• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bayesian analysis for mixed-effects model defined by stochastic differential equations

    2014-09-06 10:49:33YanFangrongZhangPingLuTaoLinJinguan
    關(guān)鍵詞:藥科貝葉斯南京

    Yan Fangrong Zhang Ping Lu Tao Lin Jinguan

    (1Department of Mathematics, Southeast University, Nanjing 210096, China)(2Department of Mathematics, China Pharmaceutical University, Nanjing 210009, China)(3Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 210009, China)(4State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China)

    ?

    Bayesian analysis for mixed-effects model defined by stochastic differential equations

    Yan Fangrong1,2,4Zhang Ping2,4Lu Tao3,4Lin Jinguan1

    (1Department of Mathematics, Southeast University, Nanjing 210096, China)(2Department of Mathematics, China Pharmaceutical University, Nanjing 210009, China)(3Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 210009, China)(4State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China)

    The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data.

    population pharmacokinetics; mixed-effects models; stochastic differential equations; Bayesian analysis

    Population pharmacokinetic (PPK) models play a pivotal role in quantitative pharmacology study. They combine the classic pharmacokinetic(PK) analysis with population statistical models, which make them able to investigate the determined factors of drug concentration in patients group quantitatively, to guide the adjustment of administration and to provide comprehensive quantitative information for a more rational and effective clinical administration regimen. In recent years, with the trend that model-based drug development (MBDD) is promoted and strongly advocated by the FDA, the population pharmacokinetic theory and practical research have been greatly developed.

    Nonlinear mixed-effects modeling (NONMEM) has been proved to be a kind of widely used and effective tool for describing the pharmacokinetic (PK) and pharmacodynamic (PD) properties of drugs[1-2]. The flexibility of modeling correlation structures, with the total variation separated into inter- and intra-individual variation contributes to the rapidly growing quantity of nonlinear mixed-effects models. This modeling approach usually leads to more accurate estimation of population parameters, especially in pharmacokinetic/pharmacodynamic (PK/PD) models including random effects. However, the traditional nonlinear mixed-effects models are most frequently based on ordinary differential equations (ODEs), assuming that the inter-individual variation is independent with the measurement errors, which means that the residuals are uncorrelated, ignoring the parts of the related dynamics that we cannot predict or explain. This assumption is well-functioning to the expected distribution of assay error, but when other sources of error appear in the distribution error, a good estimator cannot be obtained in the case of ignoring the correlation which is between the structural model parameters[3]. In fact, in the actual pharmacokinetic problems, correlations between residuals are ubiquitous, the result may not be obtained exactly under the basic statistical assumption in PK modeling[4]. The NONMEM[5]is the most commonly used software for PK/PD analysis using nonlinear mixed-effects models, and it is possible to deal with correlated residual errors using an AR model[4]. The simulation results show that the introduction of a correlated residuals model may lead to better estimates of the inter-individual variations and the structural parameters.

    The other approach to modeling correlated residuals is stochastic differential equations (SDEs) in the model setup. SDEs are an extension of ODEs and facilitate the ability to split the intra-individual error into two fundamentally different types: One is a serially uncorrelated measurement error, which is mainly caused by operation mistakes; the other is system error, which may be caused by mis-specified models or true random behavior of the system. This model structure includes the statistical function of the AR model, but it is more flexible with respect to specifying models for different residuals. Some PK/PD modeling books also show that the adoption of the nonlinear mixed-effects models based on SDEs rather than ODEs may be more appropriate to model intra-individual variations[6].

    However, estimating parameters in nonlinear mixed-effects models with SDE is a difficult problem and not straightforward, except for simple cases. A natural approach would be likelihood inference, but the transition densities are rarely known, and thus the explicit likelihood function is usually hard to write. Actually, there is hardly any theory for SDE models at present. Kristensen et al.[7]proposed the maximum likelihood method and maximized a posteriori to estimate the parameters in PK models with SDE; however, they only focused on single subject modeling where no inter-individual variance components were estimated. Overgaard et al.[8]suggested applying the Kalman filter to approximate the likelihood function for a SDE model with a nonlinear drift term and a constant diffusion term. Torn?e et al.[9]made this algorithm to be used in NONMEM for estimating SDEs, but the NONMEM implementation cannot be used to form Kalman smoothing estimates, which is an important feature of the SDE approach, where all data is used to give optimal estimates at each sampling point. Donnet et al.[10]proposed a Bayesian inference to analyze growth curves using mixed-effects models based on stochastic differential equations and obtained good results. Struthers et al.[11]applied the Bayesian method to the multicenter AIDS cohort study. Inspired by these, we introduce the Bayesian inference to pharmacokinetic models, estimate the parameters in the nonlinear mixed-effects models based on the stochastic differential equation and help to direct the clinical test.

    The present work describes the implementation of SDEs in a nonlinear mixed-effects model with parameters estimation performed by the Bayesian analysis.

