• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wavelet transform and gradient direction based feature extraction method for off-line handwritten Tibetan letter recognition

    2014-09-18 00:05:08HuangHemingDaFeipengHanXiaoxu

    Huang Heming Da Feipeng Han Xiaoxu

    (1School of Automation, Southeast University, Nanjing 210096, China)

    (2School of Computer Science, Qinghai Normal University, Xining 810008, China)

    (3Department of Computer and Information Science, Fordham University, New York 10458, USA)

    T he study of English and Chinese character recognition has a history of more than half a century and many effective techniques have been developed for such recognition stages as pre-processing, feature extraction,classification, and post-processing.However, the study on Tibetan character recognition has just been begun since the last decade.The recognition of printed Tibetan characters has been studied first;the reason may be that it is comparatively easier[1-4].Recently, the recognition of online handwritten Tibetan characters has been studied by a few researchers[5-6].As far as off-line handwritten Tibetan character recognition is concerned,a database of off-line handwritten Tibetan character samples, THCDB,is introduced by Huang et al[7].A sparse representation-based classification algorithm is also proposed by them[8].

    The main contribution of this paper is that the gradient direction histograms based on the wavelet transform are proposed as the features of off-line handwritten Tibetan character recognition.Concretely, to a character image,the first level approximation component of the Haar wavelet transform is calculated first;and then,it is partitioned into several equal-sized zones;thirdly,the local gradient direction histograms of each zone are calculated;and finally,all the histograms are considered as the features of the character sample image.The experimental results on the THCDB show that the proposed method of combining the wavelet transform and the gradient direction histogram leads to a competitive feature extractor.

    1 Database and Pre-Processing

    To each sample image for either training or testing,the necessary pre-processes such as segmentation,size normalization, de-noising, and orientation correction are implemented to facilitate the feature extraction process and improve the classification accuracy.More details about these pre-processes can be seen in Ref.[7].

    2 Proposed Feature Extraction Method

    To a character image,a single level wavelet transform produces one approximation component and three detail components.Among these, the approximation component has the advantage of conserving the main information of the original image.In addition, the local gradient direction histograms of an image have the advantages of simple implementation and invariance to the stroke-width variation.The local gradient direction histograms of the approximation component make full use of the advantages of both aspects and, therefore, they are proposed as the features of the Tibetan character sample image.

    2.1 Calculation of the first level approximation component

    Wavelet transform is a powerful technique in many areas[9].For a given image A0, as shown in Fig.1, a single level wavelet transform produces one approximation component A1and three detail components H1, V1, and D1.The approximation component keeps the low frequency information of the original image while the three detail components reflect the high frequency information of the original image in horizontal, vertical, and diagonal directions, respectively.

    Fig.1 The first level wavelet transform of a sample of handwritten Tibetan letter

    There are many different wavelet families,such as Daubechies wavelets, Mexican hat wavelets, and Morlet wavelets.Among these, the Haar wavelet, a special case of Daubechies wavelets,has such advantages as conceptual simplicity, high speed, and memory efficiency[10].Furthermore,the disadvantage of the Haar wavelet is that it is not continuous, and, therefore, not differentiable.However,this property becomes an advantage for the analysis of signals with sudden transitions such as character images that have many sharp edges.

    Fig.2 Top two level approximation components of Tibetan letters and produced by Haar wavelet transform.(a)A sample image of letter and its first two level approximation components;(b)A sample image of letter and its first two level approximation components

    To handwritten Tibetan character samples,the first level approximation component of the Haar wavelet transform conserves the main information of the original image while the higher level approximation component degenerates severely.Fig.2 shows the top two level approximation components of letters and ,respectively.It can be seen that the second level approximation components(see the third images of Fig.2(a)and(b))become so vague that it is difficult to identify them.Therefore,in our system,the feature extraction is based on the first level approximation component.

    2.2 Partitioning approximation component into equalsized zones

    Characters contain strokes,and the directions of the strokes have significant effects on the distinguishing of various characters.For a long time, stroke direction has been considered in the stroke analysis of character recognition.

