2For i∈{1,2} and given (λi,ωi)∈Λi×Ωi, (x1,x2) is a fixed point of Ψif and only if(x1,x2)∈S(λ1,λ2,ω1,ω2),i.e,there exist(u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) such that(x1,x2,u1,u2,v1,v2) is a solution of the SPGMIEP (1).

    ProofFor each fixed (λi,ωi)∈Λi×Ωi,by the definition of Ψ, (x1,x2)∈C1×C2is a fixed point of Ψif and only if there exist(u1,v1)∈T1(x1,ω1) ×S1(x2,ω2) and (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2)such that

    By Lemma 3.1,the relation (14) holds if and only if(x1,x2,u1,u2,v1,v2)is a solution of the SPGMIEP(1).This completes the proof.

    Definition 3.1For i=1,2,Mi:C1×C2×B1×B2×Ω1×Ω2→Biis said to be (m(i,1),m(i,2),m(i,3),m(i,4),m(i,5),m(i,6))-mixed Lipschitz continuous in first to six arguments,if there exist constants m(i,1),m(i,2),m(i,3),m(i,4),m(i,5),m(i,6)>0 such that

    Definition 3.2For i∈{1,2},let Ti:B1×Ω1→C(B1) be a set-valued mapping.

    (i) Tiis said to be-μi-Lipschitz continuous in first argument,if there exists a constant μi>0 such that

    (ii) Tiis said to be-ti-Lipschitz continuous in second argument,if there exists a constant ti>0 such that

    Similarly,we can define the Lipschitz continuity of the mappings Si:C2×Ω2→C(B2).

    The modulus of smoothness of a Banach space B is the function ρB:[0,∞)→[0,∞) defined by

    Definition 3.3Let K be a closed convex subset of a Banach space B.A mapping g:K→K is said to be γ-strongly accretive if,for any x,y∈K,there exist j(x-y)∈J(x-y) and a constant γ>0 such that

    where J:B→2B*is the normalized duality mapping defined by

    Lemma 3.3[34]Let B be a uniformly smooth Banach space and J be the normalized duality mapping from B into B*.Then,for all x,y∈B,we have

    Lemma 3.4[35]Let(X,d) be a complete metric space and T1,T2:X→C(X) be two set-valued contractive mappings with same contractive constants θ∈(0,1),i.e.,

    Theorem 3.1For each i∈{1,2},let Cibe a nonempty closed convex subset of a uniformly smooth Banach space Biwith ρBi(t)≤Dit2for some Di>0.For fixed (λi,ωi)∈Λi×Ωi,Fi:Ci×Ci×Λi→R,ηi:Bi×Bi×Ωi→Biand φi:Ci×Ci→R satisfy all conditions of Theorem 2.1 where F, θ, δ, η, τ, σ and φare replaced by Fi, θi, δi, ηi, τi, σiand φi.Let Mi:C1×C2×B1×B2×Ω1×Ω2→Bibe(m(i,1),m(i,2),m(i,3),m(i,4))-mixed Lipschitz continuous in first to fourth arguments,Ti:B1×Ω1→C(B1) be-μi-Lipschitz continuous in first argument,Si:B2×Ω2→CB(B2) be-si-Lipschitz continuous in first argument and gi:Ki×Λi→Kibe γi-strongly accretive and βi-lipschitz continuous in first argument.If the following conditions hold for ρ1,ρ2>0:

    Then for any (x1,x2,λ1,λ2,ω1,ω2)∈C1×C2×Λ1×Λ2×Ω1×Ω2, Ψ(x1,x2,λ1,λ2,ω1,ω2)∈C(B1×B2) and Ψis a uniform*-contraction mapping with respect to (λi,ωi)∈Λi×Ωi,i=1,2,where*is a Hausdorff metric on C(B1×B2).Moreover,for each fixed (λi,ωi)∈Λi×Ωi,i=1,2,the solution set S(λ1,λ2,ω1,ω2) of the SPGMIEP (1) is nonempty closed.