    1 Models and Notation

    1.1 Nonlinear mixed-effects model based on ordinary differential equation

    Lety=(yi)1≤i≤n=(yij)1≤i≤n,1≤j≤ni,i=1,2,…,n,j=0,1,…,nibe the true observations. Here,yijis measurement for individualiat timetij;nis the number of individuals andniis the number of measurements for individuali. Traditional nonlinear mixed-effects models usually model this process by the nonlinear mixed-effects model based on the ordinary differential equation. Formally, the classical nonlinear mixed-effects model is written as

    (1)

    (2)

    φi~N(μ,Ω)

    (3)

    wherefis the possibly nonlinear function andφ=(φi)1≤i≤nare the individual parameter vectors.φiare assumed to be independently and identically normally distributed with expectationμand varianceΩ.εijare the measurement errors, and they are also assumed to be independently and identically normally distributed with null mean and varianceσ2.

    1.2 Nonlinear mixed-effects model based on stochasticdifferential equation

    Under the framework of ordinary differential equations, noise is only introduced through the measurement equation (see Eq.(2)). This allows the measurement noise term to absorb the whole error due to model miss-specification or true random fluctuations of the states that may ignore the correlated residuals. Considering the correlated residuals, a stochastic process is added to the state space model (see Eq.(1)). Such that the nonlinear mixed-effects model based on SDEs can be written as

    dZt(φi)=F(Zt,φi,t)dt+Γ(Zt,φi,γ2)dWt

    Z(t=0)=Z0(φ)

    (4)

    (5)

    φi~N(μ,Ω)

    (6)

    In the nonlinear mixed-effects model based on SDEs (see Eqs.(4) to (6)), the total variance is distinguished into three fundamentally different noises: the inter-individual variabilityΩdescribing the individual difference, the system noiseγ2reflecting the random fluctuations around the corresponding dynamic model, and the measurement noiseσ2representing the uncorrelated residuals originating from measurement assay or sampling errors.

    2 Bayesian Estimation

    2.1 Prior specification

    The Bayesian approach allows prior distributions to be incorporated with the likelihood function to evaluate the posterior distribution of the population parameters (μ,Ω),σ2,γ2in the SDE model. Thus the first step is the choice of the prior distributions. Usual diffuse prior distributions can be chosen but the resulting posterior distributions may not be proper. Therefore, we propose to use standard prior distributions suggested by Cruz-Mesia and Marshall[12]:

    (7)

    2.2 Posterior computation

    For the ODE model (see Eqs.(1) to (3)), the Gibbs sampling algorithms are proposed in Ref.[13]. These algorithms will not be detailed here. For the SDE model, (see Eqs.(4) to (6)), we propose to use the Gibbs algorithm, including the sampling of the auxiliary random variablesφiand vectorXiof realizations of processXifor each individual at each observation time. LetX=(X1,…,Xn)∈R(n1+1)+…(nn+1)denote the vector ofnrealizations. Hence the Gibbs sampling algorithm for the SDE model is outlined as follows:

    Step 1 Initialize the iteration counter of the chaink=1 and start with initial valuesσ-2(0),γ2(0),μ(0),φ(0),X(0).

    Step 2 Obtainσ-2(k),γ2(k),μ(k),φ(k),X(k)fromσ-2(k-1),γ2(k-1),μ(k-1),φ(k-1),X(k-1).

    Step 3 Changektok+1 and return to Step 2 until convergence is reached.

    In the case when the SDE has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional distribution of the parameter has no explicit form, we propose to approximate it using the Metropolis-Hastings random walks.

    3 Model Used for Simulation

    3.1 Classical one-compartment PK model

    We shall simulate experiments using a one-compartment PK model, and the compound metabolism is modeled by the following single exponential attenuation modeling:

    (8)

    In classical mixed-effects models, the process is modeled by a deterministic function, depending on individual random parameters. Formally, the classical nonlinear mixed-effects model is written as

    i=1,2,…,n;j=0,1,…,ni

    (9)

    For simplicity, we model on the logarithm of the noisy observed measurements.

    3.2 Stochastic one-compartment PK model

    We propose to introduce a stochastic term in the ODE model(see Eqs.(9)) and extend it to the SDE model with the volatility function Γ(Zt,φ,γ2)=γZt.

    dZit=-kaiZitdt+γZitdWt

    (10)

    (11)

    with solution

    (12)

    By discreting the SDE, the realizationXijof the SDE is Markovian:

    Xi,0=logZ0

    (13)

    Therefore, the SDE model on the logarithm of data is defined as

    (logyi0,logyi1,…,logyini)T=(Xi,0,Xi,1,…,Xi,ni)T+εi

    (Xi,1,…,Xi,ni)T=

    (14)

    3.3 Posterior computation and inference

    We propose the condition posterior distribution for the nonlinear mixed-effects model based on the SDE in details. The prior distributions of the parameters to be estimated are defined as

    1/σ2~Γ(cprior,dprior)

    Then the posterior distribution of the parameters is written as

    (15)

    where

    where

    (16)

    (17)

    (18)

    (19)

    Theposteriordistributionsofγ2have no explicit form, so we use the Metropolis-Hastings random walks. The Gibbs algorithm convergence is ensured by the classical convergence theorem proposed by Carlin and Louis[14], the convergence of the Metropolis-Hastings algorithm is ensured by the theorem proposed by Mengersen and Tweedie[15].