    For a statistical recognition based on feature vector representation,character samples are represented as the vectors of direction statistics.To realize this, the stroke direction angle is divided into a fixed number of ranges,and the number of stroke segments in each angle range is regarded as a feature value.The set of numbers of directional segments thus forms a histogram,called direction histogram.To enhance the differentiation ability,the histogram for the local zones of the character image is often calculated.In our experiments, the local direction histograms are calculated by decomposing the gradient vector at each pixel of the local zone to some standard directions.

    2.3 Calculation of local gradient direction histogram

    To an image A(x,y), the gradient vector(?A/?x,?A/?y)at pixel(x, y)is computed by

    To calculate the features of image A(x,y), a gradient vector is generally decomposed to some standard directions.Eight standard directions are usually specified and each of them is denoted as Ai(x,y),i=0,1,…,7, respectively.

    A gradient vector of arbitrary direction is decomposed into two constituents coinciding with the two adjacent standard directions.If we use l1and l2to represent the constituent lengths of two adjacent standard directions,the corresponding two direction planes are updated with A1(x,y)=A1(x,y)+l1and A2(x,y)=A2(x,y)+l2, respectively.The direction planes are completed by separating the gradient vectors at all pixels.However, for the sake of recognition accuracy and computing efficiency,the eight direction planes are usually merged into four by Ai(x,y)=Ai(x,y)+Ai+4(x,y),i=0,1,2,3.The local gradient direction histograms calculated in this way have two advantages:simple implementation and invariance to stroke-width variations[11].

    The process of the proposed feature extraction method is shown in Fig.3.To each sample(see Fig.3(a)), the approximation component of a single level Haar wavelet transform is obtained first(see Fig.3(b)).Then, it is partitioned into several equal-sized zones(see Fig.3(c)).Thirdly, the local gradient direction histograms of all the zones are calculated(see Fig.3(d)).Finally, all the histograms are considered as the feature values of the character image.

    Fig.3 Process of the proposed feature extraction method.(a)A sample image of Tibetan letter ;(b)The first level approximation component produced by the Haar wavelet transform;(c)The approximation component partitioned into four equal-sized zones;(d)Four local gradient direction histograms corresponding to the four equal-sized zones

    2.4 Analysis of feature vector dimension

    If the width and height of a character image are denoted as w0and h0, respectively, the width and height of the first level approximation component becomes w0/2 and h0/2,because of column-wise and row-wise down-sampling.Therefore, if the width and height of each zone are denoted as wzand hz, respectively, the total number of histograms is

    This number is also the dimension of the feature vector.It can be seen that the dimension of the feature vector is determined by the size of the sample image and that of the partitioned zone.

    Since the sizes of all sample images are normalized to 48×24 in the pre-processing stage,the dimension of the feature vector is determined by

    3 Modified Quadratic Discriminant Function

    The quadratic discriminant function(QDF)is a popular statistical classifier and it is obtained under the assumption of the multivariate Gaussian density for each class.Up to the present, three versions of QDF, namely MQDF1,MQDF2, and MQDF3, have been developed.Comparing with the QDF,MQDF2 has been proved to be more effective due to its higher performance and less computation time.The MQDF2 is defined as

    where λijand φijdenote the j-th eigenvalue and its corresponding eigenvector of the covariance matrix Σi, respectively;k denotes the number of principal eigenvalues;δiis a constant;ri(x)represents the residual of subspace projection.

    Liu et al.improved the performance of the QDF in another way[11].They combined the principle of regularized discriminant analysis(RDA)with MQDF2 by smoothing the covariance matrix of each class with the identity matrix,that is

    The MQDF3 has the advantages of high computation effectiveness and remarkable performance.Therefore, the MQDF3 is employed as the classification function of our recognition system.

    Based on the abundant experiments,the number of principal eigenvalues k in Eq.(4)and the value of the regularization parameter γ in Eq.(5)are set to be 50 and 0.2, respectively.

    4 Experiments

    The implementation environment of our experiments is as follows.The processor is Intel Core 2 Duo CPU(E6550, 2.33 GHz), and the RAM is 2.00 GB DDR2.The operating system is MS XP professional SP3,and the programming platform is Matlab 2007a.

    4.1 Evaluation of size of equal-sized zone

    In this experiment,the optimal size of each equal-sized zone is evaluated by fixing k to 50.The recognition rates vs.the sizes of the zone are listed in Tab.1.The dimensions of the feature vector that influence the recognition time are also listed in Tab.1.

