• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conditional autoregressive negative binomial model for analysis of crash count using Bayesian methods

    2014-09-17 06:00:46XuJianSunLu

    Xu Jian Sun Lu

    (1School of Transportation, Southeast University, Nanjing 210096, China)

    (2Center for Transportation Research, University of Texas at Austin, Austin 78712, USA)(3Department of Civil Engineering, Catholic University of America, Washington DC 20064, USA)

    W ith the increase in the number of vehicles,it is interesting and commendable that currently fatalities are decreasing every year in China,the reason of which can be attributed to the optimization of roadway designs,more safety vehicles,as well as many researches of crashes and the contributing factors.However, still 210 812 reported crashes and 62 387 reported fatalities occurred on roadways in 2011 in China according to official reports[1], demanding the further improvement of transportation safety to reduce the traffic accidents and fatalities.

    The possible access to understand the elements of crashes is to develop statistical analysis methods used to distinguish the significant factors,which can be utilized to provide an optimality criterion to policy makers.During the past several years,numerous methods for analyzing crash counts were proposed[2-6].The earliest approach for crash count data is the Poisson model[7], and then it gives rise to more flexible alternatives, e.g., the negative binomial(NB)model[8], the GIS-based Bayesian approach[9], the finite mixture regression model[10], and the quantile regression method[11].Most of the regression methods applied to model crash counts, however, are focused on aspatial(i.e.non-spatial)analysis.Applied work in aspatial models may not be able to capture spatial heterogeneity and spatial dependence at neighborhood areas, a frequently happening issue in crash counts.This leads to the development of alternative methodologies that focus on spatial modeling in the past few decades.Early pioneering work on spatial modeling is reported by Besag[12], and is further enriched by LeSage et al[13-16].Anselin[17]provided two specifications of spatial models,spatial error model(SEM)(i.e., the spatial autocorrelation model(SAC))and the spatial lag model(SLM)(i.e., the spatial autoregressive model(SAR))that is a special type of conditional autoregressive(CAR)model,at least in a continuous-response setting.

    The primary objective of this study is to develop associations between crash counts on homogeneous segments and the contributing factors,using a negative binomial(NB)-based conditional autoregressive model(CAR)which allows for overdispersion,unobserved heterogeneity and spatial autocorrelation.The Bayesian estimation is employed,using Markov chain Monte Carlo methods and the Gibbs sampler.The independent variables consist of traffic characteristics,roadway design and built environments,and the data are derived from on-system highways of Austin, TX, USA in the year 2010.Meanwhile, the exposure variable and the dummy variable are also considered.

    1 Model Structure

    As described before,there are two specifications of spatial models:the spatial autocorrelation model and the spatial autoregressive model.The general formulation of the spatial autoregressive model for cross-sectional spatial data is

    where yicontains ann×1 vector of dependent variables;ρ is the spatial lag coefficient;W1is the spatial weights matrix;φ is the error term for spatial dependence;xirepresents the matrix of independent variables.

    where λ is the spatial autoregressive coefficient;W2is a known spatial weights matrix like W1,usually containing the first-order contiguity relationships; ε ~N(0,σ2In).The SAR model tends to be difficult to develop for limited-response frameworks,especially when dealing with large scale problems involving a large amount of observations,and yields parameter estimates similar to those estimated from the CAR model.Moreover, due to faster computation,the CAR model is preferred in spatial analysis over the SAR model.Under the MRF assumption, the conditional probability density function of the univariate CAR model is[18]

    The joint probability density function is

    whereEiis the exposure variable,which represents vehicle miles traveled(VMT)in this study;τ denotes an unknown parameter for the exposure measure;β0is the intercept term;βkdenotes the coefficient of thek-th covariate;Xikare indicators for thek-th covariate for segmenti;ψifollows the proper CAR prior,as described before;εiis a random error that has a gamma distribution,that is,εi~ Γ(θ,θ).

    2 Data Description

    In this study,roadways and crash data sets of Austin City in USA in 2010 are used to examine the associations between crash counts on mainlanes and the contributing factors.The roadways in this study are on-system highways, containing interstate highways, US highways,state highways,farm-to-market roadways,etc.In order to avoid the modifiable areal unit problem(MAUP)[19],roadways are split into 1 824 homogeneous segments where geometric characteristics are coincident,as shown in Fig.1.Most segments have a length of 0 to 1.6 km and occupy more than 90%of the whole sample.The average of the segment length on mainlanes is 0.459 km.After merging crashes and segments,1 413 crashes on mainlanes are matched.