    ProofLet(x1,x2,λ1,λ2,ω1,ω2) be an arbitrary element in C1×C2×Λ1×Λ2×Ω1×Ω2.Since for i=1,2,Tiand Siare all compact-valued,and,giand Miare all continuous.By the definitions of Φ1and Φ2,we have Φ1(x1,x2,λ1,ω1,ω2)∈C(B1) and Φ2(x1,x2,λ2,ω1,ω2)∈C(B2)and hence Ψ(x1,x2,λ1,λ2,ω1,ω2)∈C(B1×B2).For any fixed(x1,x2,λ1,λ2,ω1,ω2),(1,2,λ1,λ2,ω1,ω2)∈C1×C2×Λ1×Λ2×Ω1×Ω2and for each(a1,a2)∈Ψ(x1,x2,λ1,λ2,ω1,ω2),by definitions of Ψ and Φi,i∈{1,2},we have that there exist(u1,v1)∈T1(x1,ω1) ×S1(x2,ω2) and (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) such that

    This shows that the solution set S(λ1,λ2,ω1,ω2)) of the SPGIQVLI(1) is a*-Lipschitz continuous mapping from Λ1×Λ2×Ω1×Ω2into B1×B2.This completes the proof.

    [1] Dafermos S.Sensitivity analysis in variational inequalities[J].Math Oper Res,1988,13:421-434.

    [2] Mukherjee R N,Verma H L.Sensitivity analysis of generalized variational inequalities[J].J Math Anal Appl,1992,167:299-304.

    [3] Noor M A.Sensitivity analysis for quasi-variational inequalities[J].J Optim Theory Appl,1997,95:399-407.

    [4] Yen N D.Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint [J].Math Oper Res,1995,20:695-708.

    [5] Verma R U.Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J].Appl Math Lett,2006,19:1409-1413.

    [6] Robinson S M.Sensitivity analysis for variational inequalities by normal-map technique[C]//Giannessi F,Maugeri A.Variational Inequalities and Network Equilibrium Problems.New York:Plenum Press,1995.

    [7] Adly S.Perturbed algorithms and sensitivity analysis for a general class of variational inclusions [J].J Math Anal Appl,1996,201:609-630.

    [8] Noor M A,Noor K I.Sensitivity analysis for quasi-variational inclusions[J].J Math Anal Appl,1999,236:290-299.

    [9] Agarwal R P,Cho Y J,Huang N J.Sensitivity analysis for strongly nonlinear quasi-variational inclusions[J].Appl Math Lett,2000,13(6):19-24.

    [10] Ding X P,Lou C L.On parametric generalized quasivariational inequalities[J].J Optim Theory Appl,1999,100(1):195-205.

    [11] Liu Z,Debnath L,Kang S M,et al.Sensitivity analysis for parametric completely generalized nonlinear implicit quasivariational inclusions[J].J Math Anal Appl,2003,277:142-154.

    [12] Salahuddin.Parametric generalized set-valued variational inclusions and resolvent equations[J].J Math Anal Appl,2004,198:146-156.

    [13] Park J Y,Jeong J U.Parametric generalized mixed variational inequalities[J].Appl Math Lett,2004,17:43-48.

    [14] Ding X P.Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions[J].Appl Math Lett,2004,17:225-235.

    [15] Ding X P.Sensitivity analysis of solution set for a new class of generalized implicit quasi-variational inclusions[J].Fixed Point Theory and Applications,2006,7:81-94.

    [16] Ding X P.Parametric completely generalized nonlinear implicit quasi-variational inclusions involving h-maximal monotone mappings[J].J Comput Appl Math,2005,182(2):252-289.

    [17] Peng J W,Long X L.Sensitivity analysis for parametric completely generalized strongly nonlinear implicit quasi-variational inclusions[J].Comput Math Appl,2005,50:869-880.