    It can be seen that the best recognition rate 97.13%is reached when wz=2 and hz=2,and the average recognition time of a test sample is 0.137 0 s.

    In a word,the optimal values for the parameters of our recognition system are that k is 50 and the size of each zone is 2×2.Under this circumstance, the dimension ofthe feature vector is 288.

    Tab.1 Recognition rates vs.the sizes of equal-sized zones

    4.2 Comparison with the previous method

    The recognition accuracy of the proposed feature extraction method is compared with that of the method in Ref.[9].The features in Ref.[9]are extracted as follows.After the same pre-processing, a character image is directly partitioned into several equal-sized zones without wavelet transforms, and, for each zone, four local gradient direction histograms are calculated.There are totally(48×24)/(wz×hz)values and they are considered as the features of each sample image.

    The discriminant function MQDF3 is also employed for classification.Similarly, the size of equal-sized zones affects the recognition rate and the dimension of the feature vector potentially, as shown in Tab.2.It can be seen that the optimal recognition rate 95.17%is reached as the size of a zone is 6 ×6, which is 1.96%higher than that of the method presented in Ref.[9].

    Tab.2 Recognition rates vs.the sizes of equal-sized zones

    4.3 Performance comparison for different components of wavelet transforms

    The feature extraction method proposed in this paper is based on the approximation component that maintains the main information of the original image;the three detail components are also helpful to achieve good inter-class variance and distinguish similar characters since they reflect the high frequency information in horizontal,vertical, and diagonal directions, respectively.Therefore, the following experiments explore the contribution of detail components to the recognition accuracy.

    For simplicity,let A,H,V,and D stand for the methods that calculate the local gradient direction histograms on the approximation component,horizontal detail component, vertical detail component, and diagonal detail component,respectively;A+H for the method that concatenate the feature vectors of methods A and H;the meaning of others, such as H+V+D, are similar.

    The experiments are divided into three groups.The first group contains the methods that extract the features just from the detail component, i.e.the methods H, V,D,and H+V+D.The second group contains just method A,the proposed method.The third group contains the methods A+H,A+V,A+D,and A+H+V+D,which extract the features from both the approximation component and the detail component.For each method,the dimension of the feature vector, the recognition rate,and the recognition time are listed in Tab.3.

    Tab.3 Feature vector dimension, recognition rate, and recognition time of the nine methods

    The following two conclusions can be obtained from Tab.3.First, the recognition rate of the proposed method is at least 2.01%higher than that of the methods of the first group, while the recognition time is roughly equal.Secondly,the recognition rate of the third group is at most 0.23%higher than that of the proposed method at the cost of three or more times the recognition time.

    Overall, considering both accuracy and speed, the proposed feature extraction method is more powerful than those methods that are related to the detail components.

    5 Conclusion

    In this paper,the local gradient direction histograms based on the approximation component of the Haar wavelet transform are proposed as the features of a character image.With the proposed feature extraction method, a best recognition rate of 97.13%is reached for the recognition of off-line handwritten Tibetan consonants,which is 1.96%higher than that of the state-of-the-art method.It demonstrates that the proposed method is effective.

    Compared with the approximation component,the detail component contributes less in improving the recognition accuracy.In addition, the combination of the approximation component with one or more detail components improves the recognition rate slightly at the cost of too much more time.Therefore, considering both accuracy and speed,the proposed feature extraction method is more powerful than those methods based on the detail components.

    [1]Huang H M,Da F P.General structure based collation of Tibetan syllables [J].Journal of Computational Information System,2010,6(5):1693-1703.

    [2]Wang H J,Zhao N Y,Deng G Y.A stroke segment extraction algorithm for Tibetan character recognition [J].Journal of Chinese Information Processing,2001,15(4):41-46.(in Chinese)

    [3]Li Y Z, Wang Y L, Liu Z Z.Study on printed Tibetan character recognition technology [J].Journal of Nanjing University:Natural Sciences Edition, 2012, 48(1):55-62.(in Chinese)

    [4]Ngodrup,Zhao D C.Research on wooden blocked Tibetan character segmentation based on drop penetration algorithm [C]//Chinese Conference on Pattern Recognition.Chongqing, China, 2010:84-88.