    3.4 Simulations

    Tab.1 Parameter estimation and 95% credibility interval

    ParameterTruevalueEstimator(95%credibilityinterval)ka0.70.7132(0.6875,0.7449)σ2ka0.010.0117(0.0078,0.0183)σ20.00160.0018(0.0013,0.0020)γ20.040.0429(0.0363,0.0467)

    Fig.2 Basic goodness-of-fit graph for simulation data. (a) Observed vs. population predicted values; (b) Observed vs. individual predicted value

    4 Application to Metoprolol Tartrate Dissolution Data

    The method is used to model the Metoprolol Tartrate dissolution data taken from Polli et al[16]. Complete data is the percentage of released drug of four types of tablet formulations of 100-mg Metoprolol Tartrate, and each experiment is repeated six times. The data were also analyzed by Let al. using the fractional differential rate equation model in 2003 and 2004[17-18]. They found that the slow dissolving test formulation was the closest to an exponential behavior, which is used here to illustrate the methods. We only use the data up to 45 min.

    The percentage of Metoprolol that has not yet dissolved is modeled as Eq.(14), whereyis the measurements for experimentiat time pointj. Estimators and their standard deviation are reported in Tab.2. The estimator ofkais in agreement with comparable values found in Ref.[18]. From Tab.2, we see that there is clear difference in the performance of different methods. The SDE method performs better than the fractional differential rate equation. Fig.3 shows the percentage of Metoprolol that has not yet dissolved data and the prediction data.

    Tab.2 Parameters estimations for Metoprolol Tartrate dissolution data

    ParameterEstimatorbystochasticdifferentialequation(std)Estimatorbyfractionaldifferentialrateequation(std)k^a0.0232(0.0002)0.024(0.039)γ20.074(0.009)0.08(0.0054)σ2ka0.014(0.01)σ20.041(0.025)

    Fig.3 Percentage of Metoprolol that has not dissolved data and the prediction data

    From Fig.3, we can conclude that the predicted trajectory is in good agreement with the actual data. The credibility interval includes most of the actual data, implying the feasibility of the Bayesian approach to nonlinear mixed-effects models based on the SDE, and the Bayesian inference has a good practical application value.

    5 Conclusion

    We propose a Bayesian approach to nonlinear mixed models defined by stochastic differential equations. These models are the extension to the classical nonlinear mixed-effects models whose error structures are too restrictive to model some unexplained processes. The introduction of the SDE model results in a clear validation of the model which is not the case in the standard model, by adding the new stochastic term. The proposed model is proved to be useful for the pharmacokinetic modeling.An interesting area for future research is the exploration of the model with covariate. Moreover, the extension of this work to multidimensional SDEs would also be an interesting work.

    [1]Aarons L, Karlsson M O, Mentré F, et al. Role of modelling and simulation in Phase I drug development[J].EuropeanJournalofPharmaceuticalSciences, 2001, 13(2): 115-122.

    [2]Sheiner L B, Steimer J L. Pharmacokinetic/pharmacodynamic modeling in drug development[J].AnnualReviewsofPharmacologyandToxicology, 2000, 40:67-95.

    [3]Karlsson M O, Jonsson E N, Wiltse C G, et al. Assumption testing in population pharmacokinetic models: illustrated with an analysis of Moxonidine data from congestive heart failure patients [J].JournalofPharmacokineticsandPharmacodynamics, 1998, 26(2):207-246.

    [4]Karlsson M O, Beal S L, Sheiner L B. Three new residual error models for population PK/PD analyses [J].JournalofPharmacokineticsandPharmacodynamics,1995, 23(6):651-672.

    [5]Kristensen N R, Madsen H, Ingwersen S H. Using stochastic differential equations for PK/PD model development [J].JournalofPharmacokineticsandPharmacodynamics, 2005, 32(1):109-141.

    [6]Krishna R.Applicationsofpharmacokineticprinciplesindrugdevelopment[M]. Springer, 2004: 166-257.

    [7]Kristensen N R, Madsenb H, J?rgensena S B. Parameter estimation in stochastic grey-box models[J].Automatica, 2004, 40(2):225-237.

    [8]Overgaard R V, Jonsson N, Torn?e C W, et al. Nonlinear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm[J].JournalofPharmacokineticsandPharmacodynamics, 2005, 32(1):85-107.