    [18] Agarwal R P,Huang N J,Tan M Y.Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions[J].Appl Math Lett,2004,17:345-352.

    [19] Ding X P,Yao J C.Sensitivity analysis for a system of parametric mixed quasi-variational inclusions[J].J Nonlinear Convex A-nal,2007,8(2):211-225.

    [20] Ding X P,Wang Z B.Sensitivity analysis for a system of parametric generalized mixed quasi-variational inclusions involving (K,η)-monotone mappings[J].Appl Math Comput,2009,214:318-327.

    [21] Ding X P,Ho J L.New Iterative algorithm for solving a system of generalized mixed implicit equilibrium problems in Banach spaces[J].Taiwan J Math.2011,15(2):673-695.

    [22]Kazmi K R,Khan E A.Sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-η-accretive mappings[J].J Math Anal Appl.2008,337:1198-1211.

    [23] Ding X P.System of parametric generalized implicit quasi-variational-like inclusions involving H-η-monotone operators in Banach spaces[J].J Sichuan Normal Univ:Natural Sci,2010,33(6):1-11.

    [24] Moudafi A.Mixed equilibrium problems:sensitivity analysis and algorithmic aspects[J].Comput Math Appl,2002,44:1099-1108.

    [25]Huang N J,Lan H Y,Cho Y J.Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings[J].J Comput Appl Math,2006,196:608-618.

    [26]Ding X P.Sensitivity analysis for a system of generalized mixed implicit equilibrium problems in uniformly smooth Banach spaces[J].Nonlinear Anal,2010,73:1264-1276.

    [27] Antipin A S.Iterative gradient prediction-type methods for computing fixed-point of extremal mappings[C]//Guddat J,Jonden H Th,Nizicka F,et al.Parametric Optimization and Related Topics IV.Frankfurt Main:Peter Lang,1997:11-24.

    [28] Ding X P,Tan K K.A minimax inequality with applications to existence of equilibrium point and fixed point theorems [J].Colloq Math,1992,63:233-247.

    [29] Ding X P.Existence and algorithm of solutions for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces[J].Acta Math Sinica,2012,28(3):503-514.

    [30] Pascali D,Surian S.Nonlinear Mappings of Monotone Type[M].Alphen aan den Rijn:Sijthoff and Noordhoff International Publishers,1978.

    [31] Kazmi K R,Khan F A.Existence and iterative approximation of solutions of generalized mixed equilibrium problems [J].Comput Math Appl,2008,56:1314-1321.

    [32] Ding X P.Existence and algorithm of solutions for a system of generalized mixed implicit equilibrium problems in Banach spaces[J].Appl Math Mech,2010,31(9):1049-1062.

    [33] Ding X P.Auxiliary principle and approximation solvability for system of new generalized mixed equilibrium problems in reflexive Banach spaces[J].Appl Math Mech,2011,32(2):231-240.

    [34]Petryshyn W V.A characterization of strictly convexity of Banach spaces and other uses of duality mappings [J].J Funct Anal,1970,6:282-291.

    [35] Lim T C.On fixed point stability for set-valued contractive mappings with application to generalized differential equations [J].J Math Anal Appl,1985,110:436-441.

    [36] Nadler S B.Multivalued contraction mapping[J].Pacific J Math,1969,30:475-488.

