• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverse kinematic deriving and actuator control of Delta robot using symbolic computation technology

    2014-09-17 06:00:40FengLihangZhangWeigongLinGuoyuGongZongyangChenGang

    Feng Lihang Zhang Weigong, Lin Guoyu Gong Zongyang Chen Gang

    (1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    (2Suzhou Research Institute, Southeast University, Suzhou 215000, China)

    (3School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

    T he robot Delta,which was initially developed by Clavel in 1985,is a famous spatial parallel mechanism allowing three translational degrees offreedom(DoF)[1].Due to the superior qualities of large workspace, high speed and weak kinematics coupling, Delta is drawing more and more attention of scholars and engineers.

    To model this mechanism,the proposed ways of kinematic solving are mainly covered by the analytical method and the numerical approach[2].Earlier studies focused on the analytical method and closed-form solutions.Kinematic singularity and optimal design are discussed a lot by Clavel et al[3-5].But these can be cumbersome with hand derivations.Followed by the numerical method, which invokes the iterative solver of nonlinear equations with mathematical engines,researchers need to better understand the mechanism in advance so that constraint equations can be programmed and solved.Thus so far, the widespread system-level solving procedure is always implemented on several steps such as the established physical model in Pro/E, Solidworks, etc., the kinematic analysis in ADAMS,and numerical iteration in Matlab with every time step, etc.However, complexity and low computational efficiency exist in the procedure,and the numerical expression does not give a distinct symbolic representation.Recently, the symbolic technology of the graph theory has been applied to a mechanical system.Formulating symbolic equations attracts much interest due to the advantages of integrative modeling,automatic removal of multiplications and trigonometric simplifications, etc[6].McPhee et al.[7]further developed an approach that the mechanism's topology was modeled with a linear graph.Also, several examples such as slide-crank mechanism,a planar 3-DoFs robot and a general openloop robot have been implemented[8].Though researchers claimed that symbolic computation can be applied to more complex robots with closed-loops,few cases have been reported to date, especially on Delta.Since a general symbolic computation engine such as Maple,MuPad and Mathematica is required;that is,they can be coded into routines and run while simulation codes are being processed without providing users to manipulate the underlying equations.We apply similar applications on Delta.

    In this paper,the multibody analysis of Delta on coordinate selection and how to manipulate the symbolic equations are given.Explicit symbolic expression of constraints and inverse kinematic solutions are obtained by using a computation engine—MapleTM.Finally, actuator control can be directly realized,and the correctness and precision are verified with trajectory tracking.

    1 Principle of Symbolic Computation on Delta Robot

    1.1 Linear graph theory applied to mechanical systems

    In the linear graph of a mechanical system,different spanning trees in conjunction with many algorithms have been developed to describe their topology,which is proved to be a convenient method[9]. Definitions of nodes, edge, circuit, tree and subgraph for a mechanical system have been described as well.Rigid body elementsm,which start at the ground node,end at the node representing a reference frame at the center of mass.Rigid arm elementsr,which are used to define new reference frames relative to the mass center,start at the mass center and end at the desired node.Joint elementsj, which define the allowable motions between two bodies comprising a kinematic pair,contains different edge types for different joints such as revolute jointsh, prismatic jointss,universal jointsu, ball jointsband translational jointst.After all elements are defined,physical modeling can be established.Since we focus on the kinematics, the system dynamics is beyond the current scope and the procedure is simply processed as follows:

    1)Linear graph representation.The fundamental circuit subsets,which provide closure conditions around any loops and are satisfied with the associated edge across(translation, rotation)variables, are primarily taken into account.

    2)Spanning tree selection for coordinates.When a tree is selected for the graph,the circuit equations can be used to express all the kinematic variables,and the branch coordinates q are defined.

    3)Constraint equations projection and simplification.The constraints are generated by projecting the circuit equations for cotree joints onto the reaction space.The closed chain with an incidence matrix representation of the linear graph agrees well with the dependent branch coordinates[10].Thus, one obtainsmnonlinear algebraic equations in terms of thenbranch coordinates q:

    The system's DoF can be given byf=n-m.