    [9]Torn?e C W, Overgaard R V, Agers? H, et al. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations[J].PharmaceuticalResearch, 2005, 22(8):1247-1258.

    [10]Donnet S, Foulley J L, Samson A. Bayesian analysis of growth curves using mixed models defined by stochastic differential equations[J].Biometrics, 2010, 66(3):733-741.

    [11]Struthers C A, Mcleish D L. A particular diffusion model for incomplete longitudinal data:application to the multicenter ADIS cohort study[J].Biostatistics, 2011, 12(3):493-505.

    [12]De la Cruz-Mesía R, Marshall G. Nonlinear random effects models with continuous time autoregressive errors: a Bayesian approach[J].StatisticsinMedicine, 2005, 25(9):1471-1484.

    [13]Carlin B P, Louis T A.BayesandempiricalBayesmethodsfordataanalysis[M]. Chapman and Hall/CRC,2000: 378-390.

    [14]Carlin B P, Louis T A. Bayes and empirical Bayes methods for data analysis[J].StatisticsandComputing,1997, 7(2):153-154.

    [15]Mengersen K L, Tweedie R L. Rates of convergence of the Hastings and Metropolis algorithms[J].AnnalsofStatistics, 1996, 24(1):101-121.

    [16]Polli J E, Rekhi G S, Augsburger L L, et al. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets[J].JournalofPharmaceuticalSciences, 1997, 86(6):690-700.

    混合效應(yīng)隨機(jī)微分方程的貝葉斯分析

    言方榮1,2,4張 萍2,4陸 濤3,4林金官1

    (1東南大學(xué)數(shù)學(xué)系, 南京 210096) (2中國(guó)藥科大學(xué)數(shù)學(xué)系, 南京 210009) (3中國(guó)藥科大學(xué)分子設(shè)計(jì)與藥物發(fā)現(xiàn)實(shí)驗(yàn)室,南京 210009) (4中國(guó)藥科大學(xué)天然藥物活性組分與藥效國(guó)家重點(diǎn)實(shí)驗(yàn)室, 南京 210009)

    采用帶有隨機(jī)微分方程的非線性混合效應(yīng)模型對(duì)群體藥物代謝動(dòng)力學(xué)數(shù)據(jù)建模,通過(guò)在狀態(tài)方程中引入隨機(jī)項(xiàng),將常微分方程擴(kuò)展到隨機(jī)微分方程.和常微分方程相比,隨機(jī)微分方程可解決群體藥物代謝動(dòng)力學(xué)模型中相關(guān)殘差問題.利用貝葉斯估計(jì)對(duì)非線性混合效應(yīng)隨機(jī)微分方程模型參數(shù)進(jìn)行估計(jì),給出群體參數(shù)及個(gè)體參數(shù)的精確后驗(yàn)分布,將Gibbs和Metropolis-Hastings算法相結(jié)合,給出參數(shù)估計(jì)值.通過(guò)計(jì)算機(jī)模擬和實(shí)例分析驗(yàn)證了方法的可靠性,結(jié)果表明利用非線性混合效應(yīng)隨機(jī)微分方程模型及貝葉斯估計(jì)方法分析群體藥物代謝動(dòng)力學(xué)數(shù)據(jù)是可行的.

    群體藥物代謝動(dòng)力學(xué);混合效應(yīng)模型;隨機(jī)微分方程;貝葉斯分析

    O212

    s:The National Natural Science Foundation of China (No.11171065, 81130068), the Natural Science Foundation of Jiangsu Province (No.BK2011058), the Fundamental Research Funds for the Central Universities (No.JKPZ2013015).

    :Yan Fangrong, Zhang Ping, Lu Tao, et al.Bayesian analysis for mixed-effects model defined by stochastic differential equations[J].Journal of Southeast University (English Edition),2014,30(1):122-127.

    10.3969/j.issn.1003-7985.2014.01.023

    10.3969/j.issn.1003-7985.2014.01.023

    Received 2012-10-12.

    Biographies:Yan Fangrong (1978—),male, doctor; Lin Jinguan (corresponding author),male, professor, jglin@seu.edu.cn.