    久久精品久久久久久噜噜老黄 | 黄色女人牲交| 人人妻,人人澡人人爽秒播| 波多野结衣高清无吗| 欧美激情在线99| 中文字幕av在线有码专区| 九色国产91popny在线| 国产成人aa在线观看| 欧美色视频一区免费| 亚洲欧美激情综合另类| 国产成人影院久久av| 免费av毛片视频| 日本免费a在线| av天堂在线播放| 天堂动漫精品| 狠狠狠狠99中文字幕| 午夜激情福利司机影院| 观看免费一级毛片| 少妇高潮的动态图| 日本与韩国留学比较| 床上黄色一级片| 俺也久久电影网| 免费黄网站久久成人精品 | 国产伦精品一区二区三区视频9| 一a级毛片在线观看| 亚洲一区二区三区色噜噜| 久久久色成人| 美女cb高潮喷水在线观看| 91久久精品国产一区二区成人| 欧美日韩黄片免| 变态另类成人亚洲欧美熟女| 变态另类成人亚洲欧美熟女| 亚洲va日本ⅴa欧美va伊人久久| 国产精品乱码一区二三区的特点| 国产老妇女一区| 亚洲一区二区三区色噜噜| 国产欧美日韩一区二区三| 18美女黄网站色大片免费观看| 欧美高清性xxxxhd video| 99国产精品一区二区三区| 最好的美女福利视频网| 欧美激情在线99| 欧美极品一区二区三区四区| 久久国产精品影院| 久久久久久久久大av| 97热精品久久久久久| 久久精品国产亚洲av天美| 激情在线观看视频在线高清| 国产精品,欧美在线| a在线观看视频网站| 尤物成人国产欧美一区二区三区| 白带黄色成豆腐渣| 91狼人影院| 久久九九热精品免费| 亚洲黑人精品在线| 天天躁日日操中文字幕| 国产亚洲av嫩草精品影院| 国产成人av教育| 国产精品亚洲av一区麻豆| 中文在线观看免费www的网站| 亚洲中文日韩欧美视频| 亚洲精品在线观看二区| 极品教师在线免费播放| 国产视频内射| 免费无遮挡裸体视频| av欧美777| 性插视频无遮挡在线免费观看| 国产成人啪精品午夜网站| 白带黄色成豆腐渣| 深夜精品福利| 老司机午夜十八禁免费视频| 91九色精品人成在线观看| 日本与韩国留学比较| 制服丝袜大香蕉在线| 欧美中文日本在线观看视频| av福利片在线观看| 精品午夜福利在线看| 亚洲av免费高清在线观看| 怎么达到女性高潮| 国产男靠女视频免费网站| 免费看美女性在线毛片视频| 直男gayav资源| 国产视频一区二区在线看| 我的女老师完整版在线观看| 18禁黄网站禁片午夜丰满| 欧美高清成人免费视频www| 久久久久亚洲av毛片大全| av在线天堂中文字幕| 美女高潮的动态| 天天一区二区日本电影三级| 久久精品国产清高在天天线| 亚洲成人久久爱视频| 午夜免费男女啪啪视频观看 | 欧美日韩国产亚洲二区| 黄色女人牲交| 三级毛片av免费| 国产伦一二天堂av在线观看| 久久久成人免费电影| 日韩高清综合在线| 午夜免费男女啪啪视频观看 | 99久久久亚洲精品蜜臀av| 女生性感内裤真人,穿戴方法视频| 欧美日韩福利视频一区二区| 欧美乱色亚洲激情| 美女黄网站色视频| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 精品人妻视频免费看| 免费搜索国产男女视频| 日本在线视频免费播放| 亚洲电影在线观看av| 麻豆国产97在线/欧美| 狂野欧美白嫩少妇大欣赏| 中文资源天堂在线| 丰满的人妻完整版| 成人av在线播放网站| 欧美日韩亚洲国产一区二区在线观看| 99久久精品国产亚洲精品| 亚洲av成人av| 在线观看美女被高潮喷水网站 | 热99re8久久精品国产| 亚洲av不卡在线观看| 欧美潮喷喷水| 人妻夜夜爽99麻豆av| 亚洲国产欧美人成| 首页视频小说图片口味搜索| 国产老妇女一区| 