• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research of Energy-saving Control of Oil-well Power Heater Based on RNN Neural Network

    2014-09-14 06:55:42SUNJingenYANGYang
    沈陽理工大學(xué)學(xué)報 2014年4期
    關(guān)鍵詞:金發(fā)

    SUN Jingen,YANG Yang

    (Shenyang Ligong University,Shenyang 110159,China)

    Research of Energy-saving Control of Oil-well Power Heater Based on RNN Neural Network

    SUN Jingen,YANG Yang

    (Shenyang Ligong University,Shenyang 110159,China)

    For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.

    RNN neural network;oil-wells;power heating;energy-saving

    As the environment is getting worse and worse,people′s daily life has been affected.So we must strive to develop green economy and strengthen energy conservation and emissions reduction measures.Oil exploitation is a relatively large energy consuming industry,so it needs energy conservation and emissions reduction.In oil exploitation,beam pumping unit is the most commonly used oil extraction equipment,and the use count is huge.As to how to decrease the energy consumption of the pumping unit,the related articles present methods of energy conservation[1].For most of the oil field,due to the long-term exploitation,the oil wells have no enough liquid supplying and its submergence depth is very low and there are complicated conditions of oil extraction such as high viscosity and wax,sandy,too much gas,flooded and strong corrosion and so on appear,In order to guarantee the normal work and oil production of the pumping unit,for oil wells which have high viscosity and,wax and,sandy,the pumping unit always configures power heaters which can heat the oil wells,to lower oil viscosity and lighten the load of the pumping unit.In this way,it can not only increase oil production,but also decrease the failure rate of the pumping unit[2].The power consumption of the pumping unit equipped with power heaters includes two parts,the power consumption of motor and that of the power heater.The second part almost accounts for half of the whole power consumption.So decreasing the power consumption of the power heater can directly reduce the power consumption of the pumping unit.Aiming at the current situation of power heater control and energy-saving measures,the article proposes an energy-saving control method of the oil well power heater based on RNN neural network.The core of the method is forecasting the polished rod load of the pumping unit through RNN neural network and constituting a closed-loop control of the power heater by the polished rod load.The experimental data show that the control method is completely feasible.It can decrease the power consumption of the power heater and the energy-saving effect is obvious.It can achieve the purpose of energy conservation and emissions reduction of the oil field[3].

    1 THE OVERVIEW OF THE CONTROL METHOD OF OIL-WELL POWER HEATER

    With the continuous deepening of the oil field development,for the oil production plants based on high pour-point oil,the pumping unit must configures power heater through which heat the oil and light it,so that we can lift the crude oil to the ground smoothly.At present the physical methods of oil well heating includes two kinds.One is hollow rod hot-line;the other is the energy into heat energy and lighting the crude oil by heating it in order to lift it to the ground.At present,there are three kinds of commonly used methods of oil-well power heater control[4],as outlined below:

    1)Continuous control method

    In order to guarantee the normal work and oil production of the pumping unit,the power heater operates at full power and runs continuously long-term.Although this method can ensure the pumping unit work normal,the oil production continues to decrease with the submergence depth of the oil-well becomes lower and the continuously running power heater will waste a lot of electrical energy[5].So the method has no energy-saving effect.

    2)Changing the power method

    This method is periodically altering the output power of the power heater to achieve the energy-saving purpose.But how to determine the output power time of the power heater is very difficult and it can only rely on the technicians′ experience to adjust the power heater′s power.So it does not have operability[6].

    3)Timing control method

    This method make the power heater operates at full power,but it runs periodically by clock control,not runs continuously.The shortcomings of the method is the same with the changing power method-it is difficult to determine the running time and the stop time of the power heater and it also can only rely on the technicians′ experience to determine the time.Due to the continuously change of the oil-well condition,this metod does not have operability[7].

    All of the methods above can′t break through the open-loop control of the power heater and can′t realize the power heater adjusting automatically as the load of the pumping unit changes.To realize the real time automatic control of the power heater,a closed loop control system regarding the power heater as control object should be formed.