    Fig.1 Distribution of homogeneous segments in Austin(Spots are the center points of segments)

    In this study,the dependent variable is the number of crashes,while the exposure variable captures VMT,which is a key crash exposure term(since crash counts closely correlate with VMT,everything else remaining constant),and simply the product of AADT,segment length,and 365 days per year.The dependent variable set contains both continuous and categorical variables,as shown in Tab.1.The indicator for curvature is a dummy variable,that is,if the answer is yes,it equals 1,and 0 otherwise.In addition,traffic characteristics allow for AADT,speed limit,and the percentage of truck AADT.In the past research,environments,especially distances to the nearest hospitals,were rarely employed for the contributing factors to analyze the associations of crash counts.In this study,hospitals are collected for analysis;meanwhile,the distances of which to segments are computed by ArcGIS,as shown in Fig.2.The data of annual rainfall obtained from the US Natural Resources Information System are also collected for analysis.It is noted that it would be best to match the year 2010 crashes to the same year rainfall data,however such information is unavailable,and we cannot find out the data.According to theclimate history in Texas,the annual rainfall changed a little,so 1961—1990 average rainfall is used instead.Fig.3 depicts the distribution of the annual rainfall in Austin.

    Tab.1 Summary statistics of variables for segments

    Fig.2 Distribution of hospitals in Austin

    Fig.3 Distribution of annual rainfall in Austin

    3 Estimation Results and Discussion

    This section discusses the results of the associations between the contributing factors and the crash counts on mainlanes in Austin.Tab.2 shows the parameter estimates of the CAR model for crash counts,based on a total number of 5 000 draws in WinBUGS.

    The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ=0.658 for mainlanes),which follows prior expectations.After controlling the exposure variable(VMT),other covariates regardingcrash rates are estimated,which can be seen in Tab.2.

    Elasticities for total crash counts and fatal crash counts are computed as the average percentage change in the mean crash rate per 1%change in thek-th variable.As shown in Tab.2,crash counts are estimated to have a statistically and practically significant spatial autocorrelation coefficient of 0.624(that is α =0.624).The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on the mean crash rates for mainlanes,while the remaining variables all exhibit negative impacts on the mean crash rates.The elasticity of - 0.123 is found to be that of the curve indicator variables,implying that,holding everything else constant at their means,the mean crash rate is estimated to drop by 0.123 when the indicator variable switches from 0 to 1.The result confirms that the roadway curvature has negative effects on crash rates,which is consistent with the findings of some other studies[5-6].

    Interestingly,the speed limit on mainlanes exhibits negative mean elasticities,implying that higher speed limits are associated with lower mean crash rates,as found in Ref.[4].However,the speed limit has a positive effect on fatality rates,as shown in Tab.2.Rainfall intensity is estimated to be positively associated with crash rates,and an increase of 1%rainfall will result in an increase of 8.622 in crash rates and an increase of 0.283 in fatality rates.As discussed previously,the distances to hospitals rarely appear as contributing factors in the crash modeling literature.It is found that the distances to the nearest hospitals have a negative impact on the mean crash rates,which suggests that shorter distances lead to higher crash rates,however,as expected,positive associations with fatal crash rates(presumably due to more severe collision impacts at higher speeds and time lost in transporting crash victims to an emergency room).

    Tab.2 Estimation results of CAR-NB model for crash and fatal counts

    In this study,the CAR-NB model is compared with another spatial model(CAR-Poisson)and some aspatial models(NB,zero-inflated NB and zero-inflated Poisson),as shown in Tab.3.