久久人人爽人人爽人人片va | 在线观看免费视频日本深夜| 中文字幕熟女人妻在线| 免费看日本二区| 99久久九九国产精品国产免费| 日韩欧美一区二区三区在线观看| 日韩中字成人| 国产欧美日韩一区二区精品| 欧美精品啪啪一区二区三区| 波多野结衣高清作品| 可以在线观看的亚洲视频| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 18禁裸乳无遮挡免费网站照片| 国产在线精品亚洲第一网站| 欧美日本亚洲视频在线播放| 亚洲国产精品成人综合色| 国产av一区在线观看免费| 亚洲电影在线观看av| 女生性感内裤真人,穿戴方法视频| 国产69精品久久久久777片| 亚洲色图av天堂| 五月玫瑰六月丁香| 亚洲欧美精品综合久久99| 午夜两性在线视频| 成年女人永久免费观看视频| 一本久久中文字幕| 欧美极品一区二区三区四区| 亚洲成人久久爱视频| 日本一二三区视频观看| 欧美3d第一页| 91狼人影院| 国产乱人视频| 琪琪午夜伦伦电影理论片6080| 午夜福利在线在线| 亚洲精品日韩av片在线观看| 全区人妻精品视频| 2021天堂中文幕一二区在线观| 国产黄a三级三级三级人| 午夜影院日韩av| 3wmmmm亚洲av在线观看| 国产精品三级大全| 真人一进一出gif抽搐免费| 久久精品国产亚洲av天美| 久久精品国产99精品国产亚洲性色| 99国产精品一区二区蜜桃av| 午夜激情福利司机影院| 小蜜桃在线观看免费完整版高清| ponron亚洲| 国产高清视频在线观看网站| 美女cb高潮喷水在线观看| 亚洲国产精品久久男人天堂| 黄色配什么色好看| 三级国产精品欧美在线观看| 久久欧美精品欧美久久欧美| 亚洲激情在线av| 丰满乱子伦码专区| 国产人妻一区二区三区在| 亚洲在线观看片| 网址你懂的国产日韩在线| 精品一区二区三区人妻视频| 国产私拍福利视频在线观看| 岛国在线免费视频观看| 国产欧美日韩一区二区精品| 国产免费av片在线观看野外av| 深夜精品福利| 日本免费a在线| 国产亚洲欧美98| 亚洲三级黄色毛片| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩无卡精品| 听说在线观看完整版免费高清| 可以在线观看的亚洲视频| 国产精品电影一区二区三区| 精品不卡国产一区二区三区| 国产精品av视频在线免费观看| 毛片一级片免费看久久久久 | 国产精品久久久久久精品电影| 91在线精品国自产拍蜜月| 97超级碰碰碰精品色视频在线观看| 看黄色毛片网站| 日韩欧美 国产精品| 有码 亚洲区| 亚洲成人久久爱视频| 久久99热6这里只有精品| 搡老妇女老女人老熟妇| 99热6这里只有精品| 搡老熟女国产l中国老女人| 村上凉子中文字幕在线| 欧美性猛交╳xxx乱大交人| 高清毛片免费观看视频网站| 亚洲熟妇中文字幕五十中出| 亚洲精品影视一区二区三区av| 一级av片app| 99久久精品一区二区三区| 少妇的逼好多水| 1024手机看黄色片| 天堂网av新在线| 成人av一区二区三区在线看| 九九久久精品国产亚洲av麻豆| 在线观看免费视频日本深夜| 国产精品综合久久久久久久免费| www.999成人在线观看| 日本 欧美在线| 日本三级黄在线观看| 亚洲国产精品合色在线| 亚洲片人在线观看| 别揉我奶头~嗯~啊~动态视频| 少妇高潮的动态图| 日韩欧美免费精品| 日韩欧美在线乱码| 97超视频在线观看视频| 欧美xxxx性猛交bbbb| av天堂中文字幕网| 国产精品女同一区二区软件 | 成人永久免费在线观看视频| 男女床上黄色一级片免费看| 欧美成人免费av一区二区三区| 1000部很黄的大片| 