    As an example,the slide-crank mechanism is depicted in Fig.1.Rigid arm elementsr1tor4are selected for the tree of the graph with kinematic transformations since no unknown coordinates or variables are introduced into q.By selecting theh1,h2,s1into the tree, the joint coordinate is set as

    where β is the revolute joint angle andsis the prismatic displacement.Then the reaction space forh2is spanned by unit vector i and j(the directions of the joint reaction forces),onto which the circuit equation forh2is projected:

    where p can be i or j,and Riis the translational vector of element.Substituting the elemental constitutive equations,for instance,=0,and evaluating,we obtain whereL12andL34are the length of the two arms,respectively.Thus,we obtainm=2 constraint equations in terms of then=3 branch coordinates for this 1-DoF system.This have been demonstrated by McPhee[9]and one can use symbolic computing to time-differentiate the position-level constraint Eq.(1).

    Fig.1 Linear representation example.(a)Slider-crank mechanism;(b)Linear graph of slider-crank

    1.2 Symbolic representation of Delta robot

    Similarly,we apply the above procedure to the Delta robot which consists of a moving platform connected to a fixed base through three parallel chains with 120°away from each other(see Fig.2 and Fig.3).Each chain contains a revolute joint activated by an actuator on the base.Movements are transmitted to the moving base through parallelograms formed by bars and spherical joints.Especially,a couple of spherical joints in each leg can be replaced by universal joints because the parallelogram structure makes an extra constraint for the 3-DoF translational motion[4].

    Since the Delta has a complete symmetrical topology,the symbolic representation is determined only by choosing one chain.Just like the virtual jointvh12depicted in Fig.1(b),we use a jointt0which allows only three translational DOFs for Delta,and then it can translate the full linear graph into a subgraph with a single chain(see Fig.3(b),dot line).In this subgraph,spherical jointsb11-b12are chosen while they are excluded from all single or separate trees because there are no variables appearing in equations.As a result,joint coordinates with a set of constraints are reduced,and the single spanning tree will include the following elements:rigid bodies(r10-r17,r'13-r'16),revolute jointh11,universal jointsu11-u12and virtual jointt0.Each revolute joint contributes 1 coordinate,the universal joint contributes 2 and the virtual joint contributes 3,so a total of 8 joint coordinates can be obtained as

    Fig.2 Delta mechanism with vector coordinates

    Fig.3 Delta representation.(a)One typical kinematic chain;(b)Linear graph representation

    Note that the universal joint can be dissociated into two orthogonal revolute joints,and the parallelogram structure makesu11a=u12aandu11b=u12b.The resulting set of coordinates is reduced to 6 with

    The constrains associated with legk(k=1,2,3)can be acquired by projecting the circuit equations onto the reaction space forb11andb12.By substituting variables,the constraints are of the general form as

    where θkis the driving angle of jointh11;αkand βkrefer to universal joint angles ofU11aandU11b;andr(t)refers

    to the prescribed motionxt0,yt0andzt0.Giving an insight into Eq.(7)with the joint dissociation of αkand βk,it is simplified as

    which indicates that inverse solutions of Delta can be obtained by only solving one single kinematic chain.The velocity and acceleration equations can be obtained by taking the derivative of Eq.(8)with respect to time.Apparently,the general form Eq.(8)is a little different from conventional vector loops solutions[11]which are in the form of three driving angles θkand three translation positionsr(t),but in fact,results will be the same when solving.

    2 Simulation and Symbolic Verification

    2.1 Physical model and multibody analysis

    To confirm the symbolic representation,the physical model of Delta is built in MapleSim[10]so that mechanical components can be defined based on the linear graph.Fig.4 depicts the model and the parameters are given as follows:the revolute joint is 0.25 m away from the fixed frame with an orientation angle of-π/6;the driving arm is 0.4 m in length;two sides of the parallelogram are 0.1 m and 1 m in length,respectively;the moving base has a radius of 0.05 m.Parameters are chosen generally for easy computation so that the Pythagorean theorem is satisfied in chains when all the driving angles equal 0.In this case,the calculated workspace is defined by the driving angle as θi∈(- arccos(1/3),π - arccos(1/7)]andz< 0.Thus,the geometrical singular is avoided when solving inverse kinematic.Fig.4(b)depicts the range of arm motion for better understanding.

