• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conditional autoregressive negative binomial model for analysis of crash count using Bayesian methods

    2014-09-17 06:00:46XuJianSunLu

    Xu Jian Sun Lu

    (1School of Transportation, Southeast University, Nanjing 210096, China)

    (2Center for Transportation Research, University of Texas at Austin, Austin 78712, USA)(3Department of Civil Engineering, Catholic University of America, Washington DC 20064, USA)

    W ith the increase in the number of vehicles,it is interesting and commendable that currently fatalities are decreasing every year in China,the reason of which can be attributed to the optimization of roadway designs,more safety vehicles,as well as many researches of crashes and the contributing factors.However, still 210 812 reported crashes and 62 387 reported fatalities occurred on roadways in 2011 in China according to official reports[1], demanding the further improvement of transportation safety to reduce the traffic accidents and fatalities.

    The possible access to understand the elements of crashes is to develop statistical analysis methods used to distinguish the significant factors,which can be utilized to provide an optimality criterion to policy makers.During the past several years,numerous methods for analyzing crash counts were proposed[2-6].The earliest approach for crash count data is the Poisson model[7], and then it gives rise to more flexible alternatives, e.g., the negative binomial(NB)model[8], the GIS-based Bayesian approach[9], the finite mixture regression model[10], and the quantile regression method[11].Most of the regression methods applied to model crash counts, however, are focused on aspatial(i.e.non-spatial)analysis.Applied work in aspatial models may not be able to capture spatial heterogeneity and spatial dependence at neighborhood areas, a frequently happening issue in crash counts.This leads to the development of alternative methodologies that focus on spatial modeling in the past few decades.Early pioneering work on spatial modeling is reported by Besag[12], and is further enriched by LeSage et al[13-16].Anselin[17]provided two specifications of spatial models,spatial error model(SEM)(i.e., the spatial autocorrelation model(SAC))and the spatial lag model(SLM)(i.e., the spatial autoregressive model(SAR))that is a special type of conditional autoregressive(CAR)model,at least in a continuous-response setting.

    The primary objective of this study is to develop associations between crash counts on homogeneous segments and the contributing factors,using a negative binomial(NB)-based conditional autoregressive model(CAR)which allows for overdispersion,unobserved heterogeneity and spatial autocorrelation.The Bayesian estimation is employed,using Markov chain Monte Carlo methods and the Gibbs sampler.The independent variables consist of traffic characteristics,roadway design and built environments,and the data are derived from on-system highways of Austin, TX, USA in the year 2010.Meanwhile, the exposure variable and the dummy variable are also considered.

    1 Model Structure

    As described before,there are two specifications of spatial models:the spatial autocorrelation model and the spatial autoregressive model.The general formulation of the spatial autoregressive model for cross-sectional spatial data is

    where yicontains ann×1 vector of dependent variables;ρ is the spatial lag coefficient;W1is the spatial weights matrix;φ is the error term for spatial dependence;xirepresents the matrix of independent variables.

    where λ is the spatial autoregressive coefficient;W2is a known spatial weights matrix like W1,usually containing the first-order contiguity relationships; ε ~N(0,σ2In).The SAR model tends to be difficult to develop for limited-response frameworks,especially when dealing with large scale problems involving a large amount of observations,and yields parameter estimates similar to those estimated from the CAR model.Moreover, due to faster computation,the CAR model is preferred in spatial analysis over the SAR model.Under the MRF assumption, the conditional probability density function of the univariate CAR model is[18]

    The joint probability density function is

    whereEiis the exposure variable,which represents vehicle miles traveled(VMT)in this study;τ denotes an unknown parameter for the exposure measure;β0is the intercept term;βkdenotes the coefficient of thek-th covariate;Xikare indicators for thek-th covariate for segmenti;ψifollows the proper CAR prior,as described before;εiis a random error that has a gamma distribution,that is,εi~ Γ(θ,θ).

    2 Data Description

    In this study,roadways and crash data sets of Austin City in USA in 2010 are used to examine the associations between crash counts on mainlanes and the contributing factors.The roadways in this study are on-system highways, containing interstate highways, US highways,state highways,farm-to-market roadways,etc.In order to avoid the modifiable areal unit problem(MAUP)[19],roadways are split into 1 824 homogeneous segments where geometric characteristics are coincident,as shown in Fig.1.Most segments have a length of 0 to 1.6 km and occupy more than 90%of the whole sample.The average of the segment length on mainlanes is 0.459 km.After merging crashes and segments,1 413 crashes on mainlanes are matched.