    [5]Liang B, Wang W L, Qian J J.Application of hidden Markov model in on-line recognition of handwritten Tibetan characters [J].Journal of Microelectronics and Computer, 2009, 26(4):98-101.

    [6]Ma L L, Liu H D, Wu J.MRG-OHTC database for online handwritten Tibetan character recognition [C]//International Conference on Document Analysis and Recognition.Beijing, China, 2011:207-211.

    [7]Huang H M,Da F P.A database for off-line handwritten Tibetan character recognition [J].Journal of Computational Information System,2012,9(18):5987-5993.

    [8]Huang H M,Da F P.Sparse representation-based classification algorithm for optical Tibetan character recognition[J].Optik-International Journal for Light and Electron Optics, 2014, 125(3):1034-1037.

    [9]Huang H M, Da F P.Wavelet and moments based offline handwritten Tibetan character recognition[J].Journal of Information and Computational Science, 2013, 10(6):1855-1859.

    [10]Raviraj P,Sanavallah M Y.The modified 2D-Haar wavelet transformation in image compression [J].Middle-East Journal of Scientific Research, 2007, 2(2):73-78.

    [11]Liu C L.Normalization-cooperated gradient feature extraction for handwritten character recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8):1465-1469.

    午夜亚洲福利在线播放| 观看美女的网站| eeuss影院久久| 伦理电影大哥的女人| 国产亚洲精品av在线| 免费观看精品视频网站| 亚洲人成网站在线播| 午夜精品在线福利| 男女视频在线观看网站免费| 两个人视频免费观看高清| 精品久久国产蜜桃| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av香蕉五月| 久久人人精品亚洲av| 97人妻精品一区二区三区麻豆| 1000部很黄的大片| 人人妻人人澡人人爽人人夜夜 | 国产欧美日韩精品亚洲av| 亚洲自拍偷在线| 国产精品久久久久久亚洲av鲁大| 国产一级毛片七仙女欲春2| 国产熟女欧美一区二区| 国内精品一区二区在线观看| 亚洲欧美成人精品一区二区| 久久久久久久久中文| 亚洲人成网站在线观看播放| 国产av麻豆久久久久久久| 级片在线观看| 日本在线视频免费播放| 国产91av在线免费观看| aaaaa片日本免费| 三级毛片av免费| 午夜激情福利司机影院| 麻豆成人午夜福利视频| 免费搜索国产男女视频| 久久久精品欧美日韩精品| 成人特级av手机在线观看| 亚州av有码| 国产 一区精品| 久久国产乱子免费精品| 蜜臀久久99精品久久宅男| 人人妻人人澡人人爽人人夜夜 | 国产精品一区二区三区四区久久| 午夜福利在线观看免费完整高清在 | 日韩av不卡免费在线播放| 亚洲色图av天堂| 成人高潮视频无遮挡免费网站| 