    Fig.4 Delta robot model(unit:m).(a)3D physical model;(b)Geometrical singularity

    2.2 Symbolic manipulation of inverse kinematic

    When formulating a mechanical system's equations,there are some coordinate selections in the optimization techniques.The optimization procedure always requires multiple evaluations of objective functions and might be very tedious.By using the indirect joint coordinate[8],we obtain a result that 18 variables are given in a set of 15 constraints equations(3 for moving base motion ofX,YandZ,1 for revolute joint in driving arm,4 for a couple of universal joints).A snapshot of the 5 constraint equations set is shown in Fig.5,wherex(t),y(t),z(t)correspond to the desired motion of moving base,parameterArepresents the orientation angle,and the variables α(t),β(t)and θ(t)are universal joint angles and revolute joint,respectively.Obviously,this inverse symbolic representation is in the form of Eq.(8).Note that the latter four constraints have duplications due to the universal jointu11andu12.By only solving the former three equations for θ(t),the explicit symbolic representation of the kinematic solution can be easily obtained(see Fig.5).

    3 Actuator Control and Trajectory Tracking

    To verify the symbolic solution,the simulation of block components are created by using the derived equations so that an controller is designed.Here,the controller can be made for each single chain with three input variables of desired motionX,YandZ,one output variable of driving angle θ(t)and one orientation angle.By using a virtual electrical driving subsystem(see Fig.6),the kinematic relations for any desired trajectory can be evaluated.

    Fig.6 Subsystem diagram with PID control for a single kinematic chain

    Two motion curves are chosen for trajectory tracking,respectively.One is the circular path in theX-Yplane used for the correctness test under ideal conditions(see Fig.7);the other is Adept motion[12]which is always used as a benchmark test in Pick-and-place operation(see Fig.8).

    Fig.7 Circular path for kinematic response.(a)Circular path in X-Y plane;(b)Driving angles of inverse kinematic

    The desired circular trajectory(see Fig.7),in which a straight line is inserted at the start of the path to test whether trajectory change will have an effect on the results or not,is compared against the actual point track.Note that both the straight line and circular segments agree with the kinematic motion well.For Adept motion(see Fig.8),the inverse kinematic solution is verified by a PID controller with position feedback.The trajectory,point track,driving angles and errors can be observed as well.As expected,the simulation satisfies the requirement of the motion and the trajectory error is within acceptable thresholds for kinematic response.

    4 Conclusion

    According to the linear graph representation of the Delta robot,the inverse kinematic can be derived with a symbolic form.The symbolic equations representation are successfully performed and confirmed using a computation engine.Based on the symbolic solutions,actuator control and trajectory tracking are designed so that the kinematic response is proved to be correct and effective.

    Fig.8 Adept motion for kinematic response.(a)Motion trajectory;(b)Driving angles of inverse kinematic

    [1]Pierrot F,Reynaud C,F(xiàn)ournier A.Delta:a simple and efficient parallel robot[J].Robotica,1990,8(1):105-109.

    [2]Ai Q L,Zu S J,Xu F.Review of kinematics and singularity of parallel manipulator[J].Journal of Zhejiang University:Engineering Science,2012,46(8):1345-1359.(in Chinese)

    [3]Vischer P,Clavel R.Kinematic calibration of the parallel Delta robot[J].Robotica,1998,16(2):207-218.

    [4]Tsai L W,Walsh G C,Stamper R E.Kinematics of a novel three DOF translational platform[C]//IEEE International Conference no Robotics and Automation.Minneapolis,MN,USA,1996:3446-3451.

    [5]Stock M,Miller K.Optimal kinematic design of spatial parallel manipulators:application to linear delta robot[J].Journal of Mechanical Design,2003,125(2):292-301.

    [6]Schmitke C,Goossens P.Symbolic computation techniques for multibody model development and code generation[C]//Multibody Dynamics,ECCOMAS Thematic Conference.Brussels,Belgium,2011:4-7.

    [7]McPhee J,Schmitke C,Redmond S.Dynamic modelling of mechatronic multibody systems with symbolic computing and linear graph theory[J].Mathematical and Computer Modelling,2004,10(1):1-23.