    2 THE REALIZATION OF ELECTRIC HEATING CONTROL BASED ON RNN NEURAL NETWORKS

    2.1 The principe of how the RNN neural network predict the load of the pumping unit

    For the pumping unit normally produced,the polished rod load is mainly be affected by the flow condition,the extent of wax deposition and clotting of the oil in addition to the liquid production of the well.In the case of the liquid production is constant,when the flow condition is worse or the extent of wax deposition and clotting is deteriorated,the polished rod load will be obviously increased,otherwise the load will be reduced.So we can control the mode of operation of the electric heating through monitoring the load of the pumping unit[8].That is,starting the power heater when the load is large,and stopping it when the load is low.So the key to this problem is how to measure the polished rod load of the pumping unit.The method so far is regular inspection,and measuring directly by the load sensor requiring the halt and start-up each time.So the measure process is not only complex and has a knock on the pumping unit which will affect the lifetime of it,but also makes us don′t know the real time operating condition is complex due to the periodical inspection.In addition,the operating condition of the pumping unit is complex and the load sensor cannot adapt to the long-term working condition.That is to say the load sensor can not realize the real-time measurement of the polished rod load.Since we cannot directly measure the polished rod load of the pumping unit in real time,other methods should be used.Researchers have proposed indirect measurement of the polished rod load.However,the method requires the speed of the landing top and the speed of the top and bottom dead center of the beam pumping unit is zero,so the load error of this position is large.This article proposes an indirect measurement method which forecasting the polished rod load of the pumping unit based on the RNN neural network[9].The variation of physical quantities that the pumping unit involves are nonlinear and these physical quantities have no certain mathematical relationships,so we can build the mapping relationship between the main physical quantities which can be directly measured and the polished rod load utilizing the nonlinear approximation ability of the neutral network.Taking the real-time and complexity of the pumping unit into consideration,the main physical quantities selected should not only can be easily real time measured but also can reflect the polished rod load of the pumping unit,so choosing the motor power,polished rod displacement and motor current as the input variables of the neural network and the polished rod load as the output variable[10].Also,the continuity and dynamic characteristic of the polished rod load are considered.So the neural network structure is intended to be RNN neural network—recurrent neural network.RNN neural network train by BP algorithm,so the neural network that adopted in this paper might name it ′BP-RNN′ model as well.Descriptions of its working principle are below:

    The beam swing angle(θ),is measured by angle sensor,motor power(A),is measured by power transmitter,and motor current(I),is measured by current transmitter.The beam pumping unit is cyclically operating and the period of different type are not necessarily the same,but the pumping unit′s cranks are all rotated 360 degree in a period.So using the rotation angle of the crank to determine the number of measurement points in a cycle is more intuitive.Generally we can adopt 5,10 or 15 degree as measuring distance and one distance corresponding to a sampling point which is represented byk.The′BP-RNN′ model that this paper select has three input variables and one output variable,as show in figure 1.Three input variables are respectively the motor powerA(k),the polished rod displacementS(k)and motor currentI(k).Among them,S(k)is calculated by theθ(k)according to the beam forearm length and the output variable of the neural network is the polished rod loadP(k+1).Neural network hidden layer weightsWijand thresholdsBiin table 1 and table 2.The output layer weightsWkand thresholdsBkin table 3 and table 4.

    Figure 1 BP-RNN Neural network diagram

    Table1NEURALNETWORKHIDDENLAYERWEIGHTWij

    J1J2J3J4J5J6I1-0 6064-1 2240-0 6723-0 53800 8276-2 0144I2-0 56270 3436-0 7771-1 42250 6882-1 5930I30 0325-1 22341 71350 1430-0 8506-1 9010I4-1 56070 3105-1 1922-3 40711 77902 1424I53 5005-3 04833 4956-4 4224-3 7098-3 3918I6-0 2985-0 43751 3028-0 06940 83900 0168

    Table2NEURALNETWORKHIDDENLAYERTHRESHOLDBi

    i123456Bi-1 8872-1 13230 7334-0 3774-1 1323-1 8872

    Table3NEURALNETWORKOUTPUTLAYERWEIGHTWk

    k123456LWk0 91632 7138-1 24216 44272 35773 6090

    Table4NEURALNETWORKHIDDENLAYERTHRESHOLDBk

    k123456Bk-1 3529-0 98760 2673-0 7539-1 14621 7352

    As can be seen from the figure 1,the BP network of ′BP-RNN′ neural network model has three layers— input layer,hidden layer and output layer. The input layer has six input variables. In addition toA(k),S(k),I(k),the other three are the previous three values of the polished rod loadP(k+1)—P(k),P(k-1)andP(k-2).This can not only consider the dynamic characteristic,but also reduce the calculation amount of the neural network. The number of neurons of the hidden layer can be determined by the training precision. As for the BP theoretical computing process,this article won′t specify and it can be seen in resource[11].Generally speaking,the oilfield data center saved the historical data of each pumping unit.These data include well number,data of the indicator diagram(polished rod load and displacement),motor power,motor current,pumping parameters,speed,stroke,etc.That is to say,owning these historical data means owning the training sample data of the neural network.The composition of the sample data will be specified in the section of testing results and analysis.

    2.2 The realization of the closed-loop control of Oil well electric heating

    In order to achieve real-time closed-loop control of the oil well electric heating,the control system requires hardware devices and software programming.The control system block diagram is shown in Figure 2.

    Figure 2 Well electric heating control blook diagram

    As can be seen from Figure 2,the oil well electric heating control system is comprised by controller,angle sensor,power transmitter,current transmitter,data display and parameter setting unit,power heater,etc.The core of the system is controller which is to complete the tasks of measurement,data calculation,the prediction and control of the neural network.The working process of the system is shown as below:The angle sensor can use the beam pumping unit dedicated angle sensor which is used to measure the angle of the beam pumping unit movement(θ)and the controller convert the data of the angle sensor into polished rod displacement(S(k))through program;The power transmitter is in charge of converting the motor power into the signal that the controller received and the controller convert the received power signal into the real-time power of the motor(A(k));The current transmitter is to transform the motor current to the signal that the controller received and the controller convert the received current signal into real-time current of the motor(I(k));With the data ofA(k),S(k)andI(k),the controller forecasting the polished rod load in real-time through the trained neural network application.When the forecasting load is larger than the set start-up corresponding value,the controller starts up the power heater;when the forecasting load is lower than the set halt corresponding value,the controller stops the power heater.