午夜免费激情av| 亚洲va日本ⅴa欧美va伊人久久| 精品久久国产蜜桃| 国产色婷婷99| 国产精品,欧美在线| 久久精品国产99精品国产亚洲性色| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看| 成人美女网站在线观看视频| 国产久久久一区二区三区| 别揉我奶头 嗯啊视频| 特级一级黄色大片| 最好的美女福利视频网| 国产精品自产拍在线观看55亚洲| bbb黄色大片| 午夜视频国产福利| 日韩免费av在线播放| 国产成人福利小说| 国产日本99.免费观看| 亚洲精品在线美女| 欧美xxxx黑人xx丫x性爽| 亚洲,欧美,日韩| АⅤ资源中文在线天堂| 最近最新中文字幕大全电影3| 精品久久久久久,| 99在线视频只有这里精品首页| 激情在线观看视频在线高清| 一夜夜www| 中文字幕高清在线视频| 日本精品一区二区三区蜜桃| 亚洲不卡免费看| 国产野战对白在线观看| 精品无人区乱码1区二区| 国产一区二区三区视频了| 久久亚洲真实| 丁香六月欧美| 色在线成人网| 我要搜黄色片| 一进一出抽搐动态| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久亚洲 | 久久久久久久精品吃奶| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 国产精品女同一区二区软件 | 欧美另类亚洲清纯唯美| 日韩精品中文字幕看吧| 久久精品国产亚洲av香蕉五月| 在线观看午夜福利视频| 美女被艹到高潮喷水动态| 色噜噜av男人的天堂激情| 99在线视频只有这里精品首页| 亚洲最大成人中文| 久久人人爽人人爽人人片va | 成人高潮视频无遮挡免费网站| 久久精品久久久久久噜噜老黄 | av中文乱码字幕在线| 午夜亚洲福利在线播放| 国产综合懂色| 91午夜精品亚洲一区二区三区 | 午夜福利在线观看吧| 久久久久久久亚洲中文字幕 | 欧美黄色淫秽网站| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 十八禁国产超污无遮挡网站| 日韩欧美精品v在线| 国产精品久久视频播放| 亚洲在线观看片| 国产精品影院久久| 亚洲精品影视一区二区三区av| 国产av麻豆久久久久久久| 一级a爱片免费观看的视频| 午夜亚洲福利在线播放| 中文字幕免费在线视频6| 亚洲精品一卡2卡三卡4卡5卡| 97超视频在线观看视频| 国产淫片久久久久久久久 | 97碰自拍视频| 日韩av在线大香蕉| 99久久成人亚洲精品观看| 免费在线观看影片大全网站| 俄罗斯特黄特色一大片| 亚洲欧美激情综合另类| 国产乱人伦免费视频| АⅤ资源中文在线天堂| 老女人水多毛片| 搡女人真爽免费视频火全软件 | 一个人观看的视频www高清免费观看| 91狼人影院| 亚洲最大成人av| 丁香六月欧美| 90打野战视频偷拍视频| 国产亚洲精品av在线| a级毛片a级免费在线| 美女被艹到高潮喷水动态| 一二三四社区在线视频社区8| 亚洲精品456在线播放app | 最近最新免费中文字幕在线| 国产精品永久免费网站| 不卡一级毛片| 偷拍熟女少妇极品色| 亚洲美女搞黄在线观看 | 直男gayav资源| 91字幕亚洲| 亚洲黑人精品在线| 欧美潮喷喷水| 一级a爱片免费观看的视频| 亚洲欧美清纯卡通| 91九色精品人成在线观看| 97超视频在线观看视频| 国产成人欧美在线观看| 精品一区二区三区视频在线观看免费| a级毛片免费高清观看在线播放| 国产精品永久免费网站| 身体一侧抽搐| 久久国产精品影院| 少妇的逼好多水| 最近最新中文字幕大全电影3| 亚洲自拍偷在线| 