    [8]McPhee J,Redmond S.Modelling multibody systems with indirect coordinates[J].Computer Methods in AppliedMechanics and Engineering,2006,195(50):6942-6957.

    [9]Léger M,McPhee J.Selection of modeling coordinates for forward dynamic multibody simulations[J].Multibody System Dynamics,2007,18(2):277-297.

    [10]Hebíek J.Mathematical modeling with maple and maplesim [J].Journal of Applied Mathematics,2008,1(2):227-240.

    [11]López M,Castillo E,García G,et al.Delta robot:inverse,direct,and intermediate Jacobians[J].Journal of Mechanical Engineering Science,2006,220(1):103-109.

    [12]Nabat V,Rodriguez M,Krut S,et al.Par4:very high speed parallel robot for pick-and-place[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Alberta,Canada,2005:553-558.

    精品国产露脸久久av麻豆 | 国产成人精品婷婷| 在线天堂最新版资源| 在线观看美女被高潮喷水网站| 午夜福利在线在线| 在线天堂最新版资源| 在线天堂最新版资源| ponron亚洲| 日韩欧美 国产精品| 国内少妇人妻偷人精品xxx网站| 久久99精品国语久久久| 国产亚洲5aaaaa淫片| 91午夜精品亚洲一区二区三区| 午夜日本视频在线| 天天躁夜夜躁狠狠久久av| 亚洲经典国产精华液单| 欧美激情国产日韩精品一区| 国产成人午夜福利电影在线观看| 免费av观看视频| 国产伦理片在线播放av一区| 人人妻人人看人人澡| 成年女人在线观看亚洲视频 | 久热久热在线精品观看| 国产精品蜜桃在线观看| 啦啦啦啦在线视频资源| 亚洲成人久久爱视频| 亚洲成人久久爱视频| 久久精品国产亚洲网站| 在线观看美女被高潮喷水网站| 男女视频在线观看网站免费| 在线观看免费高清a一片| 久久精品国产亚洲网站| 亚洲欧美成人精品一区二区| 国产黄频视频在线观看| 超碰av人人做人人爽久久| 亚洲精品日本国产第一区| 国产成人精品一,二区| 久久久久久久大尺度免费视频| 好男人在线观看高清免费视频| 精品久久国产蜜桃| 精品午夜福利在线看| 亚洲国产精品专区欧美| 中文字幕av成人在线电影| 久久久久久九九精品二区国产| 日产精品乱码卡一卡2卡三| 街头女战士在线观看网站| 亚洲成人中文字幕在线播放| 看非洲黑人一级黄片| eeuss影院久久| 免费av毛片视频| 一级片'在线观看视频| 18禁在线播放成人免费| 嫩草影院入口| 亚洲成人久久爱视频| 成人性生交大片免费视频hd| 国产视频内射| 精品人妻熟女av久视频| 婷婷色麻豆天堂久久| 久久久亚洲精品成人影院| 最近中文字幕2019免费版| 精品一区二区三卡| 久久久久久久久久久丰满| 直男gayav资源| 国产乱人偷精品视频| 亚洲av在线观看美女高潮| 熟妇人妻不卡中文字幕| 成人亚洲精品av一区二区| 久久久久久久久久久丰满| 成人综合一区亚洲| 国产又色又爽无遮挡免| 一个人看视频在线观看www免费| 99re6热这里在线精品视频| 日韩,欧美,国产一区二区三区| 高清午夜精品一区二区三区| 男的添女的下面高潮视频| 国产精品一区二区性色av| 亚洲真实伦在线观看| 哪个播放器可以免费观看大片| 丰满人妻一区二区三区视频av| 