    So it realized the closed-loop control of the power heater through the controller according to the polished rod load.The parameters that the control system required is inputted through data display and parameter setting unit and these parameters include some technical data of beam pumping unit(such as beam forearm length,maximum load,etc.),the weight parameters of neural network,the control frequency that the power heater allows to start and stop and so on.While the closed-loop control of power heater is realized by forecasting the polished rod load through neural network,considering the complexity of the working condition of pumping unit,in order to ensure the normal operation,other factors that influence the electrical heating should be considered.For example,set reasonable maximum and minimum load parameters that used for electric heating start-stop control and prevent frequent movement of the power heater and so on.The basic flow of the electric heating closed-loop control is shown in Figure 3.

    In Figure 3,PmaxandPminare the parameters of set maximum polished rod load and minimum polished rod load,which are the basis of starting and stopping the power heater.C1andC2are the counters.C1is used for accumulating the work cycle times of the pumping unit when the real-time polished rod is larger than the set load andC2is used for accumulating the work cycle times of the pumping unit when the real-time polished rod is lower than the set load.Their role is equivalent to time delaying function,preventing the frequent movement of the power heater.n1andn2are the set value corresponding to counterC1andC2.

    Figure 3 The flow chart of the well electric heating control

    3 TEST AND RESULT ANALYSIS

    3.1 The profile of the testing pumping unit

    The closed loop control system of oil well electric heating based on RNN neural network breakthrough the traditional oil well electric heating control method.Utilizing this method to test an oil well and the technical data of the testing well are as follows:

    Well number: JING29-35

    Pumping Model: CYJY12-12-5-73HB

    Motor rated power: 45kw

    Power heater rated power: 45kw

    Stroke: 5.30m

    Pumping speed: 2.84beats/min

    Mode of production: Within Hotline

    3.2 The samples collecting data of the neural network

    Get the historical data of JING29-35 from the oilfield data center and these data include the load,displacement,motor power and motor current of the pumping unit. Due to large amount of data,this article won’t list them.For illustrative purpose,take the example of the pumping unit data of one cycle to illustrate the composition of the sample data.The crank of the pumping unit turns 360 degree in a cycle and chooses 15 degree as one sampling point,so it needs 24 times of data sample in a cycle.Table 5 is about the historically original data of one cycle.From the historically original data in table 5 and according to the mapping relation of the input and output of the ‘BP-RNN’ model,can compose the sample data that the neural network training needed.Table 6 lists part of the sample data-six groups of samples.According to the rule of table 6,the historical data of a cycle can compose 24 samples of data groups.

    During the trial,the neural network is trained using offline mode and utilizing Matlab tools and the training results are directly applied to the controller program.Although table 6 only lists 24 groups of samples,the actual training is using multiple groups of data samples that composed by the data of multiple operating cycles of the pumping unit.The more data samples,the more accurate is the load that the neural network forecasted.

    Table 5 THE DATE OF A CYCLE

    Table6NEURALNETWORKTRAININGSAMPLEDATA

    SampleGroupnumber InputvariabledataTargetvalueA(k)S(k)I(k)P(k)P(k-1)P(k-2)P(k+1)13 600 006 4472 5970 8969 1080 5128 550 2115 2880 5172 5970 8992 33314 850 6226 5492 3380 5172 5997 49420 481 4136 6097 4992 3380 5197 49518 901 6433 7897 7997 4992 3397 86616 432 2929 3697 8697 7997 4997 79716 542 5929 5696 7397 8697 7997 84812 043 1621 5297 8496 7397 8697 3398 663 6215 4897 3397 8496 7397 32108 103 8614 4897 3297 3397 8497 02116 754 2912 0797 0297 3297 3397 92126 534 5911 6697 9297 0297 3297 12136 644 8011 8697 1297 9297 0297 44146 755 0812 0797 4497 1297 9297 94155 515 309 8597 9497 4497 1293 8516-0 345 00-0 4193 8597 9497 4494 0117-0 344 43-0 4194 0193 8597 9485 8518-0 453 72-0 5585 8594 0193 8572 2019-0 343 30-0 4172 2085 8594 0173 0920-0 342 65-0 4173 0972 2085 8566 2721-0 342 30-0 4166 2773 0972 2069 5722-0 341 65-0 4169 5766 2773 0969 1023-0 341 37-0 4169 1069 5766 2770 8924-0 230 37-0 2770 8969 1069 5772 59

    3.3 The simulation

    Matlab is acombination of two words matrix and laboratory,meaning matrix factory.Used to provide access to LINPACK and EISPACK matric interfaces package.Then it gradually developed into the general technological calculation chart visual interactive systems and programming languages.

    Figure 4 Matlab operate interface

    Figure 5 Matlab operate plotperform

    During the simulation,the accuracy of the neural network is tested.Some pre-processing is needed before the training data can be used by the network.Each column of the input data should be normalized to[0.0 1.0] linearly.Select 14 groups of experimental data as training sample of neural network,in addition to select 10 groups of experimental data as test sample.BP algorithm to select the initial learning rate parameter 0.03,the number of learning toN=1000 times.Learning rate changes with the number of learning in figure 4.From figure 5,the best validation performance of Matlab operate plotperform is 0.0061018 at epoch 7.And antinormalization should be preformed to achieve the orginal scale.The neural network toolbox in Matlab is applied in the simulation for training and testing.Figure 6 shows the difference between the output of the trained neural network and the target.