    Tab.3 Comparison of results using aspatial models and spatial models

    The deviance information criterion(DIC),as a generalization of the Akaike information criterion(AIC),can be used to compare the goodness-of-fit and complexity of different models estimated under a Bayesian framework.The DIC equation is

    whereD(θˉ)is the deviance evaluated atθˉ which is the posterior mean of the parameters;pDis the effective number of parameters in the model;Dˉ is the posterior mean of the deviance statisticD(θ).With regards to the model superiority and complexity,the lower the DIC,the better the model[20].Tab.3 also presents the log likelihood values,which are used in the likelihood ratio chi-square to test whether all predictors'regression coefficients in the model are simultaneously zero.Meanwhile,Moran'sIis also considered,which is a measure of spatial autocorrelation developed by Moran[21].Negative(positive)values indicate negative(positive)spatial autocorrelation and the values range from -1(indicating perfect dispersion)to+1(perfect correlation).

    It is observed that the CAR-NB model has the lowest DIC and Moran'sIof residuals among these tested models.Meanwhile,mean log likelihood values of the CARNB model are the largest.The statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models due to its lower prediction errors and more robust parameter inference.It can be found that the negative binomial models in Tab.3 are better than the Poisson models due to the fact that overdispersion actually exists in the data.

    4 Conclusions

    1)Statistical tests of DIC,log likelihood and Moran'sIsuggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models,while the negative binomial models are better than the Poisson models.

    2)The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ =0.658 for mainlanes),with crash rates effectively falling as VMT rises.

    3)The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on crash count,while the remaining variables all exhibit negative impacts.

    4)The distances to the nearest hospitals and the speed limit have negative associations with segment-based crash counts but positive associations with fatality counts,presumably as a result of time loss during transporting crash victims and worsened collision impacts at higher speeds.

    [1]Traffic Management Bureau of the Ministry of Public Security of the People's Republic of China.Road traffic accident statistics annual report of the People's Republic of China(2010)[R].Wuxi:Traffic Management Research Institute of the Ministry of Public Security,2011.(in Chinese)

    [2]Qu X,Guo T,Wang W,et al.Measuring speed consistency for freeway diverge areas using factor analysis[J].Journal of Central South University:Science and Technology,2013,20(1):837-840.(in Chinese)

    [3]Pei Y L,Ma J.Research on countermeasures for road condition causes of traffic accidents[J].China Journal of Highway and Transport,2003,16(4):77-82.

    [4]Ma J,Kockelman K M,Damien P.A multivariate Poisson-lognormal regression model for prediction of crash counts by severity,using Bayesian methods[J].Accident Analysis and Prevention,2008,40(3):964-975.

    [5]Quddus M A,Wang C,Ison S G.Road traffic congestion and crash severity:econometric analysis using ordered response models[J].Journal of Transportation Engineering,2010,136(5):424-435.

    [6]Wang C,Quddus M A,Ison S G.Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model[J].Accident Analysis and Prevention,2011,43(6):1979-1990.

    [7]Jovanis P,Chang H L.Modeling the relationship of accidents to miles traveled[J].Transportation Research Record,1986,1068:42-51.

    [8]Lord D.The prediction of accidents on digital networks:characteristics and issues related to the application of accident prediction models[D].Toronto:University of Toronto,2000.

    [9]Li L,Zhu L,Daniel Z S.A GIS-based Bayesian approach for analyzing spatial-temporal patterns of intra-city motor vehicle crashes[J].Journal of Transport Geography,2007,15(4):274-285.

    [10]Park B J,Lord D.Application of finite mixture models for vehicle crash data analysis[J].Accident Analysis and Prevention,2009,41(4):683-91.

    [11]Qin X,Reyes P.Conditional quantile analysis for crash count data[J].Journal of Transportation Engineering,2011,137(9):601-607.

    [12]Besag J E.Nearest-neighbour systems and the auto-logistic model for binary data[J].Journal of the Royal Statistical Society,Series B:Methodological,1972,34(1):75-83.

    [13]LeSage J P.Spatial econometrics[EB/OL].(1999)[2013-03-15].http://www.spatial-econometrics.com/.

    [14]Miaou S,Song J J,Malick B.Roadway traffic crash mapping:a space-time modeling approach[J].Journal of Transportation and Statistics,2003,6(1):33-57.

    [15]Quddus M A.Modeling area-wide count outcomes with spatial correlation and heterogeneity:an analysis of London crash data[J].Accident Analysis and Prevention,2008,40(4):1486-1497.