欧美+日韩+精品| 日韩国内少妇激情av| 伦理电影大哥的女人| 国产av麻豆久久久久久久| 99热这里只有是精品50| 免费黄网站久久成人精品| 啦啦啦啦在线视频资源| 干丝袜人妻中文字幕| 欧美丝袜亚洲另类| 简卡轻食公司| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人手机在线| 美女cb高潮喷水在线观看| 国产亚洲av嫩草精品影院| 老司机影院成人| 麻豆国产av国片精品| 精品一区二区三区视频在线| 午夜福利视频1000在线观看| 国产精品嫩草影院av在线观看| 在线免费十八禁| 久久精品夜色国产| 久久精品国产99精品国产亚洲性色| 美女高潮的动态| 亚洲精品国产av成人精品 | 99国产极品粉嫩在线观看| 久久精品久久久久久噜噜老黄 | 久久韩国三级中文字幕| 香蕉av资源在线| 3wmmmm亚洲av在线观看| 国产三级在线视频| 欧美日韩在线观看h| 此物有八面人人有两片| 男人舔奶头视频| 精品人妻视频免费看| 国产蜜桃级精品一区二区三区| 亚洲av.av天堂| 黑人高潮一二区| av在线天堂中文字幕| 国产精品人妻久久久影院| 变态另类丝袜制服| 国产av不卡久久| 亚洲熟妇熟女久久| 亚洲无线在线观看| 露出奶头的视频| 有码 亚洲区| 91久久精品国产一区二区三区| 国产精品日韩av在线免费观看| 亚洲av美国av| 日韩一本色道免费dvd| 亚洲精品日韩在线中文字幕 | 国产视频一区二区在线看| 国产精品乱码一区二三区的特点| 国产精品乱码一区二三区的特点| 婷婷精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 我的老师免费观看完整版| 久久精品人妻少妇| 欧美+亚洲+日韩+国产| 国产女主播在线喷水免费视频网站 | 国产91av在线免费观看| av黄色大香蕉| 国产色爽女视频免费观看| 精品一区二区三区av网在线观看| 午夜精品一区二区三区免费看| 精品一区二区三区av网在线观看| 黄色欧美视频在线观看| 久久久久久久久中文| 欧美人与善性xxx| 国产成人freesex在线 | or卡值多少钱| 搡老妇女老女人老熟妇| 亚洲婷婷狠狠爱综合网| 插阴视频在线观看视频| 别揉我奶头~嗯~啊~动态视频| 又爽又黄无遮挡网站| 九九爱精品视频在线观看| 一本精品99久久精品77| 亚洲在线自拍视频| 欧美激情国产日韩精品一区| 亚洲,欧美,日韩| 亚洲欧美日韩东京热| 国产高清不卡午夜福利| 国产精品久久久久久久电影| av.在线天堂| 成人特级黄色片久久久久久久| 99热这里只有精品一区| 性欧美人与动物交配| 成年av动漫网址| 中文在线观看免费www的网站| 九九爱精品视频在线观看| 国产精品永久免费网站| 国产色婷婷99| 精品久久久久久久人妻蜜臀av| 看黄色毛片网站| 国语自产精品视频在线第100页| 人妻夜夜爽99麻豆av| 国产高潮美女av| 美女大奶头视频| 亚洲欧美成人综合另类久久久 | 久久久久久伊人网av| 精品一区二区三区视频在线观看免费| 成人av一区二区三区在线看| 亚洲成人精品中文字幕电影| 欧美日韩在线观看h| 亚洲综合色惰| 国产精品,欧美在线| 变态另类丝袜制服| 99九九线精品视频在线观看视频| 欧美日韩乱码在线| 69av精品久久久久久| 亚洲四区av| 如何舔出高潮| 久久久久久久亚洲中文字幕| 国产精品乱码一区二三区的特点| 夜夜看夜夜爽夜夜摸| 日本色播在线视频| 久久这里只有精品中国| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 亚洲欧美中文字幕日韩二区| 欧美成人精品欧美一级黄| 亚洲人成网站高清观看| 日韩国内少妇激情av| 久久热精品热| 九九久久精品国产亚洲av麻豆| 露出奶头的视频| 亚洲精品影视一区二区三区av| 欧美成人一区二区免费高清观看| 麻豆乱淫一区二区| 黄色欧美视频在线观看| 亚洲av五月六月丁香网| av在线蜜桃| av国产免费在线观看| 一级毛片电影观看 | 午夜精品国产一区二区电影 | www日本黄色视频网| 麻豆国产97在线/欧美| 毛片一级片免费看久久久久| 狂野欧美白嫩少妇大欣赏| 一级av片app| 免费人成在线观看视频色| 伊人久久精品亚洲午夜| 精品一区二区三区视频在线观看免费| 国产三级在线视频| 