    Figure 6 The actual output compared with training

    The simulation between the prediction and target proves the validity of the application of neural network.

    3.4 Test results

    The control system was put into operational testing in the oil well that the JING29-35 pumping unit was in and it set the electric heating start and stop parameters—Pmax=89.80kN,Pmin=79.00kN,n1=n2=10.Under normal working condition of the pumping unit,the data that the controller recorded when the power heater is operating are below:

    Working hours of the pumping unit:t=210.13 hours.

    Run time of the power heater:tON=158.6 hours.

    Stop time of the power heater:tOFF=51.53 hours.

    We might as well take the power saving rate of the power heater forηandη=tOFF/t.So the power saving rate of the power heater of the testing pumping unit is:

    η=tOFF/t

    =51.53.82/210.13×100%

    =24.52%

    The power saving rate above is defined relative to continuous run of the oil well electric heating.When the electric heating is continuous,the power heater is running in full power.So the power saving rate is zero on the definition above.From the power saving rate of the testing oil well,we can see that the power saving rate of the power heater reached 24.52%under normal working condition of the pumping unit and the energy-saving effect is very obvious.

    4 CONCLUSION

    1)For the energy consumption of the pumping unit,the power consumption of the power heater of oil-well accounts for the majority of the pumping unit.So decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.

    2)The control method of the oil well electric heating based on RNN neural network that the article proposed breakthrough the traditional oil well electric heating control method.The core of the method is forecasting the polished rod load of the pumping unit through artificial neural network and constituting a closed-loop control of the power heater to adjust the output average power of the power heater for the purpose of electric heating energy saving.

    3)In control method of the oil well electric heating based on RNN neural network that the article proposed breakthrough the traditional oil well electric heating control method.Else,other factor is considered.

    4)The application instance verified the validity of the electric heating control method.For the testing oil well,under normal working condition of the pumping unit,the power saving rate of the power heater reached 24.52%and the energy-saving effect is very obvious.If the method was volume applied,it will greatly reduce the electricity costs of oil producting and achieve the purpose of energy conservation and emission reduction reaching green economy.

    [1]Su Desheng,Liu Xiangang,Lu weixiang,et al.Summarizes of energy saving of Weak-beam Oil-pumping Units[J].Petroleum Machine,2001,29(5):49-53.

    [2]Cai Xiuli,Zhou li.Pilot Study of oil-pumping energy saving[J].Oil Field Energy Saving,2006,17(2):24-29.

    [3]Ramkamal Bhagavatula,Olu A.Fashesan,Loyd R,et al.A Computational Method for Planned Kinematic Analysis of Beam Pumping Units[J].Journal of Energy Resources Technology,2007,12(6):19-26.

    [4]Wang Heyan,Wang Zonghe.Develop Intelligent Control Device[J].Modern Making Engineering,2005,22(9):97-99.

    [5]Ma Guangjie,Zhang Jizhen,Yang Jing,et al.Develop Power Device of Weak-beam Oil-pumping Units[J].Petroleum Machine,2006,34(5):32-34.

    [6]DING Bao,QI Wei-gui,ZHU Xue-li.A Study of Energy2Saving Control of Oil Pump Based on Fuzzy Neural Network Prediction[J].ACTA ELECTRONICA SINICA,2004,32(10):1742-1745.

    [7]Bernie Miller,Nicholas Boyaci.Hydraulic diaphragm electric submersible pump improves completion design lowers lifting costs[J].World Oil,2006,23(7):42-35.

    [8]Li Xiaopeng,Meng Tao,Zhao Chun.Experimental Study on a Novel Linear Electromagnetic Pumping Unit[J].IEEE Transactions on Magnetics,2007,9(3):36-58.

    [9]Barry J,Ding Li Yu.Selecting radial basis function network centers with recursive orthogonal least squares training[J].IEEE Trans Neural Networks,2000,11(3):306-314.

    [10]Zhang Jianjun,Li Changxi.Indirect Measure Method of Dynamometer Card of Beam Pumping Unit[J].J.Huazhong Univ.of Sci.& Tech(Nature Science Edition),2004,32(11):35-37.

    [11]Rahman S,Bhatnagar R.An expert system based algorithm for short-term load forecast[J].IEEE Trans on Power System,1998.3(2):392-399.

    馬金發(fā))

    date: 2013-12-09

    Biography: SUN Jingen(1962—),male,associate professor,Research direction:mainly engaged in intelligent control,power electronic technology,energy saving control,PLC application aspects of teaching and scientific research work.