    [16]Wang Y,Kockelman K M.A conditional-autoregressive count model for pedestrian crashes across neighborhoods[C/CD]//The92nd Annual Meeting of the Transportation Research Board.Washington DC,USA,2013.

    [17]Anselin L.Spatial econometrics:methods and models[M].Dordrecht:Kluwer Academic Publishers,1988.

    [18]Mariella L,Tarantino M.Spatial temporal conditional auto-regressive model:a new autoregressive matrix [J].Australian Journal of Statistics,2010,39(3):223-244.

    [19]Openshaw S.The modifiable areal unit problem [J].Concepts and Techniques in Modern Geography,1983,38:39-41.

    [20]Spregelhalter D J,Best N G,Carlin B P,et al.Bayesian measures of model complexity and fit[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,2002,64(4):583-639.

    [21]Moran P A P.Notes on continuous stochastic phenomena[J].Biometrika,1950,37(1):17-23.

    国产爽快片一区二区三区| 久久精品熟女亚洲av麻豆精品| 少妇人妻精品综合一区二区| 亚洲欧美中文字幕日韩二区| 夫妻午夜视频| 97在线视频观看| 自拍欧美九色日韩亚洲蝌蚪91 | av在线观看视频网站免费| 久久国产精品男人的天堂亚洲 | 久久精品久久久久久噜噜老黄| 久久鲁丝午夜福利片| 亚洲精品成人av观看孕妇| 多毛熟女@视频| 国产精品成人在线| 黄色配什么色好看| 99久久人妻综合| 男人爽女人下面视频在线观看| 精品久久久久久久久av| 亚洲熟女精品中文字幕| 亚洲av.av天堂| 精品一区二区免费观看| 色哟哟·www| 国产精品三级大全| 高清不卡的av网站| 亚洲四区av| 老师上课跳d突然被开到最大视频| 黄色配什么色好看| 亚洲av成人精品一二三区| 校园人妻丝袜中文字幕| 国产欧美日韩一区二区三区在线 | 人妻 亚洲 视频| 日本黄大片高清| 少妇丰满av| 久久99热这里只频精品6学生| 国产精品一二三区在线看| av视频免费观看在线观看| 日本黄大片高清| 国产一区亚洲一区在线观看| 一个人看视频在线观看www免费| 99热这里只有是精品50| 国产成人精品婷婷| 街头女战士在线观看网站| 日本与韩国留学比较| freevideosex欧美| 日本av免费视频播放| 看非洲黑人一级黄片| 免费不卡的大黄色大毛片视频在线观看| 久久久国产一区二区| 国产高清国产精品国产三级 | 少妇精品久久久久久久| 成年女人在线观看亚洲视频| 亚洲无线观看免费| 久久久久久久久久久免费av| av在线蜜桃| 深夜a级毛片| 26uuu在线亚洲综合色| 多毛熟女@视频| 在线免费十八禁| 精品久久久噜噜| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| 国产成人a∨麻豆精品| 久久久久国产精品人妻一区二区| 熟妇人妻不卡中文字幕| 国产色婷婷99| 一个人看视频在线观看www免费| 人妻一区二区av| 国产探花极品一区二区| 大话2 男鬼变身卡| 99热国产这里只有精品6| 免费高清在线观看视频在线观看| tube8黄色片| 伊人久久精品亚洲午夜| 