    猜你喜歡
    藥科貝葉斯南京
    南京比鄰
    “南京不會(huì)忘記”
    中國(guó)藥科大學(xué)2020年1~7月獲授權(quán)專利情況(3)
    中國(guó)藥科大學(xué)2020年1~7月獲授權(quán)專利情況(1)
    中國(guó)藥科大學(xué)2020年1~7月獲授權(quán)專利情況(2)
    中國(guó)藥科大學(xué)2018年1~6月獲授權(quán)專利情況
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    貝葉斯公式及其應(yīng)用
    基于貝葉斯估計(jì)的軌道占用識(shí)別方法
    又是磷復(fù)會(huì) 又在大南京
    极品人妻少妇av视频| 手机成人av网站| 久久久久久免费高清国产稀缺| 亚洲成人免费电影在线观看| 久久精品国产a三级三级三级| 国产91精品成人一区二区三区 | 91国产中文字幕| 日本撒尿小便嘘嘘汇集6| 一区二区三区四区激情视频| 欧美日韩av久久| 丁香六月天网| 国产欧美亚洲国产| 亚洲五月婷婷丁香| 精品久久蜜臀av无| 精品国产国语对白av| 一边摸一边做爽爽视频免费| 黄网站色视频无遮挡免费观看| 无遮挡黄片免费观看| 久久精品国产a三级三级三级| av有码第一页| 日本av免费视频播放| 成人影院久久| 黄色视频在线播放观看不卡| 无遮挡黄片免费观看| 国产av精品麻豆| 99香蕉大伊视频| 人人澡人人妻人| 黑人巨大精品欧美一区二区mp4| av欧美777| 亚洲欧美精品自产自拍| 久久久久久亚洲精品国产蜜桃av| 精品高清国产在线一区| 女人被躁到高潮嗷嗷叫费观| 久久毛片免费看一区二区三区| 人成视频在线观看免费观看| av又黄又爽大尺度在线免费看| 咕卡用的链子| 国产精品影院久久| videosex国产| 18禁黄网站禁片午夜丰满| 免费在线观看日本一区| 999久久久精品免费观看国产| 国产一卡二卡三卡精品| av网站免费在线观看视频| 一边摸一边做爽爽视频免费| 欧美精品高潮呻吟av久久| 成在线人永久免费视频| 一区二区av电影网| 日日摸夜夜添夜夜添小说| 国产一级毛片在线| 美女高潮喷水抽搐中文字幕| 十八禁人妻一区二区| 国产高清国产精品国产三级| 一级a爱视频在线免费观看| avwww免费| 天天操日日干夜夜撸| 婷婷丁香在线五月| 老司机深夜福利视频在线观看 | www.熟女人妻精品国产| 手机成人av网站| 在线观看免费视频网站a站| 国产成人精品久久二区二区91| 精品国产一区二区久久| 啦啦啦视频在线资源免费观看| 999精品在线视频| 十八禁网站免费在线| 欧美成狂野欧美在线观看| 国产成人av激情在线播放| 另类精品久久| 99re6热这里在线精品视频| 久久九九热精品免费| 久久热在线av| 国产精品一二三区在线看| 欧美黄色片欧美黄色片| 两性夫妻黄色片| 久久久久久久久免费视频了| xxxhd国产人妻xxx| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 久久精品亚洲av国产电影网| 91老司机精品| 黄色 视频免费看| 亚洲精品美女久久av网站| 69精品国产乱码久久久| 日日爽夜夜爽网站| 在线亚洲精品国产二区图片欧美| 美女高潮到喷水免费观看| 国产欧美日韩一区二区精品| xxxhd国产人妻xxx| 成年av动漫网址| 午夜福利免费观看在线| 色婷婷av一区二区三区视频| 咕卡用的链子| 久久国产精品男人的天堂亚洲| 交换朋友夫妻互换小说| 亚洲国产中文字幕在线视频| 一二三四在线观看免费中文在| 日韩欧美一区二区三区在线观看 | 欧美97在线视频| av网站免费在线观看视频| 亚洲欧洲精品一区二区精品久久久| 亚洲精品成人av观看孕妇| 亚洲国产精品999| 亚洲色图 男人天堂 中文字幕| 日本av手机在线免费观看| 超碰97精品在线观看| 亚洲成av片中文字幕在线观看| 久久精品亚洲av国产电影网| 日日夜夜操网爽| 韩国精品一区二区三区| 精品国产一区二区三区久久久樱花| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品一区二区www | 亚洲伊人色综图| 久久中文字幕一级| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品电影小说| 久久精品aⅴ一区二区三区四区| 久久精品成人免费网站| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 亚洲人成77777在线视频| 国产97色在线日韩免费| 国产精品熟女久久久久浪| 国产主播在线观看一区二区| 又大又爽又粗| 久久久久久久精品精品| 自线自在国产av| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 久久人人爽人人片av| 99国产精品免费福利视频| 99热国产这里只有精品6| 咕卡用的链子| 精品一品国产午夜福利视频| 18在线观看网站| 亚洲精品久久午夜乱码| 亚洲av成人不卡在线观看播放网 | 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 色婷婷av一区二区三区视频| 亚洲国产精品成人久久小说| 蜜桃在线观看..