    1003-1251(2014)04-0087-08

    TH71DocumentcodeA

    猜你喜歡
    金發(fā)
    Angle-resolved spectra of the direct above-threshold ionization of diatomic molecule in IR+XUV laser fields?
    誰喝光了我的湯
    College Teaching Quality Evaluation Model and Implementation
    The Application and Simulation of Fuzzy Adaptive PID in Household Heating Metering System
    Research on Orbit Formation and Stability Control Based on High Orbit
    Research on Synchronization Technology of DSSS Signal Based on UQPSK
    Study on Image-denoising of Liquid Column in Investment Casting Auto-pouring System
    Research of the Visualization Temperature Field of the Communication Room Based on the Reconstruction of Three-dimensional Temperature Field
    Fault Diagnosis of Analog Circuit Based on PSO and BP Neural Network
    Design of the Control Circuit of C523 Vertical Lathe on PLC
    中文资源天堂在线| 深夜精品福利| 欧美成人精品欧美一级黄| 国产黄色视频一区二区在线观看 | 亚洲成a人片在线一区二区| 国产高潮美女av| 毛片女人毛片| 亚洲人成网站在线播放欧美日韩| а√天堂www在线а√下载| 久久久久久久久中文| 色综合站精品国产| 少妇的逼水好多| 国产视频首页在线观看| 天天躁夜夜躁狠狠久久av| 国产69精品久久久久777片| 久久久久久九九精品二区国产| 日韩欧美精品免费久久| 日本成人三级电影网站| 欧美成人a在线观看| 人人妻人人澡人人爽人人夜夜 | 99国产精品一区二区蜜桃av| 大香蕉久久网| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 好男人视频免费观看在线| 变态另类成人亚洲欧美熟女| 日韩欧美精品免费久久| av.在线天堂| 在现免费观看毛片| 国产精品综合久久久久久久免费| 国产老妇伦熟女老妇高清| 欧美一区二区精品小视频在线| 亚洲成人久久爱视频| 久久精品国产99精品国产亚洲性色| 久久久久久九九精品二区国产| 99热全是精品| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| 搡女人真爽免费视频火全软件| 国产av一区在线观看免费| 亚洲精品影视一区二区三区av| 高清毛片免费观看视频网站| 插阴视频在线观看视频| 色播亚洲综合网| 国产成人精品婷婷| 久久精品人妻少妇| 国产精品.久久久| 天堂中文最新版在线下载 | 欧美+亚洲+日韩+国产| 中文字幕制服av| 亚洲精品色激情综合| 日韩在线高清观看一区二区三区| 超碰av人人做人人爽久久| 国产精品.久久久| 久99久视频精品免费| 丰满的人妻完整版| 国产精品一区二区三区四区久久| 亚洲成人精品中文字幕电影| 熟女电影av网| 成人亚洲欧美一区二区av| 三级男女做爰猛烈吃奶摸视频| 可以在线观看毛片的网站| 国产一级毛片在线| 国产一级毛片在线| av黄色大香蕉| 国产精品久久久久久精品电影小说 | 一进一出抽搐动态| 男女做爰动态图高潮gif福利片| 日韩一区二区视频免费看| 69人妻影院| 精品一区二区三区人妻视频| 女人被狂操c到高潮| 在线免费观看的www视频| 日日摸夜夜添夜夜添av毛片| 国产精品久久久久久av不卡| 亚洲成人久久性| 成人鲁丝片一二三区免费| 久久久成人免费电影| 少妇的逼水好多| 99riav亚洲国产免费| av在线观看视频网站免费| 一本精品99久久精品77| 激情 狠狠 欧美| 高清午夜精品一区二区三区 | 亚洲经典国产精华液单| 午夜爱爱视频在线播放| 国产不卡一卡二| a级一级毛片免费在线观看| 欧美在线一区亚洲| 久久热精品热| 日本在线视频免费播放| a级毛片免费高清观看在线播放| av福利片在线观看| 久久人人爽人人片av| 久久久久久伊人网av| 中国美白少妇内射xxxbb| 男人和女人高潮做爰伦理| 18禁黄网站禁片免费观看直播| 99热精品在线国产| 国产精品久久视频播放| 亚洲精品日韩在线中文字幕 | 国产三级在线视频| videossex国产| 变态另类丝袜制服| 日韩强制内射视频| 