亚洲精品成人av观看孕妇| 欧美xxxx黑人xx丫x性爽| 免费av中文字幕在线| 日韩中字成人| 午夜福利在线在线| 亚洲欧美精品自产自拍| 亚洲无线观看免费| 中文在线观看免费www的网站| 少妇 在线观看| 国产精品久久久久久av不卡| 国产国拍精品亚洲av在线观看| 精品人妻视频免费看| 天堂中文最新版在线下载| 国产爱豆传媒在线观看| 黑人高潮一二区| 国内精品宾馆在线| kizo精华| 精品国产三级普通话版| 亚洲高清免费不卡视频| 国产免费又黄又爽又色| 2022亚洲国产成人精品| 免费观看无遮挡的男女| 99久久人妻综合| 色网站视频免费| 色婷婷av一区二区三区视频| 水蜜桃什么品种好| 尾随美女入室| 久久精品久久久久久噜噜老黄| 嫩草影院入口| 欧美 日韩 精品 国产| 亚洲人成网站在线观看播放| 交换朋友夫妻互换小说| 久久久成人免费电影| 青春草亚洲视频在线观看| 国产免费视频播放在线视频| 最近2019中文字幕mv第一页| 男人狂女人下面高潮的视频| 亚洲精品乱码久久久v下载方式| h视频一区二区三区| 九草在线视频观看| 天天躁夜夜躁狠狠久久av| 国产精品秋霞免费鲁丝片| 有码 亚洲区| 91精品伊人久久大香线蕉| 人妻少妇偷人精品九色| 亚洲人成网站在线播| 国产在线男女| 黑丝袜美女国产一区| 亚洲真实伦在线观看| 日韩三级伦理在线观看| 能在线免费看毛片的网站| 精品99又大又爽又粗少妇毛片| 亚洲精华国产精华液的使用体验| 亚洲欧美精品专区久久| 一区二区三区免费毛片| 欧美变态另类bdsm刘玥| 99热国产这里只有精品6| 好男人视频免费观看在线| 老女人水多毛片| 男女免费视频国产| 午夜免费鲁丝| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 亚洲婷婷狠狠爱综合网| 久热这里只有精品99| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产a三级三级三级| 99精国产麻豆久久婷婷| 国产精品免费大片| 欧美成人精品欧美一级黄| 国产白丝娇喘喷水9色精品| 美女国产视频在线观看| 水蜜桃什么品种好| 性高湖久久久久久久久免费观看| 啦啦啦在线观看免费高清www| 亚洲人与动物交配视频| 九草在线视频观看| 又粗又硬又长又爽又黄的视频| 97精品久久久久久久久久精品| 欧美精品一区二区大全| 精品久久国产蜜桃| 国产精品国产三级国产专区5o| 日韩国内少妇激情av| 精品一区二区免费观看| 建设人人有责人人尽责人人享有的 | 国产一级毛片在线| 成人亚洲欧美一区二区av| 爱豆传媒免费全集在线观看| 国产无遮挡羞羞视频在线观看| h日本视频在线播放| 各种免费的搞黄视频| 精品人妻熟女av久视频| 看免费成人av毛片| 在线观看三级黄色| 日韩一区二区三区影片| 色网站视频免费| 高清av免费在线| 国产中年淑女户外野战色| 精品少妇黑人巨大在线播放| 国产精品人妻久久久影院| 最近的中文字幕免费完整| 亚洲最大成人中文| 色吧在线观看| 日本黄色片子视频| 男女免费视频国产| 女人十人毛片免费观看3o分钟| 精品人妻一区二区三区麻豆| 国产黄色免费在线视频| 亚洲高清免费不卡视频| 久久av网站| 少妇人妻 视频| 国产精品久久久久成人av| 久久久精品免费免费高清| 国产真实伦视频高清在线观看| av国产精品久久久久影院| 久久久a久久爽久久v久久| 亚洲激情五月婷婷啪啪| 一本久久精品| 亚洲人成网站在线观看播放| 高清日韩中文字幕在线| 亚洲av综合色区一区| 国产男女超爽视频在线观看| 青春草亚洲视频在线观看| 在线亚洲精品国产二区图片欧美 | 国产成人精品婷婷| 国产高清国产精品国产三级 | 国产黄片美女视频| 亚洲精品日韩av片在线观看| 狂野欧美激情性xxxx在线观看| 国产精品熟女久久久久浪| 观看免费一级毛片| 成人亚洲精品一区在线观看 | 一级毛片我不卡| 高清毛片免费看| 伊人久久精品亚洲午夜| 亚洲美女黄色视频免费看| 国产精品女同一区二区软件| 午夜激情福利司机影院| 成年女人在线观看亚洲视频| 高清黄色对白视频在线免费看 | 91久久精品国产一区二区三区| 