| 99香蕉大伊视频| 精品久久久精品久久久| h视频一区二区三区| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 涩涩av久久男人的天堂| 国产精品 国内视频| 久久综合国产亚洲精品| 天天躁夜夜躁狠狠躁躁| 亚洲欧美一区二区三区黑人| 欧美精品av麻豆av| 飞空精品影院首页| 亚洲性夜色夜夜综合| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 亚洲精品粉嫩美女一区| 操美女的视频在线观看| 午夜激情av网站| 亚洲成av片中文字幕在线观看| 精品国产一区二区久久| a级毛片黄视频| 美女高潮喷水抽搐中文字幕| 日韩一卡2卡3卡4卡2021年| 曰老女人黄片| 人人妻人人爽人人添夜夜欢视频| 国产麻豆69| 在线 av 中文字幕| 亚洲第一青青草原| 亚洲欧美成人综合另类久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av美国av| 99热国产这里只有精品6| 精品久久久精品久久久| 少妇被粗大的猛进出69影院| 别揉我奶头~嗯~啊~动态视频 | 中国美女看黄片| 丁香六月欧美| 欧美在线黄色| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 欧美97在线视频| 如日韩欧美国产精品一区二区三区| 中文字幕高清在线视频| h视频一区二区三区| 久久香蕉激情| 老司机深夜福利视频在线观看 | 欧美乱码精品一区二区三区| 另类亚洲欧美激情| 欧美日韩一级在线毛片| 五月天丁香电影| 深夜精品福利| 操美女的视频在线观看| 精品少妇一区二区三区视频日本电影| 国产精品.久久久| 久久久国产一区二区| 国产精品久久久久久精品古装| 欧美激情高清一区二区三区| 成人18禁高潮啪啪吃奶动态图| av天堂在线播放| 亚洲精品自拍成人| 国产1区2区3区精品| 美女午夜性视频免费| 一区在线观看完整版| 超碰成人久久| 人妻一区二区av| 女人精品久久久久毛片| 亚洲中文字幕日韩| 大陆偷拍与自拍| 久久午夜综合久久蜜桃| av在线app专区| 免费看十八禁软件| 国产成人a∨麻豆精品| 久热这里只有精品99| 99久久国产精品久久久| 久热爱精品视频在线9| 一个人免费在线观看的高清视频 | 欧美在线黄色| 99香蕉大伊视频| 手机成人av网站| av有码第一页| 国产精品 欧美亚洲| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久人妻精品电影 | 亚洲成人手机| 国产免费av片在线观看野外av| 国产一区二区在线观看av| 侵犯人妻中文字幕一二三四区| 视频区欧美日本亚洲| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 亚洲精品日韩在线中文字幕| 欧美乱码精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| av又黄又爽大尺度在线免费看| 飞空精品影院首页| 国产精品香港三级国产av潘金莲| 久久九九热精品免费| av不卡在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产一区二区三区四区第35| 亚洲精品一二三| 国产成人精品在线电影| 一区二区三区精品91| 欧美另类亚洲清纯唯美| 免费在线观看视频国产中文字幕亚洲 | 日韩欧美一区视频在线观看| 久久免费观看电影| 欧美另类亚洲清纯唯美| 久久国产精品影院| 久久亚洲国产成人精品v| 日本av免费视频播放| 久久国产亚洲av麻豆专区| 成人国产一区最新在线观看| 久久女婷五月综合色啪小说| 性少妇av在线| 99久久综合免费| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 中文字幕色久视频| 黄色视频在线播放观看不卡| 久久亚洲国产成人精品v| 操出白浆在线播放| 精品久久久精品久久久| www.999成人在线观看| 一级片'在线观看视频| 伊人久久大香线蕉亚洲五| 亚洲精品久久久久久婷婷小说| 亚洲专区字幕在线| 亚洲精品国产精品久久久不卡| 欧美另类一区| tube8黄色片| 中文字幕制服av| 国产精品av久久久久免费| 人人妻人人添人人爽欧美一区卜| 青春草视频在线免费观看| 极品人妻少妇av视频| 999精品在线视频| 最近最新免费中文字幕在线| 欧美 亚洲 国产 日韩一| 日本黄色日本黄色录像| 伦理电影免费视频| 