    Fig.1 Distribution of homogeneous segments in Austin(Spots are the center points of segments)

    In this study,the dependent variable is the number of crashes,while the exposure variable captures VMT,which is a key crash exposure term(since crash counts closely correlate with VMT,everything else remaining constant),and simply the product of AADT,segment length,and 365 days per year.The dependent variable set contains both continuous and categorical variables,as shown in Tab.1.The indicator for curvature is a dummy variable,that is,if the answer is yes,it equals 1,and 0 otherwise.In addition,traffic characteristics allow for AADT,speed limit,and the percentage of truck AADT.In the past research,environments,especially distances to the nearest hospitals,were rarely employed for the contributing factors to analyze the associations of crash counts.In this study,hospitals are collected for analysis;meanwhile,the distances of which to segments are computed by ArcGIS,as shown in Fig.2.The data of annual rainfall obtained from the US Natural Resources Information System are also collected for analysis.It is noted that it would be best to match the year 2010 crashes to the same year rainfall data,however such information is unavailable,and we cannot find out the data.According to theclimate history in Texas,the annual rainfall changed a little,so 1961—1990 average rainfall is used instead.Fig.3 depicts the distribution of the annual rainfall in Austin.

    Tab.1 Summary statistics of variables for segments

    Fig.2 Distribution of hospitals in Austin

    Fig.3 Distribution of annual rainfall in Austin

    3 Estimation Results and Discussion

    This section discusses the results of the associations between the contributing factors and the crash counts on mainlanes in Austin.Tab.2 shows the parameter estimates of the CAR model for crash counts,based on a total number of 5 000 draws in WinBUGS.

    The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ=0.658 for mainlanes),which follows prior expectations.After controlling the exposure variable(VMT),other covariates regardingcrash rates are estimated,which can be seen in Tab.2.

    Elasticities for total crash counts and fatal crash counts are computed as the average percentage change in the mean crash rate per 1%change in thek-th variable.As shown in Tab.2,crash counts are estimated to have a statistically and practically significant spatial autocorrelation coefficient of 0.624(that is α =0.624).The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on the mean crash rates for mainlanes,while the remaining variables all exhibit negative impacts on the mean crash rates.The elasticity of - 0.123 is found to be that of the curve indicator variables,implying that,holding everything else constant at their means,the mean crash rate is estimated to drop by 0.123 when the indicator variable switches from 0 to 1.The result confirms that the roadway curvature has negative effects on crash rates,which is consistent with the findings of some other studies[5-6].

    Interestingly,the speed limit on mainlanes exhibits negative mean elasticities,implying that higher speed limits are associated with lower mean crash rates,as found in Ref.[4].However,the speed limit has a positive effect on fatality rates,as shown in Tab.2.Rainfall intensity is estimated to be positively associated with crash rates,and an increase of 1%rainfall will result in an increase of 8.622 in crash rates and an increase of 0.283 in fatality rates.As discussed previously,the distances to hospitals rarely appear as contributing factors in the crash modeling literature.It is found that the distances to the nearest hospitals have a negative impact on the mean crash rates,which suggests that shorter distances lead to higher crash rates,however,as expected,positive associations with fatal crash rates(presumably due to more severe collision impacts at higher speeds and time lost in transporting crash victims to an emergency room).

    Tab.2 Estimation results of CAR-NB model for crash and fatal counts

    In this study,the CAR-NB model is compared with another spatial model(CAR-Poisson)and some aspatial models(NB,zero-inflated NB and zero-inflated Poisson),as shown in Tab.3.

    Tab.3 Comparison of results using aspatial models and spatial models

    The deviance information criterion(DIC),as a generalization of the Akaike information criterion(AIC),can be used to compare the goodness-of-fit and complexity of different models estimated under a Bayesian framework.The DIC equation is

    whereD(θˉ)is the deviance evaluated atθˉ which is the posterior mean of the parameters;pDis the effective number of parameters in the model;Dˉ is the posterior mean of the deviance statisticD(θ).With regards to the model superiority and complexity,the lower the DIC,the better the model[20].Tab.3 also presents the log likelihood values,which are used in the likelihood ratio chi-square to test whether all predictors'regression coefficients in the model are simultaneously zero.Meanwhile,Moran'sIis also considered,which is a measure of spatial autocorrelation developed by Moran[21].Negative(positive)values indicate negative(positive)spatial autocorrelation and the values range from -1(indicating perfect dispersion)to+1(perfect correlation).

    It is observed that the CAR-NB model has the lowest DIC and Moran'sIof residuals among these tested models.Meanwhile,mean log likelihood values of the CARNB model are the largest.The statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models due to its lower prediction errors and more robust parameter inference.It can be found that the negative binomial models in Tab.3 are better than the Poisson models due to the fact that overdispersion actually exists in the data.

    4 Conclusions

    1)Statistical tests of DIC,log likelihood and Moran'sIsuggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models,while the negative binomial models are better than the Poisson models.

    2)The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ =0.658 for mainlanes),with crash rates effectively falling as VMT rises.

    3)The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on crash count,while the remaining variables all exhibit negative impacts.

    4)The distances to the nearest hospitals and the speed limit have negative associations with segment-based crash counts but positive associations with fatality counts,presumably as a result of time loss during transporting crash victims and worsened collision impacts at higher speeds.