国产中年淑女户外野战色| 成年女人在线观看亚洲视频| 日本vs欧美在线观看视频 | a级一级毛片免费在线观看| 国产真实伦视频高清在线观看| 春色校园在线视频观看| 黄色配什么色好看| 精品久久久久久久久av| 老师上课跳d突然被开到最大视频| freevideosex欧美| 老司机影院成人| 国产在线视频一区二区| av一本久久久久| 九九爱精品视频在线观看| 国产永久视频网站| 性色avwww在线观看| 国产伦理片在线播放av一区| 一级片'在线观看视频| 晚上一个人看的免费电影| 欧美三级亚洲精品| 亚洲成人手机| 高清视频免费观看一区二区| 欧美少妇被猛烈插入视频| 亚洲精品国产av蜜桃| 午夜福利网站1000一区二区三区| 最后的刺客免费高清国语| 在线播放无遮挡| 一区二区av电影网| 免费看日本二区| 欧美日韩一区二区视频在线观看视频在线| 一级片'在线观看视频| 在现免费观看毛片| 免费看不卡的av| 国产永久视频网站| 亚洲国产欧美人成| 亚洲av综合色区一区| 欧美人与善性xxx| 中文字幕av成人在线电影| 在线观看三级黄色| 国产乱来视频区| 亚洲人成网站在线观看播放| 少妇人妻一区二区三区视频| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| .国产精品久久| 精品一区二区免费观看| 中文乱码字字幕精品一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲av中文av极速乱| 国产精品免费大片| 51国产日韩欧美| 午夜免费观看性视频| 中文天堂在线官网| 免费av中文字幕在线| 韩国av在线不卡| 亚洲无线观看免费| 久久久成人免费电影| 日韩免费高清中文字幕av| 久久国产精品男人的天堂亚洲 | 新久久久久国产一级毛片| 免费人妻精品一区二区三区视频| 国产精品久久久久成人av| 色综合色国产| 精品少妇久久久久久888优播| 久久婷婷青草| 久久久成人免费电影| 成年免费大片在线观看| 九九在线视频观看精品| av国产久精品久网站免费入址| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美日韩卡通动漫| 99re6热这里在线精品视频| 免费av中文字幕在线| 国产一区有黄有色的免费视频| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久久久按摩| 高清欧美精品videossex| 欧美激情极品国产一区二区三区 | 老司机影院毛片| 免费大片18禁| 日日摸夜夜添夜夜添av毛片| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 老师上课跳d突然被开到最大视频| 黄片wwwwww| 99热全是精品| 婷婷色麻豆天堂久久| av女优亚洲男人天堂| 国产高清不卡午夜福利| 亚洲婷婷狠狠爱综合网| 久久女婷五月综合色啪小说| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 国产亚洲欧美精品永久| 涩涩av久久男人的天堂| 七月丁香在线播放| av在线app专区| 免费播放大片免费观看视频在线观看| 在线亚洲精品国产二区图片欧美 | 男女边摸边吃奶| 日韩亚洲欧美综合| av在线蜜桃| 我要看黄色一级片免费的| 夫妻性生交免费视频一级片| 欧美xxxx黑人xx丫x性爽| 少妇高潮的动态图| 一区二区三区四区激情视频| 黄色配什么色好看| 啦啦啦视频在线资源免费观看| 日日摸夜夜添夜夜添av毛片| 男女国产视频网站| 99久久精品一区二区三区| 日韩中文字幕视频在线看片 | 日韩强制内射视频| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx在线观看| 青春草视频在线免费观看| 久久久久久久久大av| 干丝袜人妻中文字幕| 国产黄片美女视频| 成人影院久久| 极品少妇高潮喷水抽搐| 国产精品福利在线免费观看| 美女cb高潮喷水在线观看| 小蜜桃在线观看免费完整版高清| 色婷婷av一区二区三区视频| 