美女午夜性视频免费| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费电影在线观看| 精品久久久久久久毛片微露脸 | 老司机亚洲免费影院| 老熟女久久久| 国产男女超爽视频在线观看| 操美女的视频在线观看| 免费日韩欧美在线观看| 亚洲精品久久成人aⅴ小说| 又大又爽又粗| 丁香六月欧美| 欧美av亚洲av综合av国产av| 交换朋友夫妻互换小说| 精品一区二区三区av网在线观看 | 亚洲一区中文字幕在线| 国产伦理片在线播放av一区| 国产成人av教育| 精品久久久精品久久久| 日韩欧美一区视频在线观看| 麻豆国产av国片精品| 搡老熟女国产l中国老女人| h视频一区二区三区| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 在线永久观看黄色视频| 日韩有码中文字幕| 好男人电影高清在线观看| 久久久久国内视频| 下体分泌物呈黄色| 精品免费久久久久久久清纯 | 亚洲av电影在线观看一区二区三区| 欧美精品高潮呻吟av久久| 老司机午夜十八禁免费视频| 热re99久久精品国产66热6| 国产精品 国内视频| 老司机亚洲免费影院| 国内毛片毛片毛片毛片毛片| 国产免费视频播放在线视频| 亚洲成av片中文字幕在线观看| 国产男女内射视频| 日本91视频免费播放| 国产一区二区在线观看av| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 人成视频在线观看免费观看| 欧美精品啪啪一区二区三区 | 国产区一区二久久| 国产精品久久久久久精品电影小说| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 一级毛片精品| 亚洲精品一区蜜桃| 精品福利永久在线观看| 黄色a级毛片大全视频| 亚洲视频免费观看视频| 国产亚洲午夜精品一区二区久久| 天天影视国产精品| 在线av久久热| 精品亚洲成国产av| 国产一区二区在线观看av| 成年av动漫网址| 最黄视频免费看| 亚洲成人久久性| 制服诱惑二区| 妹子高潮喷水视频| 成人手机av| 亚洲 欧美 日韩 在线 免费| 日韩高清综合在线| 在线观看免费视频日本深夜| 久久久久国内视频| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 99国产精品一区二区蜜桃av| 色老头精品视频在线观看| 亚洲av第一区精品v没综合| 亚洲一区二区三区不卡视频| 黄色视频,在线免费观看| 欧美高清成人免费视频www| 国产亚洲欧美在线一区二区| 麻豆一二三区av精品| 久久精品影院6| 免费观看精品视频网站| 老汉色av国产亚洲站长工具| 怎么达到女性高潮| 老汉色av国产亚洲站长工具| 精品国内亚洲2022精品成人| 床上黄色一级片| 亚洲精品av麻豆狂野| 国产一区二区在线av高清观看| 国产99久久九九免费精品| 一二三四社区在线视频社区8| 日本一本二区三区精品| 精品乱码久久久久久99久播| 精品第一国产精品| 亚洲精品色激情综合| 亚洲在线自拍视频| 亚洲18禁久久av| 免费观看精品视频网站| 日韩三级视频一区二区三区| 欧美最黄视频在线播放免费| 国产三级黄色录像| 99国产精品99久久久久| 露出奶头的视频| 韩国av一区二区三区四区| 亚洲九九香蕉| 又黄又粗又硬又大视频| 日本a在线网址| 欧美精品啪啪一区二区三区| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 这个男人来自地球电影免费观看| 成人特级黄色片久久久久久久| 禁无遮挡网站| 成人av一区二区三区在线看| 99久久国产精品久久久| 国产av在哪里看| 欧美黄色淫秽网站| 国产一区二区在线观看日韩 | 岛国在线免费视频观看| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 久久精品91蜜桃| 欧美色视频一区免费| 午夜福利高清视频| 热99re8久久精品国产| 亚洲精品一区av在线观看| 国产成人欧美在线观看| avwww免费| 亚洲欧洲精品一区二区精品久久久| 99热只有精品国产| 啦啦啦韩国在线观看视频| 亚洲国产欧美人成| 搡老熟女国产l中国老女人| 日本a在线网址| 国产黄片美女视频| 久久久久国内视频| 色哟哟哟哟哟哟| 操出白浆在线播放| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| 免费av毛片视频| 男女那种视频在线观看| 99在线人妻在线中文字幕| 丁香六月欧美| 91av网站免费观看| 国产黄片美女视频| 成人手机av| 亚洲全国av大片| 国产区一区二久久| 一区福利在线观看| 亚洲天堂国产精品一区在线| 99在线人妻在线中文字幕| 午夜日韩欧美国产| 在线观看美女被高潮喷水网站 | 日韩欧美免费精品| 欧美激情久久久久久爽电影| 高清毛片免费观看视频网站| 国产精品综合久久久久久久免费| 国产日本99.