99久久中文字幕三级久久日本| 菩萨蛮人人尽说江南好唐韦庄| 国产 亚洲一区二区三区 | 人人妻人人澡人人爽人人夜夜 | 日本与韩国留学比较| 国产黄色免费在线视频| 亚洲精品日韩av片在线观看| 免费av毛片视频| 亚洲国产欧美人成| 日日干狠狠操夜夜爽| 2021少妇久久久久久久久久久| 亚洲精品第二区| 91精品国产九色| 国产日韩欧美在线精品| 97超碰精品成人国产| 夜夜看夜夜爽夜夜摸| 中文天堂在线官网| 国产激情偷乱视频一区二区| 免费大片黄手机在线观看| 精品国产一区二区三区久久久樱花 | av线在线观看网站| 高清av免费在线| 日日撸夜夜添| 久久久久久国产a免费观看| 搡老妇女老女人老熟妇| 一区二区三区四区激情视频| 国内精品宾馆在线| 国产v大片淫在线免费观看| 国产午夜精品一二区理论片| 美女大奶头视频| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 亚洲av中文av极速乱| 国产亚洲最大av| 亚洲精品成人av观看孕妇| 午夜免费男女啪啪视频观看| av国产免费在线观看| 一区二区三区四区激情视频| 熟妇人妻不卡中文字幕| 午夜福利网站1000一区二区三区| 偷拍熟女少妇极品色| 干丝袜人妻中文字幕| 一个人看视频在线观看www免费| 3wmmmm亚洲av在线观看| 一区二区三区免费毛片| 国产高清三级在线| 中文字幕av成人在线电影| 中国国产av一级| 麻豆av噜噜一区二区三区| 搞女人的毛片| 免费电影在线观看免费观看| 99热6这里只有精品| 人妻一区二区av| 美女主播在线视频| 午夜精品在线福利| 国产欧美日韩精品一区二区| 精华霜和精华液先用哪个| 在线观看免费高清a一片| 日韩欧美国产在线观看| 男女边摸边吃奶| 美女xxoo啪啪120秒动态图| 国产v大片淫在线免费观看| 成人亚洲精品一区在线观看 | av在线蜜桃| 亚洲内射少妇av| 国产成人aa在线观看| 欧美变态另类bdsm刘玥| 精品人妻视频免费看| 日本av手机在线免费观看| 国产精品一区www在线观看| 中文字幕av在线有码专区| 国产黄频视频在线观看| 好男人视频免费观看在线| 国产免费又黄又爽又色| 国产一区二区三区av在线| 女人十人毛片免费观看3o分钟| 老女人水多毛片| 我的老师免费观看完整版| 久久久精品94久久精品| 直男gayav资源| 人妻夜夜爽99麻豆av| 国产精品爽爽va在线观看网站| 婷婷色av中文字幕| 日本-黄色视频高清免费观看| 色综合站精品国产| 国产单亲对白刺激| 成人毛片60女人毛片免费| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 美女脱内裤让男人舔精品视频| 天堂√8在线中文| a级毛色黄片| 国产精品.久久久| 最近最新中文字幕免费大全7| 三级毛片av免费| 99re6热这里在线精品视频| 久久久久久伊人网av| 人妻少妇偷人精品九色| 三级经典国产精品| 一级毛片电影观看| 尤物成人国产欧美一区二区三区| 人人妻人人澡欧美一区二区| 亚洲va在线va天堂va国产| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 国产精品嫩草影院av在线观看| 国产午夜精品一二区理论片| 国产不卡一卡二| 美女cb高潮喷水在线观看| 小蜜桃在线观看免费完整版高清| 美女国产视频在线观看| 人妻系列 视频| 啦啦啦韩国在线观看视频| 国产高清三级在线| 五月天丁香电影| 亚洲国产色片| av在线老鸭窝| 看十八女毛片水多多多| av在线观看视频网站免费| 亚洲自偷自拍三级| 亚洲婷婷狠狠爱综合网| 干丝袜人妻中文字幕| 久久久精品免费免费高清| 国产精品久久久久久久电影| 国产精品av视频在线免费观看| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 久久久久久久亚洲中文字幕| 在线天堂最新版资源| av免费观看日本| 日韩强制内射视频| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 