国产老妇伦熟女老妇高清| av在线老鸭窝| 岛国毛片在线播放| 在线观看av片永久免费下载| 成人黄色视频免费在线看| 一本色道久久久久久精品综合| 日韩成人av中文字幕在线观看| 丝袜脚勾引网站| 久久久a久久爽久久v久久| 内射极品少妇av片p| 男的添女的下面高潮视频| 亚洲av男天堂| 啦啦啦视频在线资源免费观看| 午夜激情福利司机影院| 成人美女网站在线观看视频| 看十八女毛片水多多多| 一区二区三区精品91| 啦啦啦在线观看免费高清www| 亚洲人与动物交配视频| 欧美区成人在线视频| 国产视频首页在线观看| 亚洲国产毛片av蜜桃av| 最黄视频免费看| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添av毛片| 亚洲自偷自拍三级| 午夜精品国产一区二区电影| 亚洲av成人精品一二三区| 成年av动漫网址| 精品国产乱码久久久久久小说| 一级av片app| 91aial.com中文字幕在线观看| 三级国产精品片| 免费高清在线观看视频在线观看| 免费看av在线观看网站| av国产免费在线观看| 亚洲成人一二三区av| 亚洲欧美日韩无卡精品| 亚洲av综合色区一区| 黄片无遮挡物在线观看| 成年免费大片在线观看| 五月伊人婷婷丁香| 国产深夜福利视频在线观看| 99久久中文字幕三级久久日本| 国产乱人偷精品视频| 色婷婷av一区二区三区视频| 国产一区有黄有色的免费视频| 日韩三级伦理在线观看| 亚洲丝袜综合中文字幕| 五月玫瑰六月丁香| 午夜精品国产一区二区电影| 只有这里有精品99| 女性被躁到高潮视频| 久久精品国产亚洲av涩爱| 欧美国产精品一级二级三级 | 日本欧美视频一区| 精品人妻视频免费看| 99久久精品国产国产毛片| 亚洲久久久国产精品| 18禁裸乳无遮挡动漫免费视频| 成年免费大片在线观看| 日本免费在线观看一区| 国产精品女同一区二区软件| 少妇精品久久久久久久| 欧美日韩视频精品一区| 日韩免费高清中文字幕av| 精品少妇黑人巨大在线播放| 高清av免费在线| 纯流量卡能插随身wifi吗| 在线观看av片永久免费下载| 丰满少妇做爰视频| 成人高潮视频无遮挡免费网站| 国产精品免费大片| 老熟女久久久| 国产伦精品一区二区三区视频9| 欧美高清性xxxxhd video| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 亚洲国产欧美在线一区| 少妇的逼水好多| 18禁在线播放成人免费| 伦理电影大哥的女人| 欧美成人a在线观看| 美女脱内裤让男人舔精品视频| 久久国内精品自在自线图片| 久久久亚洲精品成人影院| 国产乱来视频区| 免费观看a级毛片全部| 国产爽快片一区二区三区| 国产成人91sexporn| 少妇精品久久久久久久| a级毛片免费高清观看在线播放| 亚洲欧美成人精品一区二区| 欧美zozozo另类| 欧美激情极品国产一区二区三区 | 成人毛片60女人毛片免费| 日韩 亚洲 欧美在线| 欧美亚洲 丝袜 人妻 在线| 蜜桃亚洲精品一区二区三区| 久久久久久伊人网av| tube8黄色片| 一级a做视频免费观看| 国产精品人妻久久久久久| 色视频在线一区二区三区| 成人免费观看视频高清| 亚洲精品国产av成人精品| 日韩欧美 国产精品| 国产乱来视频区| 美女主播在线视频| 国产在线一区二区三区精| 一本色道久久久久久精品综合| 国产精品久久久久久av不卡| 久久精品国产亚洲av涩爱| 国产精品精品国产色婷婷| 九草在线视频观看| 免费观看的影片在线观看| 精品国产露脸久久av麻豆| 久久久久精品性色| 深夜a级毛片| 亚洲图色成人| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 国精品久久久久久国模美| 亚洲av二区三区四区| 日本一二三区视频观看| 国产黄色免费在线视频| 中文字幕免费在线视频6| 最近最新中文字幕免费大全7| 国产色婷婷99| 国产综合精华液| 网址你懂的国产日韩在线| 亚洲四区av| freevideosex欧美| 免费黄网站久久成人精品| 婷婷色综合www| 成年人午夜在线观看视频| 