国产高清视频在线观看网站| 亚洲av日韩精品久久久久久密| xxxwww97欧美| 一个人看的www免费观看视频| 亚洲av免费在线观看| 国产视频内射| 免费无遮挡裸体视频| 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利视频在线观看一区| 日韩欧美 国产精品| 嫩草影院入口| 麻豆成人av在线观看| 嫩草影院入口| 午夜两性在线视频| 一级作爱视频免费观看| 国产精品久久久久久亚洲av鲁大| 最新在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 男女下面进入的视频免费午夜| 免费黄网站久久成人精品 | 极品教师在线视频| 精品国产三级普通话版| 国产 一区 欧美 日韩| 欧美黑人欧美精品刺激| 99久久精品一区二区三区| 国产一区二区亚洲精品在线观看| 搡老熟女国产l中国老女人| 我要搜黄色片| 757午夜福利合集在线观看| 亚洲国产精品成人综合色| 黄色日韩在线| 一本一本综合久久| 亚洲av成人不卡在线观看播放网| 欧美丝袜亚洲另类 | 欧美日韩乱码在线| 国产乱人伦免费视频| 欧美成人一区二区免费高清观看| 国产一级毛片七仙女欲春2| 最近在线观看免费完整版| 一区二区三区高清视频在线| 日本撒尿小便嘘嘘汇集6| 色在线成人网| 日本在线视频免费播放| 天堂动漫精品| 亚洲午夜理论影院| 亚洲欧美日韩卡通动漫| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 久久欧美精品欧美久久欧美| 91麻豆av在线| 香蕉av资源在线| 国产在线精品亚洲第一网站| 久久久久久大精品| 免费看光身美女| 男女视频在线观看网站免费| 午夜两性在线视频| bbb黄色大片| 亚洲美女黄片视频| 精品久久久久久成人av| 久久久久久久久久黄片| 人人妻人人看人人澡| 观看美女的网站| 国产白丝娇喘喷水9色精品| 久久久久九九精品影院| 91字幕亚洲| 欧美3d第一页| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 嫩草影院精品99| 亚洲最大成人中文| 美女cb高潮喷水在线观看| 国内少妇人妻偷人精品xxx网站| 欧美色欧美亚洲另类二区| 精华霜和精华液先用哪个| 99久久成人亚洲精品观看| 精品午夜福利在线看| 少妇的逼水好多| 一夜夜www| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| 精品久久久久久,| 亚洲不卡免费看| 精品午夜福利在线看| 中文字幕av在线有码专区| 嫩草影院新地址| av天堂中文字幕网| 亚洲人成电影免费在线| 丁香欧美五月| 观看免费一级毛片| 精品久久久久久成人av| 两个人的视频大全免费| 最后的刺客免费高清国语| 国产精品一区二区三区四区免费观看 | 1024手机看黄色片| av在线观看视频网站免费| 色av中文字幕| 波多野结衣高清作品| 18+在线观看网站| 日本a在线网址| 三级男女做爰猛烈吃奶摸视频| 久9热在线精品视频| 日韩欧美国产一区二区入口| 亚洲久久久久久中文字幕| 黄色女人牲交| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区| 国产在线精品亚洲第一网站| 色哟哟·www| av黄色大香蕉| 精品乱码久久久久久99久播| 亚洲午夜理论影院| 亚洲精华国产精华精| 免费在线观看影片大全网站| 男人狂女人下面高潮的视频| 日韩欧美三级三区| 搡老熟女国产l中国老女人| 