国产精品国产三级国产av玫瑰| 狠狠狠狠99中文字幕| 美女 人体艺术 gogo| 少妇熟女欧美另类| 成人综合一区亚洲| 成人永久免费在线观看视频| 插逼视频在线观看| 亚洲精品日韩av片在线观看| 国产成人福利小说| 噜噜噜噜噜久久久久久91| 午夜亚洲福利在线播放| 国产亚洲av嫩草精品影院| 精品99又大又爽又粗少妇毛片| 成人美女网站在线观看视频| 尾随美女入室| 麻豆久久精品国产亚洲av| 婷婷色综合大香蕉| 97在线视频观看| 91在线精品国自产拍蜜月| 精品久久久久久久末码| av女优亚洲男人天堂| 老司机午夜福利在线观看视频| 最近最新中文字幕大全电影3| 国产精品不卡视频一区二区| 你懂的网址亚洲精品在线观看 | videossex国产| 乱系列少妇在线播放| 亚洲第一电影网av| 日韩成人伦理影院| 国产一级毛片七仙女欲春2| 3wmmmm亚洲av在线观看| 麻豆国产97在线/欧美| 亚洲七黄色美女视频| 精品欧美国产一区二区三| 欧美中文日本在线观看视频| 国产又黄又爽又无遮挡在线| 色5月婷婷丁香| 在线a可以看的网站| 欧美又色又爽又黄视频| 国产精品,欧美在线| 国产高清有码在线观看视频| 可以在线观看的亚洲视频| 亚洲av成人精品一区久久| 白带黄色成豆腐渣| 在线观看一区二区三区| 欧美日韩精品成人综合77777| 亚洲18禁久久av| videossex国产| 久久草成人影院| 午夜视频国产福利| av.在线天堂| 日韩欧美一区二区三区在线观看| 岛国在线免费视频观看| 精品无人区乱码1区二区| 亚洲丝袜综合中文字幕| 又粗又爽又猛毛片免费看| eeuss影院久久| 中国国产av一级| 国产中年淑女户外野战色| 成人鲁丝片一二三区免费| 欧美极品一区二区三区四区| 免费看日本二区| 亚洲三级黄色毛片| 亚洲电影在线观看av| 久久久久久伊人网av| 国产成人a∨麻豆精品| 国产69精品久久久久777片| 午夜日韩欧美国产| 国产高潮美女av| 久久人人爽人人爽人人片va| 一级毛片我不卡| 欧美极品一区二区三区四区| 伦精品一区二区三区| 亚洲av中文av极速乱| 国产欧美日韩精品亚洲av| 18禁裸乳无遮挡免费网站照片| 中文字幕免费在线视频6| 国产精品乱码一区二三区的特点| 美女大奶头视频| 黄色视频,在线免费观看| 最近2019中文字幕mv第一页| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久| 男女下面进入的视频免费午夜| 日韩欧美精品免费久久| 麻豆乱淫一区二区| 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 最近最新中文字幕大全电影3| .国产精品久久| 久久婷婷人人爽人人干人人爱| 久久6这里有精品| 晚上一个人看的免费电影| 亚洲经典国产精华液单| 最新中文字幕久久久久| 欧美成人a在线观看| 久久精品国产亚洲av天美| 黄色日韩在线| 日日撸夜夜添| 99riav亚洲国产免费| 精品日产1卡2卡| 日本熟妇午夜| www日本黄色视频网| 久久久精品94久久精品| 天美传媒精品一区二区| 成人亚洲精品av一区二区| 看免费成人av毛片| 欧美日韩在线观看h| av在线播放精品| 色av中文字幕| 国产精品不卡视频一区二区| 2021天堂中文幕一二区在线观| 黄色视频,在线免费观看| 欧美色欧美亚洲另类二区| 日韩在线高清观看一区二区三区| 日产精品乱码卡一卡2卡三| 日韩欧美免费精品| 成人鲁丝片一二三区免费| 日本熟妇午夜| 亚洲精品成人久久久久久| 91在线精品国自产拍蜜月| 如何舔出高潮| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 美女cb高潮喷水在线观看| 精品一区二区三区av网在线观看| 免费无遮挡裸体视频| 99热网站在线观看| 99久国产av精品国产电影| 91在线观看av| av天堂在线播放| 日韩欧美免费精品| 成人鲁丝片一二三区免费| 成人永久免费在线观看视频| 久久欧美精品欧美久久欧美| 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 亚洲欧美精品自产自拍| 九色成人免费人妻av| 三级毛片av免费| 日韩国内少妇激情av| 黄片wwwwww| 一边摸一边抽搐一进一小说| 久久精品国产99精品国产亚洲性色| 