最近中文字幕高清免费大全6| 真实男女啪啪啪动态图| 国产 一区精品| 最后的刺客免费高清国语| 波多野结衣巨乳人妻| 久久精品国产自在天天线| 亚洲精品影视一区二区三区av| 成人综合一区亚洲| 亚洲国产av新网站| 成人鲁丝片一二三区免费| 夜夜看夜夜爽夜夜摸| 亚洲av电影在线观看一区二区三区 | 非洲黑人性xxxx精品又粗又长| 国产毛片a区久久久久| 一级片'在线观看视频| 蜜桃亚洲精品一区二区三区| 22中文网久久字幕| 欧美日韩国产mv在线观看视频 | 久久精品久久久久久久性| 18禁动态无遮挡网站| 日本av手机在线免费观看| av女优亚洲男人天堂| 尤物成人国产欧美一区二区三区| 精品少妇黑人巨大在线播放| 免费高清在线观看视频在线观看| 有码 亚洲区| 久久久久网色| 国产免费又黄又爽又色| 寂寞人妻少妇视频99o| 亚洲av免费在线观看| 精品久久久精品久久久| 99热这里只有精品一区| 国产精品.久久久| 精品国产三级普通话版| 色综合站精品国产| 麻豆av噜噜一区二区三区| 国产伦在线观看视频一区| 国产精品国产三级国产av玫瑰| 欧美丝袜亚洲另类| 国产高清不卡午夜福利| 嫩草影院新地址| 亚洲三级黄色毛片| 美女国产视频在线观看| 中文字幕制服av| 男的添女的下面高潮视频| 性插视频无遮挡在线免费观看| 亚洲丝袜综合中文字幕| 99久久中文字幕三级久久日本| 亚洲欧美中文字幕日韩二区| 九九在线视频观看精品| 亚洲国产精品成人综合色| 国产在线男女| 99久久中文字幕三级久久日本| 干丝袜人妻中文字幕| 三级国产精品欧美在线观看| 精品久久久精品久久久| 伦理电影大哥的女人| 97在线视频观看| 色尼玛亚洲综合影院| 亚洲精品,欧美精品| 一本一本综合久久| 日韩国内少妇激情av| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线播| 亚洲精品自拍成人| 男人爽女人下面视频在线观看| 国产精品.久久久| 国产精品爽爽va在线观看网站| 国产 一区 欧美 日韩| 美女大奶头视频| 水蜜桃什么品种好| 国产伦精品一区二区三区四那| 日本色播在线视频| 天堂俺去俺来也www色官网 | 淫秽高清视频在线观看| 可以在线观看毛片的网站| 久久这里只有精品中国| 免费看日本二区| 中文字幕av成人在线电影| 久久99热这里只频精品6学生| 天堂网av新在线| 最新中文字幕久久久久| 国产乱来视频区| 国产午夜福利久久久久久| 国产免费视频播放在线视频 | 久久午夜福利片| 日日摸夜夜添夜夜添av毛片| 久久久久久国产a免费观看| 亚洲不卡免费看| 在线a可以看的网站| 久久久精品94久久精品| 99热这里只有是精品50| 国产三级在线视频| 禁无遮挡网站| 高清午夜精品一区二区三区| 久久韩国三级中文字幕| 国产一区二区三区综合在线观看 | 五月玫瑰六月丁香| 日韩欧美国产在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品蜜桃在线观看| eeuss影院久久| 超碰97精品在线观看| 日日啪夜夜撸| 青春草国产在线视频| 精品一区二区三区人妻视频| 男人和女人高潮做爰伦理| 老司机影院毛片| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 国国产精品蜜臀av免费| 啦啦啦韩国在线观看视频| 99久久中文字幕三级久久日本| 中文字幕亚洲精品专区| 亚洲成人中文字幕在线播放| 建设人人有责人人尽责人人享有的 | 国产中年淑女户外野战色| 国产免费福利视频在线观看| 男插女下体视频免费在线播放| 黄色一级大片看看| 日日摸夜夜添夜夜爱| 搞女人的毛片| 两个人视频免费观看高清| 久久久久久久久久成人| 舔av片在线| 一级毛片aaaaaa免费看小| 国产精品国产三级国产av玫瑰| 亚洲精品一区蜜桃| 国产成人免费观看mmmm| 观看免费一级毛片| 亚州av有码| 国产综合懂色| 国产精品一区二区三区四区久久| 黄色欧美视频在线观看| 精品久久久久久久久av| 少妇的逼水好多| 有码 