欧美成人a在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产99精品国产亚洲性色| 色综合亚洲欧美另类图片| 国产精品野战在线观看| 女人十人毛片免费观看3o分钟| 亚洲精品在线美女| 欧美黄色淫秽网站| 黄片小视频在线播放| 国产亚洲精品综合一区在线观看| 最近最新免费中文字幕在线| 一级黄色大片毛片| 日韩高清综合在线| 在线天堂最新版资源| 国产亚洲av嫩草精品影院| 国产视频一区二区在线看| 毛片一级片免费看久久久久 | 欧美潮喷喷水| 精品久久久久久久久av| 可以在线观看毛片的网站| 麻豆国产97在线/欧美| 国产激情偷乱视频一区二区| 亚洲aⅴ乱码一区二区在线播放| 永久网站在线| 久久草成人影院| 99热只有精品国产| 91狼人影院| 日韩高清综合在线| 亚洲真实伦在线观看| 尤物成人国产欧美一区二区三区| 一个人免费在线观看的高清视频| 免费av不卡在线播放| 国产精品美女特级片免费视频播放器| 精品久久久久久久久亚洲 | 成人毛片a级毛片在线播放| 99久国产av精品| 欧美精品国产亚洲| 亚洲无线观看免费| 高清毛片免费观看视频网站| 日本与韩国留学比较| 乱码一卡2卡4卡精品| 黄色视频,在线免费观看| 小说图片视频综合网站| 99久久精品国产亚洲精品| 丰满的人妻完整版| 中文资源天堂在线| 国产精华一区二区三区| 村上凉子中文字幕在线| 精品一区二区三区av网在线观看| 免费大片18禁| 日本黄大片高清| 99久国产av精品| 久久人人爽人人爽人人片va | 亚洲狠狠婷婷综合久久图片| 国产视频一区二区在线看| 国产视频内射| 欧美黄色片欧美黄色片| 亚洲va日本ⅴa欧美va伊人久久| 嫁个100分男人电影在线观看| 午夜影院日韩av| 久久久久久久亚洲中文字幕 | 免费av毛片视频| 91在线观看av| 免费观看的影片在线观看| 午夜福利18| 男女那种视频在线观看| 免费观看人在逋| 欧美日韩黄片免| 国产精品久久久久久久久免 | 乱码一卡2卡4卡精品| 偷拍熟女少妇极品色| 国产极品精品免费视频能看的| 男人狂女人下面高潮的视频| 哪里可以看免费的av片| 国产乱人伦免费视频| x7x7x7水蜜桃| 99热只有精品国产| 黄色配什么色好看| 51国产日韩欧美| 亚洲综合色惰| 国产精品亚洲美女久久久| 日韩亚洲欧美综合| 欧美bdsm另类| 人人妻人人看人人澡| 18禁裸乳无遮挡免费网站照片| 午夜福利18| 免费在线观看日本一区| 久久亚洲真实| 最好的美女福利视频网| 天堂网av新在线| 亚洲国产精品成人综合色| 男人舔奶头视频| av在线老鸭窝| 51午夜福利影视在线观看| 一进一出抽搐gif免费好疼| 久久伊人香网站| 国内毛片毛片毛片毛片毛片| 免费在线观看影片大全网站| 亚洲不卡免费看| 欧美性猛交╳xxx乱大交人| 欧美日韩黄片免| 亚洲久久久久久中文字幕| 淫秽高清视频在线观看| 亚洲 欧美 日韩 在线 免费| 老司机福利观看| 淫秽高清视频在线观看| 成年女人看的毛片在线观看| 校园春色视频在线观看| 丰满乱子伦码专区| 欧美三级亚洲精品| 色av中文字幕| 我要看日韩黄色一级片| 三级国产精品欧美在线观看| 亚洲国产精品久久男人天堂| 免费大片18禁| 国产爱豆传媒在线观看| 国产综合懂色| 欧美zozozo另类| av天堂在线播放| 啦啦啦观看免费观看视频高清| 毛片一级片免费看久久久久 | 久久精品国产清高在天天线| 伊人久久精品亚洲午夜| 日韩有码中文字幕| 美女黄网站色视频| 激情在线观看视频在线高清| 亚洲成a人片在线一区二区| 哪里可以看免费的av片| 女同久久另类99精品国产91| 精品午夜福利视频在线观看一区| 综合色av麻豆| 我的老师免费观看完整版|