我要搜黄色片| 久久久久九九精品影院| 亚洲精品粉嫩美女一区| 免费看a级黄色片| 26uuu在线亚洲综合色| 寂寞人妻少妇视频99o| 中文字幕制服av| 国产精品精品国产色婷婷| 亚洲成人久久性| 日韩欧美国产在线观看| 观看美女的网站| 日韩人妻高清精品专区| 观看免费一级毛片| 色播亚洲综合网| 亚洲精品日韩av片在线观看| 国产伦精品一区二区三区四那| 国模一区二区三区四区视频| 国产真实伦视频高清在线观看| 麻豆一二三区av精品| 一本久久中文字幕| 又爽又黄无遮挡网站| 特大巨黑吊av在线直播| 欧美一区二区国产精品久久精品| 成人特级黄色片久久久久久久| 女的被弄到高潮叫床怎么办| 国产一区二区在线av高清观看| 插逼视频在线观看| 欧美极品一区二区三区四区| 久久久精品欧美日韩精品| 日韩人妻高清精品专区| 国产探花在线观看一区二区| 性色avwww在线观看| 国内揄拍国产精品人妻在线| 色5月婷婷丁香| 免费在线观看成人毛片| 国产av不卡久久| 人妻夜夜爽99麻豆av| 老师上课跳d突然被开到最大视频| 亚洲av第一区精品v没综合| 欧美日本亚洲视频在线播放| 波多野结衣巨乳人妻| 国产片特级美女逼逼视频| 国产精品,欧美在线| 一个人看的www免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 免费看美女性在线毛片视频| av在线观看视频网站免费| 村上凉子中文字幕在线| 国内揄拍国产精品人妻在线| 2021天堂中文幕一二区在线观| 国产极品天堂在线| 久久久午夜欧美精品| ponron亚洲| kizo精华| 欧美成人免费av一区二区三区| 午夜亚洲福利在线播放| 国产 一区精品| 亚洲欧美日韩东京热| 成年av动漫网址| 亚洲精品影视一区二区三区av| 久久久成人免费电影| 成人特级黄色片久久久久久久| 亚洲三级黄色毛片| h日本视频在线播放| 在线国产一区二区在线| 精品99又大又爽又粗少妇毛片| 欧美+日韩+精品| 国产伦在线观看视频一区| 欧美人与善性xxx| 免费看光身美女| 成年版毛片免费区| 国产毛片a区久久久久| 日韩欧美 国产精品| 欧美激情国产日韩精品一区| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久电影中文字幕| 国产av麻豆久久久久久久| 三级经典国产精品| 校园春色视频在线观看| 国产精品久久视频播放| 亚洲国产欧美在线一区| 边亲边吃奶的免费视频| 在线国产一区二区在线| 春色校园在线视频观看| 国产男人的电影天堂91| 日本免费一区二区三区高清不卡| 赤兔流量卡办理| 性欧美人与动物交配| 夜夜爽天天搞| 波多野结衣高清作品| 波多野结衣高清无吗| 成人高潮视频无遮挡免费网站| 九九爱精品视频在线观看| 一级毛片我不卡| 一级毛片电影观看 | 亚洲成a人片在线一区二区| 日日摸夜夜添夜夜爱| 免费不卡的大黄色大毛片视频在线观看 | 人体艺术视频欧美日本| 青春草视频在线免费观看| 麻豆乱淫一区二区| 99久久无色码亚洲精品果冻| 亚洲自偷自拍三级| 久久欧美精品欧美久久欧美| 久久久久国产网址| 亚洲av成人精品一区久久| 人妻系列 视频| 性插视频无遮挡在线免费观看| 波多野结衣高清作品| 2021天堂中文幕一二区在线观| 有码 亚洲区| 欧美成人一区二区免费高清观看| 成年av动漫网址| 久久久久免费精品人妻一区二区| 日本免费一区二区三区高清不卡| 国产精品日韩av在线免费观看| 91麻豆精品激情在线观看国产| 一边亲一边摸免费视频| 国模一区二区三区四区视频| 99热6这里只有精品| 国产成人a∨麻豆精品| 国产国拍精品亚洲av在线观看| 国产午夜精品久久久久久一区二区三区| 变态另类成人亚洲欧美熟女| 久久这里有精品视频免费| 老司机福利观看| 久久久国产成人免费| 日日摸夜夜添夜夜爱| 亚洲欧洲日产国产| 热99在线观看视频| 91午夜精品亚洲一区二区三区| 国产精品.久久久| 中文字幕久久专区| 超碰av人人做人人爽久久| 一进一出抽搐gif免费好疼| 国产伦理片在线播放av一区 | 亚洲美女视频黄频| 日韩欧美三级三区| 黄片无遮挡物在线观看| 亚洲欧美精品自产自拍| 国内精品一区二区在线观看| 联通29元200g的流量卡| 午夜精品国产一区二区电影 | 成人毛片a级毛片在线播放| 一个人看的www免费观看视频| 亚洲精品久久久久久婷婷小说 | 非洲黑人性xxxx精品又粗又长| videossex国产| 超碰av人人做人人爽久久| av又黄又爽大尺度在线免费看 | 国产久久久一区二区三区| 国产麻豆成人av免费视频| 亚洲精品影视一区二区三区av| 狂野欧美激情性xxxx在线观看| 久久中文看片网| 精华霜和精华液先用哪个| 边亲边吃奶的免费视频| 国产高清不卡午夜福利| 欧美激情国产日韩精品一区| 啦啦啦韩国在线观看视频| 99热这里只有精品一区| 久久人人爽人人片av| 国产精品嫩草影院av在线观看| 日日干狠狠操夜夜爽| 国产视频首页在线观看| 中国国产av一级| 欧美一区二区精品小视频在线| 三级男女做爰猛烈吃奶摸视频| 亚洲,欧美,日韩| 成人午夜精彩视频在线观看| 男女那种视频在线观看| 