亚洲区| 大又大粗又爽又黄少妇毛片口| 五月玫瑰六月丁香| 成年女人在线观看亚洲视频 | 狂野欧美白嫩少妇大欣赏| 国产精品综合久久久久久久免费| 欧美xxxx性猛交bbbb| 日本黄大片高清| 一区二区三区免费毛片| 欧美日本视频| 国产男女超爽视频在线观看| 我的老师免费观看完整版| 久久久国产一区二区| 成人鲁丝片一二三区免费| 国产有黄有色有爽视频| 精品一区在线观看国产| 伊人久久国产一区二区| av播播在线观看一区| 日本欧美国产在线视频| 国产探花极品一区二区| 国产成年人精品一区二区| 男人狂女人下面高潮的视频| 三级国产精品欧美在线观看| 成人午夜高清在线视频| 成人欧美大片| 国产伦精品一区二区三区视频9| 狂野欧美白嫩少妇大欣赏| 欧美最新免费一区二区三区| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 免费播放大片免费观看视频在线观看| 最近2019中文字幕mv第一页| av福利片在线观看| 亚洲av电影在线观看一区二区三区 | 欧美成人精品欧美一级黄| 日本午夜av视频| 成人亚洲精品av一区二区| 欧美bdsm另类| 中文字幕制服av| 国产爱豆传媒在线观看| 男女视频在线观看网站免费| 中文字幕av在线有码专区| 国产伦精品一区二区三区视频9| 能在线免费观看的黄片| 美女脱内裤让男人舔精品视频| 免费看美女性在线毛片视频| 精品久久久噜噜| 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久久电影| 啦啦啦中文免费视频观看日本| 成人欧美大片| 最近最新中文字幕免费大全7| 国产v大片淫在线免费观看| 久久久亚洲精品成人影院| 久久久久九九精品影院| 国产一区二区三区综合在线观看 | 在线观看人妻少妇| 九色成人免费人妻av| 赤兔流量卡办理| 激情五月婷婷亚洲| 久久精品熟女亚洲av麻豆精品 | eeuss影院久久| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 六月丁香七月| 内射极品少妇av片p| 日韩强制内射视频| 中文在线观看免费www的网站| 色吧在线观看| 亚洲av电影不卡..在线观看| 国产 亚洲一区二区三区 | 欧美丝袜亚洲另类| 亚洲第一区二区三区不卡| 老司机影院成人| 免费大片黄手机在线观看| 六月丁香七月| 国产免费福利视频在线观看| 少妇高潮的动态图| 亚洲精品国产av成人精品| 国产免费一级a男人的天堂| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久久久电影| 在线免费十八禁| 国产毛片a区久久久久| 久久午夜福利片| 国产一区二区三区综合在线观看 | 你懂的网址亚洲精品在线观看| 亚洲综合精品二区| 成人亚洲精品一区在线观看 | 亚洲成人中文字幕在线播放| 久久久久性生活片| 精华霜和精华液先用哪个| 国产一区二区亚洲精品在线观看| 久久久a久久爽久久v久久| 三级男女做爰猛烈吃奶摸视频| 少妇丰满av| 免费在线观看成人毛片| 国产亚洲av片在线观看秒播厂 | www.av在线官网国产| 午夜福利高清视频| 午夜福利视频1000在线观看| 久久精品国产鲁丝片午夜精品| 中文欧美无线码| 18禁在线无遮挡免费观看视频| 精品久久久久久久人妻蜜臀av| 日韩av不卡免费在线播放| 禁无遮挡网站| 白带黄色成豆腐渣| 国产成年人精品一区二区| 在线免费观看不下载黄p国产| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 高清毛片免费看| 久久久久久久久久黄片| 亚洲不卡免费看| 国产男人的电影天堂91| 中文字幕亚洲精品专区| 国产精品综合久久久久久久免费| 免费看av在线观看网站| 欧美激情久久久久久爽电影| 婷婷色综合www| 少妇的逼水好多| 两个人视频免费观看高清| 熟女电影av网| 热99在线观看视频| 久久精品国产亚洲网站| 国产日韩欧美在线精品| 自拍偷自拍亚洲精品老妇| 丰满乱子伦码专区| 在线观看人妻少妇| 亚洲精品自拍成人| 