寂寞人妻少妇视频99o| 欧美日韩国产mv在线观看视频 | 国产男女内射视频| 99久久精品一区二区三区| 97在线视频观看| 国产精品人妻久久久久久| 我要看日韩黄色一级片| 80岁老熟妇乱子伦牲交| av一本久久久久| 成人一区二区视频在线观看| 免费久久久久久久精品成人欧美视频 | 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 国产免费福利视频在线观看| 一级a做视频免费观看| 伊人久久国产一区二区| 欧美日韩精品成人综合77777| 熟女人妻精品中文字幕| 久久热精品热| 水蜜桃什么品种好| 国产有黄有色有爽视频| 精品久久久精品久久久| 久久久久久久久久成人| 超碰av人人做人人爽久久| 亚洲欧美成人精品一区二区| 久久ye,这里只有精品| 国产又色又爽无遮挡免| 97在线视频观看| av视频免费观看在线观看| 国产国拍精品亚洲av在线观看| 免费少妇av软件| 日韩三级伦理在线观看| 久久久久久久亚洲中文字幕| 最近最新中文字幕免费大全7| 小蜜桃在线观看免费完整版高清| 91精品国产国语对白视频| 你懂的网址亚洲精品在线观看| 人妻少妇偷人精品九色| 午夜福利视频精品| 交换朋友夫妻互换小说| 中文字幕亚洲精品专区| 又粗又硬又长又爽又黄的视频| 在线精品无人区一区二区三 | 天天躁夜夜躁狠狠久久av| 91精品国产九色| 日韩大片免费观看网站| 尾随美女入室| 一本久久精品| 免费人妻精品一区二区三区视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品一及| 国产精品麻豆人妻色哟哟久久| 各种免费的搞黄视频| 夜夜爽夜夜爽视频| 日韩av免费高清视频| 秋霞伦理黄片| 亚洲av电影在线观看一区二区三区| 蜜桃在线观看..| 美女xxoo啪啪120秒动态图| 99re6热这里在线精品视频| 国产黄片视频在线免费观看| 欧美激情极品国产一区二区三区 | 国产亚洲一区二区精品| 精品人妻视频免费看| 国产欧美日韩一区二区三区在线 | 亚洲性久久影院| 日本av手机在线免费观看| 国产成人精品福利久久| 欧美xxxx黑人xx丫x性爽| 欧美日韩一区二区视频在线观看视频在线| 国产片特级美女逼逼视频| 日韩人妻高清精品专区| 国产视频内射| 国产午夜精品久久久久久一区二区三区| 人妻系列 视频| 婷婷色综合大香蕉| 又爽又黄a免费视频| 啦啦啦在线观看免费高清www| 午夜免费观看性视频| 在线观看国产h片| 夜夜看夜夜爽夜夜摸| 妹子高潮喷水视频| 亚州av有码| 日韩,欧美,国产一区二区三区| 在线免费十八禁| 亚洲欧美成人综合另类久久久| 亚洲av中文字字幕乱码综合| 亚洲国产最新在线播放| 午夜福利在线在线| 老师上课跳d突然被开到最大视频| 一级毛片久久久久久久久女| 亚洲av日韩在线播放| 国产爽快片一区二区三区| 91久久精品国产一区二区三区| 99视频精品全部免费 在线| 国产无遮挡羞羞视频在线观看| 国产精品人妻久久久影院| 久久久久久久久久成人| 在线 av 中文字幕| 久久久久精品久久久久真实原创| 人人妻人人看人人澡| 婷婷色综合www| 美女主播在线视频| 国产在线男女| 婷婷色综合www| 精品久久久久久久久亚洲| av视频免费观看在线观看| 亚洲va在线va天堂va国产| 亚洲天堂av无毛| h视频一区二区三区| 天天躁日日操中文字幕| 日日啪夜夜撸| 国产精品麻豆人妻色哟哟久久| 亚洲欧美日韩卡通动漫| 日韩一本色道免费dvd| 亚洲国产精品国产精品| 国产精品精品国产色婷婷| 寂寞人妻少妇视频99o| 国产爽快片一区二区三区| 国产高清国产精品国产三级 | 热re99久久精品国产66热6| 2018国产大陆天天弄谢| 国产男女超爽视频在线观看| 亚洲成人一二三区av| 一级a做视频免费观看| 日韩国内少妇激情av| 欧美精品亚洲一区二区| av免费在线看不卡| 久久鲁丝午夜福利片| 亚洲欧美一区二区三区国产| 国产成人免费观看mmmm| 国产在线视频一区二区| 精品人妻熟女av久视频| 亚洲欧美成人综合另类久久久| 国产又色又爽无遮挡免| 一本一本综合久久| 五月伊人婷婷丁香|