国产精品久久电影中文字幕| 国产视频内射| 久久久久网色| 男插女下体视频免费在线播放| 婷婷色av中文字幕| 日韩,欧美,国产一区二区三区 | av天堂中文字幕网| 午夜福利在线在线| 99热只有精品国产| 校园人妻丝袜中文字幕| 欧美性猛交╳xxx乱大交人| 国产精品三级大全| 亚洲精品粉嫩美女一区| 久久精品影院6| 国产成人精品婷婷| 久久人人爽人人爽人人片va| 在线免费观看的www视频| 久久99热这里只有精品18| 一区福利在线观看| 最好的美女福利视频网| 男人舔奶头视频| 亚洲精品亚洲一区二区| 国产女主播在线喷水免费视频网站 | 一进一出抽搐动态| 人妻制服诱惑在线中文字幕| 久久中文看片网| 国产真实乱freesex| 久久久a久久爽久久v久久| ponron亚洲| 欧美一区二区亚洲| 人妻少妇偷人精品九色| 亚洲人成网站高清观看| 熟妇人妻久久中文字幕3abv| 国产精品综合久久久久久久免费| 日韩制服骚丝袜av| 天美传媒精品一区二区| 乱系列少妇在线播放| 国产在线精品亚洲第一网站| 一个人看视频在线观看www免费| 国内精品一区二区在线观看| 婷婷亚洲欧美| 久久久久久久久久久免费av| 国产精品.久久久| 欧美最新免费一区二区三区| 人人妻人人澡人人爽人人夜夜 | 午夜精品在线福利| 毛片一级片免费看久久久久| 美女内射精品一级片tv| 能在线免费看毛片的网站| 高清毛片免费观看视频网站| 禁无遮挡网站| 在线免费十八禁| 国产黄色视频一区二区在线观看 | 亚洲av熟女| 亚洲精品影视一区二区三区av| 日韩欧美精品免费久久| 毛片女人毛片| 成人av在线播放网站| 国产人妻一区二区三区在| 一进一出抽搐动态| 久久精品久久久久久久性| 又爽又黄无遮挡网站| 少妇熟女aⅴ在线视频| 亚洲精品色激情综合| av女优亚洲男人天堂| 可以在线观看的亚洲视频| 国产人妻一区二区三区在| 非洲黑人性xxxx精品又粗又长| 美女高潮的动态| 国产精品蜜桃在线观看 | 成人欧美大片| 日韩成人伦理影院| 不卡视频在线观看欧美| 国产精品.久久久| 夜夜看夜夜爽夜夜摸| 12—13女人毛片做爰片一| 99国产极品粉嫩在线观看| 五月伊人婷婷丁香| 高清日韩中文字幕在线| 亚洲内射少妇av| av在线天堂中文字幕| 色播亚洲综合网| 亚洲最大成人手机在线| 三级毛片av免费| 中出人妻视频一区二区| av黄色大香蕉| 国产伦精品一区二区三区四那| 国产伦一二天堂av在线观看| 亚洲色图av天堂| 寂寞人妻少妇视频99o| 免费看a级黄色片| 国产精品av视频在线免费观看| 国产精品免费一区二区三区在线| 精品久久国产蜜桃| 国产高清有码在线观看视频| 最近2019中文字幕mv第一页| 女人被狂操c到高潮| 国内久久婷婷六月综合欲色啪| 青春草视频在线免费观看| 国产伦在线观看视频一区| av福利片在线观看| 日本免费一区二区三区高清不卡| 美女大奶头视频| 亚洲18禁久久av| 少妇裸体淫交视频免费看高清| 成人无遮挡网站| 国产精品美女特级片免费视频播放器| 久久99热6这里只有精品| 色尼玛亚洲综合影院| 免费一级毛片在线播放高清视频| 亚洲无线观看免费| 99视频精品全部免费 在线| 久久欧美精品欧美久久欧美| 99久久精品热视频| 成人特级av手机在线观看| 国产精品蜜桃在线观看 | 国产精品av视频在线免费观看| 国产精品爽爽va在线观看网站| 亚洲国产精品成人综合色| 欧美色视频一区免费| 欧美成人精品欧美一级黄| 日韩视频在线欧美| 国内精品一区二区在线观看| 三级国产精品欧美在线观看| 91aial.com中文字幕在线观看| 99热只有精品国产| 国产黄色小视频在线观看| 午夜福利视频1000在线观看| 又爽又黄无遮挡网站| 国内精品久久久久精免费| 看免费成人av毛片| 在线观看av片永久免费下载| 日韩中字成人| 亚洲精品国产成人久久av| 在线观看午夜福利视频| 啦啦啦啦在线视频资源| 啦啦啦观看免费观看视频高清| 不卡视频在线观看欧美| 欧美一区二区精品小视频在线| 亚洲欧洲国产日韩| 国产一区二区三区在线臀色熟女| 老女人水多毛片| 日韩中字成人| 最近中文字幕高清免费大全6| 精品欧美国产一区二区三| 亚洲人成网站在线播| 亚洲国产日韩欧美精品在线观看| 免费观看在线日韩| av免费观看日本| 国产一区二区三区在线臀色熟女| 国产亚洲精品久久久com| 如何舔出高潮| 亚洲欧美成人精品一区二区| 不卡一级毛片| www.色视频.com| 日本免费a在线| 熟女人妻精品中文字幕| 老师上课跳d突然被开到最大视频| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利高清视频| 国产一区亚洲一区在线观看| 日韩一区二区三区影片| 一进一出抽搐gif免费好疼| 一区二区三区四区激情视频 | 亚洲精品成人久久久久久| 午夜老司机福利剧场| 国产伦精品一区二区三区四那| 蜜臀久久99精品久久宅男| 69人妻影院| 国产精品蜜桃在线观看 | 精品熟女少妇av免费看| 久久中文看片网| 可以在线观看的亚洲视频| 亚洲最大成人中文| 国产私拍福利视频在线观看| 久久精品夜色国产| 黄色配什么色好看| 精品午夜福利在线看| 女人被狂操c到高潮| 国产精品综合久久久久久久免费| 久久人人爽人人爽人人片va| 久久午夜亚洲精品久久| 国产成人a区在线观看| 插逼视频在线观看| www.