2021少妇久久久久久久久久久| 尾随美女入室| 日韩强制内射视频| 在线免费观看的www视频| 精品久久久久久久久久久久久| 哪个播放器可以免费观看大片| 黄片wwwwww| 91精品国产九色| 亚洲欧美日韩无卡精品| 哪个播放器可以免费观看大片| 国产乱来视频区| 日日啪夜夜撸| 免费在线观看成人毛片| 亚洲av中文av极速乱| 久久精品国产自在天天线| 欧美 日韩 精品 国产| 熟女电影av网| 最近手机中文字幕大全| 三级男女做爰猛烈吃奶摸视频| 伊人久久精品亚洲午夜| av专区在线播放| 国产国拍精品亚洲av在线观看| 偷拍熟女少妇极品色| 天堂av国产一区二区熟女人妻| 国产免费福利视频在线观看| 在线 av 中文字幕| 亚洲国产高清在线一区二区三| 一个人免费在线观看电影| 成人一区二区视频在线观看| 日韩精品青青久久久久久| 国语对白做爰xxxⅹ性视频网站| 天堂影院成人在线观看| 亚洲伊人久久精品综合| 国产黄色视频一区二区在线观看| 国产高潮美女av| 色播亚洲综合网| 国产成人精品福利久久| 国产精品爽爽va在线观看网站| 久久精品夜色国产| 秋霞伦理黄片| 日日撸夜夜添| 别揉我奶头 嗯啊视频| 亚洲av成人精品一二三区| 嘟嘟电影网在线观看| 在线观看一区二区三区| 一二三四中文在线观看免费高清| 日韩在线高清观看一区二区三区| 亚洲18禁久久av| 亚洲在线自拍视频| 亚洲怡红院男人天堂| 老女人水多毛片| 免费看a级黄色片| 精品99又大又爽又粗少妇毛片| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频 | 国产色爽女视频免费观看| 男女下面进入的视频免费午夜| 简卡轻食公司| 肉色欧美久久久久久久蜜桃 | 久久久久久国产a免费观看| 亚洲天堂国产精品一区在线| 日本与韩国留学比较| 国产麻豆成人av免费视频| 成人毛片a级毛片在线播放| 亚洲高清免费不卡视频| 国产成人一区二区在线| 九九久久精品国产亚洲av麻豆| 欧美高清性xxxxhd video| 2022亚洲国产成人精品| 最近的中文字幕免费完整| 国产成人精品久久久久久| 能在线免费观看的黄片| 日韩成人伦理影院| 国产精品久久久久久精品电影小说 | 久久精品国产亚洲av涩爱| 国产一区亚洲一区在线观看| av黄色大香蕉| 男人舔女人下体高潮全视频| 尤物成人国产欧美一区二区三区| 人体艺术视频欧美日本| 搡老乐熟女国产| 蜜桃亚洲精品一区二区三区| 天堂中文最新版在线下载 | 中文字幕亚洲精品专区| 草草在线视频免费看| 久久草成人影院| 亚洲av男天堂| 成年av动漫网址| 精品午夜福利在线看| 观看免费一级毛片| www.色视频.com| 免费黄频网站在线观看国产| 日韩制服骚丝袜av| 中文字幕制服av| 两个人的视频大全免费| 99久国产av精品国产电影| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 大香蕉久久网| 久久久国产一区二区| 国产精品99久久久久久久久| 国产精品人妻久久久影院| 日本三级黄在线观看| 亚洲18禁久久av| 国产色爽女视频免费观看| 男女国产视频网站| 欧美成人a在线观看| 国产精品.久久久| 亚洲熟妇中文字幕五十中出| 亚洲欧美成人精品一区二区| 精品熟女少妇av免费看| 国产成年人精品一区二区| 嘟嘟电影网在线观看| 男人舔女人下体高潮全视频| 久久99热这里只频精品6学生| 人妻制服诱惑在线中文字幕| 中国国产av一级| 黄色欧美视频在线观看| av又黄又爽大尺度在线免费看| 精品欧美国产一区二区三| 少妇裸体淫交视频免费看高清| .国产精品久久| 高清欧美精品videossex| 最近中文字幕2019免费版| 亚洲国产精品成人久久小说| 熟女电影av网| 精品久久久久久久末码| 寂寞人妻少妇视频99o| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 国产av国产精品国产| 国产成人freesex在线| 青春草亚洲视频在线观看| 色综合色国产| 中文精品一卡2卡3卡4更新|