成人高潮视频无遮挡免费网站| 最新中文字幕久久久久| 午夜福利在线观看吧| 十八禁国产超污无遮挡网站| 老熟妇仑乱视频hdxx| 欧美性猛交╳xxx乱大交人| 99久国产av精品| 国产成人freesex在线 | 99久久精品国产国产毛片| 亚洲人成网站高清观看| 一进一出抽搐gif免费好疼| 欧美性猛交黑人性爽| 免费看av在线观看网站| 国产精品一区二区三区四区免费观看 | 久久久成人免费电影| 午夜福利视频1000在线观看| 美女被艹到高潮喷水动态| 国产一区二区三区av在线 | 日韩高清综合在线| 亚洲av成人精品一区久久| 久久精品国产亚洲av涩爱 | 国产亚洲精品综合一区在线观看| 嫩草影视91久久| 亚洲av一区综合| 国产久久久一区二区三区| 国产女主播在线喷水免费视频网站 | 人妻制服诱惑在线中文字幕| 99久久久亚洲精品蜜臀av| 十八禁网站免费在线| 午夜老司机福利剧场| 国产在线男女| 男女下面进入的视频免费午夜| 久久午夜福利片| 老女人水多毛片| 亚洲真实伦在线观看| 成人无遮挡网站| 亚洲av成人精品一区久久| 嫩草影视91久久| 日韩成人av中文字幕在线观看 | 国产男靠女视频免费网站| 少妇猛男粗大的猛烈进出视频 | 精品人妻视频免费看| 一区二区三区免费毛片| 亚洲三级黄色毛片| 亚洲成人精品中文字幕电影| 亚洲av第一区精品v没综合| 日韩欧美国产在线观看| 亚洲欧美精品自产自拍| 久久久精品94久久精品| 免费看av在线观看网站| 看十八女毛片水多多多| 少妇的逼好多水| 久久草成人影院| 国产午夜福利久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 久久精品国产清高在天天线| 美女 人体艺术 gogo| 少妇高潮的动态图| 精品午夜福利在线看| 又爽又黄无遮挡网站| 国产熟女欧美一区二区| 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| 成人av一区二区三区在线看| 综合色丁香网| 精品久久久久久久久久久久久| 插逼视频在线观看| 国产成人福利小说| 亚洲久久久久久中文字幕| 色哟哟哟哟哟哟| 最近中文字幕高清免费大全6| 国产aⅴ精品一区二区三区波| 午夜福利在线在线| 欧美一区二区亚洲| 精品久久久久久成人av| 国产亚洲精品久久久久久毛片| 女生性感内裤真人,穿戴方法视频| 精品99又大又爽又粗少妇毛片| 成人av一区二区三区在线看| 在线观看美女被高潮喷水网站| 国产综合懂色| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 淫妇啪啪啪对白视频| 一区二区三区高清视频在线| 亚洲精品国产成人久久av| 人妻久久中文字幕网| 精品熟女少妇av免费看| 综合色av麻豆| 91精品国产九色| 国内精品美女久久久久久| 亚洲精品粉嫩美女一区| 九九爱精品视频在线观看| 精品熟女少妇av免费看| 一级毛片电影观看 | 亚洲精华国产精华液的使用体验 | 亚洲成人精品中文字幕电影| 99riav亚洲国产免费| 亚洲中文日韩欧美视频| 色吧在线观看| 桃色一区二区三区在线观看| 日本黄色视频三级网站网址| 欧美一区二区亚洲| 国产又黄又爽又无遮挡在线| 此物有八面人人有两片| 狠狠狠狠99中文字幕| av在线老鸭窝| 国产三级在线视频| 毛片一级片免费看久久久久| 欧美一级a爱片免费观看看| av天堂在线播放| 久久精品久久久久久噜噜老黄 | 亚洲精品乱码久久久v下载方式| 亚洲国产高清在线一区二区三| 天美传媒精品一区二区| 亚洲丝袜综合中文字幕| 99久久精品热视频| 精品无人区乱码1区二区| 国产视频一区二区在线看| 精品久久国产蜜桃| 又爽又黄a免费视频| 日韩欧美精品v在线| 色吧在线观看| 极品教师在线视频| 老熟妇仑乱视频hdxx| 91久久精品国产一区二区成人| av在线亚洲专区| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看 | 精品无人区乱码1区二区| 日本黄色视频三级网站网址| 亚洲欧美日韩卡通动漫| 少妇的逼水好多| 丰满人妻一区二区三区视频av| 久久精品国产99精品国产亚洲性色| 成人亚洲欧美一区二区av| 免费看美女性在线毛片视频| 天堂av国产一区二区熟女人妻| 色吧在线观看| 男人狂女人下面高潮的视频| 