免费观看| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 男女做爰动态图高潮gif福利片| 国产精品一区二区免费欧美| 九九热线精品视视频播放| 亚洲精品在线美女| 午夜精品在线福利| 女人高潮潮喷娇喘18禁视频| www国产在线视频色| 久久婷婷人人爽人人干人人爱| 亚洲天堂国产精品一区在线| 久久久久久国产a免费观看| 久久精品国产综合久久久| 国产黄色小视频在线观看| 国产精品免费视频内射| 一级作爱视频免费观看| 男女午夜视频在线观看| 校园春色视频在线观看| 精品乱码久久久久久99久播| 亚洲国产欧美网| 亚洲av熟女| 国产精品亚洲一级av第二区| 国产成人一区二区三区免费视频网站| 99re在线观看精品视频| 亚洲在线自拍视频| 久久中文字幕人妻熟女| 亚洲欧美精品综合一区二区三区| 真人一进一出gif抽搐免费| 午夜免费成人在线视频| svipshipincom国产片| 免费高清视频大片| 搞女人的毛片| 黄片大片在线免费观看| 精品人妻1区二区| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| 欧美日本视频| 亚洲国产欧美一区二区综合| 亚洲精品中文字幕在线视频| 国产区一区二久久| 91麻豆精品激情在线观看国产| 可以在线观看毛片的网站| 亚洲九九香蕉| 国产欧美日韩精品亚洲av| netflix在线观看网站| 免费人成视频x8x8入口观看| 不卡一级毛片| 国产97色在线日韩免费| 国产私拍福利视频在线观看| 国产亚洲精品综合一区在线观看 | 久久婷婷成人综合色麻豆| 亚洲免费av在线视频| 色综合亚洲欧美另类图片| 黄色毛片三级朝国网站| 亚洲aⅴ乱码一区二区在线播放 | 久久草成人影院| 久久天堂一区二区三区四区| 精品久久久久久久人妻蜜臀av| 最近最新中文字幕大全免费视频| 久久香蕉精品热| 麻豆国产97在线/欧美 | 色综合站精品国产| 午夜激情av网站| 久久久国产成人免费| 亚洲欧美日韩无卡精品| 亚洲av成人精品一区久久| 嫩草影院精品99| 曰老女人黄片| 国产成人aa在线观看| 欧美av亚洲av综合av国产av| 中文在线观看免费www的网站 | 老司机在亚洲福利影院| 日韩有码中文字幕| 日本 av在线| 一级毛片精品| 久久亚洲真实| 天天躁夜夜躁狠狠躁躁| 成人亚洲精品av一区二区| 国产精品一区二区三区四区久久| 欧美日韩国产亚洲二区| 亚洲五月婷婷丁香| 2021天堂中文幕一二区在线观| 级片在线观看| 久久中文字幕人妻熟女| 亚洲 欧美 日韩 在线 免费| 女人被狂操c到高潮| 美女高潮喷水抽搐中文字幕| 国产成+人综合+亚洲专区| 国产成人影院久久av| 久久久久亚洲av毛片大全| 久久久久精品国产欧美久久久| 久久久国产精品麻豆| av福利片在线观看| 免费在线观看亚洲国产| 两个人免费观看高清视频| 成人精品一区二区免费| 1024视频免费在线观看| 免费看a级黄色片| 久久人妻av系列| 丝袜美腿诱惑在线| 久久久久久免费高清国产稀缺| 国产单亲对白刺激| 老汉色av国产亚洲站长工具| 国产精品国产高清国产av| 最近在线观看免费完整版| 啦啦啦免费观看视频1| 国产精品电影一区二区三区| 母亲3免费完整高清在线观看| 国产爱豆传媒在线观看 | 床上黄色一级片| 老司机在亚洲福利影院| 精品无人区乱码1区二区| 国产欧美日韩一区二区三| 91九色精品人成在线观看| 俺也久久电影网| 日韩欧美精品v在线| 怎么达到女性高潮| 免费搜索国产男女视频| 波多野结衣高清无吗| 国产aⅴ精品一区二区三区波| 我要搜黄色片| 麻豆久久精品国产亚洲av| 国产v大片淫在线免费观看| 黄色视频不卡| 一二三四在线观看免费中文在| 日本撒尿小便嘘嘘汇集6| 亚洲av美国av| 亚洲欧美日韩东京热| 亚洲成人久久爱视频| 在线永久观看黄色视频| 国产伦在线观看视频一区| 最近在线观看免费完整版| 国内揄拍国产精品人妻在线| 国产亚洲精品综合一区在线观看 | 免费看a级黄色片| 精品久久久久久久久久免费视频| 成人午夜高清在线视频| 97碰自拍视频| 久久人妻av系列| 欧美成人性av电影在线观看| 91字幕亚洲| 久久人妻av系列| 欧美成人性av电影在线观看| www.自偷自拍.com| xxx96com| 亚洲国产精品成人综合色| 婷婷精品国产亚洲av在线| 精品久久久久久久久久免费视频| cao死你这个sao货| 97碰自拍视频| 亚洲人成网站高清观看| 色播亚洲综合网| 亚洲真实伦在线观看| 亚洲人成网站高清观看| 国产精品久久久久久人妻精品电影| 午夜福利在线在线| 50天的宝宝边吃奶边哭怎么回事| 大型av网站在线播放| 久久久久亚洲av毛片大全| 50天的宝宝边吃奶边哭怎么回事| 夜夜爽天天搞| 久久久国产欧美日韩av| 亚洲精品av麻豆狂野| a在线观看视频网站| 一级a爱片免费观看的视频| 99国产精品99久久久久| 91国产中文字幕| 久久亚洲精品不卡| 国产伦一二天堂av在线观看|