色视频.com| 欧美xxxx黑人xx丫x性爽| 色尼玛亚洲综合影院| 亚洲色图av天堂| 午夜a级毛片| 国产精品女同一区二区软件| 韩国av在线不卡| 国产午夜精品一二区理论片| 国产三级中文精品| 亚洲国产欧美人成| 久久精品夜色国产| 成人综合一区亚洲| 国产极品精品免费视频能看的| 97超视频在线观看视频| 国产亚洲av嫩草精品影院| 老女人水多毛片| 天堂中文最新版在线下载 | 久久亚洲精品不卡| 欧美xxxx黑人xx丫x性爽| 高清在线视频一区二区三区 | 国产精品久久久久久精品电影小说 | 色5月婷婷丁香| 色综合站精品国产| 精品国内亚洲2022精品成人| 精品一区二区免费观看| 欧美高清性xxxxhd video| 欧美最新免费一区二区三区| 亚洲av男天堂| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 2021天堂中文幕一二区在线观| 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 黄片wwwwww| 欧美成人一区二区免费高清观看| 乱码一卡2卡4卡精品| 日本成人三级电影网站| 狂野欧美激情性xxxx在线观看| 一级毛片aaaaaa免费看小| 长腿黑丝高跟| 国产v大片淫在线免费观看| 99久久九九国产精品国产免费| 日韩制服骚丝袜av| 国内精品宾馆在线| 天堂av国产一区二区熟女人妻| 日韩一本色道免费dvd| 偷拍熟女少妇极品色| 一卡2卡三卡四卡精品乱码亚洲| 国产高清不卡午夜福利| 国产精品一区二区三区四区久久| 可以在线观看的亚洲视频| 欧美高清成人免费视频www| 哪个播放器可以免费观看大片| 亚洲高清免费不卡视频| 观看免费一级毛片| 久久精品人妻少妇| 校园人妻丝袜中文字幕| 尤物成人国产欧美一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 成年女人永久免费观看视频| 麻豆乱淫一区二区| 免费无遮挡裸体视频| 国产高清视频在线观看网站| 久久精品国产亚洲网站| 老熟妇乱子伦视频在线观看| 色吧在线观看| 国产精品美女特级片免费视频播放器| 熟妇人妻久久中文字幕3abv| 日韩欧美一区二区三区在线观看| 亚洲国产色片| 人妻制服诱惑在线中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一个人看视频在线观看www免费| 久久久成人免费电影| 午夜爱爱视频在线播放| 少妇熟女aⅴ在线视频| 国产精品人妻久久久影院| a级毛色黄片| 三级男女做爰猛烈吃奶摸视频| 亚洲精品粉嫩美女一区| 欧美丝袜亚洲另类| www.av在线官网国产| 狂野欧美激情性xxxx在线观看| 尾随美女入室| 亚洲综合色惰| videossex国产| kizo精华| av免费在线看不卡| 麻豆av噜噜一区二区三区| 在线观看免费视频日本深夜| 亚洲最大成人av| 午夜久久久久精精品| 国产亚洲5aaaaa淫片| 插阴视频在线观看视频| 中国美白少妇内射xxxbb| 菩萨蛮人人尽说江南好唐韦庄 | 免费观看a级毛片全部| 在现免费观看毛片| 人妻制服诱惑在线中文字幕| 国产av不卡久久| 亚洲美女搞黄在线观看| 午夜福利高清视频| 天天躁日日操中文字幕| 欧美潮喷喷水| 男女做爰动态图高潮gif福利片| 久久精品夜色国产| 国产亚洲精品久久久久久毛片| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久 | 免费人成视频x8x8入口观看| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| 赤兔流量卡办理| 一级毛片久久久久久久久女| 亚洲欧美日韩东京热| 嫩草影院入口| 成人特级黄色片久久久久久久| 91在线精品国自产拍蜜月| 久久这里有精品视频免费| 久久久久久久久大av| 免费看av在线观看网站| 在线观看66精品国产| 青青草视频在线视频观看| 99热精品在线国产| 免费av毛片视频| 久久精品国产99精品国产亚洲性色| 身体一侧抽搐| 在线观看午夜福利视频| 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 成人美女网站在线观看视频| 男人舔女人下体高潮全视频| 青春草国产在线视频 | 免费看a级黄色片| 简卡轻食公司| 天堂中文最新版在线下载 | 国产白丝娇喘喷水9色精品| av在线天堂中文字幕| 色5月婷婷丁香| 亚洲精品影视一区二区三区av| 日本-黄色视频高清免费观看| 在线免费十八禁| 寂寞人妻少妇视频99o| 亚洲精品影视一区二区三区av| 内射极品少妇av片p| 最近视频中文字幕2019在线8| 免费人成在线观看视频色| 亚洲综合色惰| 亚洲图色成人| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 国产高潮美女av| 91久久精品电影网| 给我免费播放毛片高清在线观看|