久久热精品热| 午夜福利视频1000在线观看| 成人欧美大片| av在线观看视频网站免费| 最近在线观看免费完整版| 久久久欧美国产精品| 亚洲欧美日韩无卡精品| 51国产日韩欧美| 国内精品美女久久久久久| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 深夜精品福利| 中文字幕免费在线视频6| 一进一出抽搐gif免费好疼| 久久天躁狠狠躁夜夜2o2o| 搡老熟女国产l中国老女人| 久久人人爽人人爽人人片va| 国产大屁股一区二区在线视频| av国产免费在线观看| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站 | 大型黄色视频在线免费观看| 国产精华一区二区三区| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 国产成人a区在线观看| 看非洲黑人一级黄片| 国产亚洲欧美98| 精品人妻偷拍中文字幕| 毛片女人毛片| 国产黄片美女视频| 午夜亚洲福利在线播放| 在线国产一区二区在线| 波多野结衣高清作品| 在线播放国产精品三级| 人人妻,人人澡人人爽秒播| 国产真实乱freesex| 午夜福利在线观看免费完整高清在 | 亚洲激情五月婷婷啪啪| 国产片特级美女逼逼视频| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 国产精品亚洲美女久久久| 国产一区二区三区在线臀色熟女| 真人做人爱边吃奶动态| 久久人人爽人人爽人人片va| 日本一本二区三区精品| 婷婷六月久久综合丁香| 欧美另类亚洲清纯唯美| 97人妻精品一区二区三区麻豆| 国产麻豆成人av免费视频| 成人毛片a级毛片在线播放| 午夜老司机福利剧场| 波野结衣二区三区在线| 天美传媒精品一区二区| 国产精品人妻久久久久久| 久久久精品欧美日韩精品| 国产av麻豆久久久久久久| 国产国拍精品亚洲av在线观看| 别揉我奶头 嗯啊视频| 最新中文字幕久久久久| 亚洲一区高清亚洲精品| 免费看a级黄色片| 久久人人爽人人片av| 国产高清视频在线播放一区| 给我免费播放毛片高清在线观看| 全区人妻精品视频| 一边摸一边抽搐一进一小说| 波野结衣二区三区在线| 亚洲精品久久国产高清桃花| av福利片在线观看| 亚洲av熟女| 99久久九九国产精品国产免费| 亚洲aⅴ乱码一区二区在线播放| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 国产精品国产高清国产av| 欧美日韩乱码在线| 91狼人影院| 舔av片在线| 尾随美女入室| 国产精品精品国产色婷婷| 午夜视频国产福利| a级毛片a级免费在线| 成人精品一区二区免费| 男女边吃奶边做爰视频| 国产精品电影一区二区三区| 麻豆国产97在线/欧美| 精品久久久噜噜| 国产高清视频在线观看网站| 亚洲在线自拍视频| 长腿黑丝高跟| 欧美高清性xxxxhd video| 婷婷六月久久综合丁香| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 蜜桃久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 真实男女啪啪啪动态图| 99热只有精品国产| 成人一区二区视频在线观看| 久久久久久久午夜电影| 久久久欧美国产精品| 日韩强制内射视频| 欧美人与善性xxx| 国产高清有码在线观看视频| 久久久久国产精品人妻aⅴ院| 亚洲aⅴ乱码一区二区在线播放| 国语自产精品视频在线第100页| 99久久无色码亚洲精品果冻| 国产精品1区2区在线观看.| 久久久久国内视频| 日本-黄色视频高清免费观看| 精品一区二区三区视频在线| 此物有八面人人有两片| 色视频www国产| 婷婷色综合大香蕉| 日本在线视频免费播放| 亚洲自偷自拍三级| a级一级毛片免费在线观看| 免费观看人在逋| 国产白丝娇喘喷水9色精品| 国模一区二区三区四区视频| av.在线天堂| 久99久视频精品免费| 色在线成人网| 亚洲久久久久久中文字幕| 99热网站在线观看| 成人综合一区亚洲| 最近视频中文字幕2019在线8| 国产伦在线观看视频一区| 亚洲欧美日韩卡通动漫| 插逼视频在线观看| 51国产日韩欧美| 欧美日韩精品成人综合77777| 九九爱精品视频在线观看|