    [1]Traffic Management Bureau of the Ministry of Public Security of the People's Republic of China.Road traffic accident statistics annual report of the People's Republic of China(2010)[R].Wuxi:Traffic Management Research Institute of the Ministry of Public Security,2011.(in Chinese)

    [2]Qu X,Guo T,Wang W,et al.Measuring speed consistency for freeway diverge areas using factor analysis[J].Journal of Central South University:Science and Technology,2013,20(1):837-840.(in Chinese)

    [3]Pei Y L,Ma J.Research on countermeasures for road condition causes of traffic accidents[J].China Journal of Highway and Transport,2003,16(4):77-82.

    [4]Ma J,Kockelman K M,Damien P.A multivariate Poisson-lognormal regression model for prediction of crash counts by severity,using Bayesian methods[J].Accident Analysis and Prevention,2008,40(3):964-975.

    [5]Quddus M A,Wang C,Ison S G.Road traffic congestion and crash severity:econometric analysis using ordered response models[J].Journal of Transportation Engineering,2010,136(5):424-435.

    [6]Wang C,Quddus M A,Ison S G.Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model[J].Accident Analysis and Prevention,2011,43(6):1979-1990.

    [7]Jovanis P,Chang H L.Modeling the relationship of accidents to miles traveled[J].Transportation Research Record,1986,1068:42-51.

    [8]Lord D.The prediction of accidents on digital networks:characteristics and issues related to the application of accident prediction models[D].Toronto:University of Toronto,2000.

    [9]Li L,Zhu L,Daniel Z S.A GIS-based Bayesian approach for analyzing spatial-temporal patterns of intra-city motor vehicle crashes[J].Journal of Transport Geography,2007,15(4):274-285.

    [10]Park B J,Lord D.Application of finite mixture models for vehicle crash data analysis[J].Accident Analysis and Prevention,2009,41(4):683-91.

    [11]Qin X,Reyes P.Conditional quantile analysis for crash count data[J].Journal of Transportation Engineering,2011,137(9):601-607.

    [12]Besag J E.Nearest-neighbour systems and the auto-logistic model for binary data[J].Journal of the Royal Statistical Society,Series B:Methodological,1972,34(1):75-83.

    [13]LeSage J P.Spatial econometrics[EB/OL].(1999)[2013-03-15].http://www.spatial-econometrics.com/.

    [14]Miaou S,Song J J,Malick B.Roadway traffic crash mapping:a space-time modeling approach[J].Journal of Transportation and Statistics,2003,6(1):33-57.

    [15]Quddus M A.Modeling area-wide count outcomes with spatial correlation and heterogeneity:an analysis of London crash data[J].Accident Analysis and Prevention,2008,40(4):1486-1497.

    [16]Wang Y,Kockelman K M.A conditional-autoregressive count model for pedestrian crashes across neighborhoods[C/CD]//The92nd Annual Meeting of the Transportation Research Board.Washington DC,USA,2013.

    [17]Anselin L.Spatial econometrics:methods and models[M].Dordrecht:Kluwer Academic Publishers,1988.

    [18]Mariella L,Tarantino M.Spatial temporal conditional auto-regressive model:a new autoregressive matrix [J].Australian Journal of Statistics,2010,39(3):223-244.

    [19]Openshaw S.The modifiable areal unit problem [J].Concepts and Techniques in Modern Geography,1983,38:39-41.

    [20]Spregelhalter D J,Best N G,Carlin B P,et al.Bayesian measures of model complexity and fit[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,2002,64(4):583-639.

    [21]Moran P A P.Notes on continuous stochastic phenomena[J].Biometrika,1950,37(1):17-23.

    一级毛片久久久久久久久女| 久久人人爽人人爽人人片va| 亚洲激情五月婷婷啪啪| 久久热精品热| 日产精品乱码卡一卡2卡三| 黄色一级大片看看| 女人久久www免费人成看片 | 久久99热6这里只有精品| 久久久久性生活片| 免费看日本二区| 高清毛片免费看| 久久久精品94久久精品| 国产成人aa在线观看| 天堂影院成人在线观看| 日日干狠狠操夜夜爽| 精品久久国产蜜桃| 国产av不卡久久| 亚洲欧洲日产国产| 少妇的逼好多水| 免费播放大片免费观看视频在线观看 | 午夜免费激情av| 99久久无色码亚洲精品果冻| 听说在线观看完整版免费高清| 日本黄色视频三级网站网址| 久久久久免费精品人妻一区二区| 亚洲丝袜综合中文字幕| 国产精品蜜桃在线观看| 免费看av在线观看网站| 秋霞在线观看毛片| 99久久精品国产国产毛片| 久久久久久大精品| 一区二区三区免费毛片| 特大巨黑吊av在线直播| 一个人看视频在线观看www免费| 国产爱豆传媒在线观看| 国产高清视频在线观看网站| 一本一本综合久久| 国产探花在线观看一区二区| 成人毛片a级毛片在线播放| 久久这里只有精品中国| 美女内射精品一级片tv| 欧美高清性xxxxhd video| av在线亚洲专区| 在线观看av片永久免费下载| 丰满乱子伦码专区| 三级国产精品片| 久久这里有精品视频免费| 久久精品91蜜桃| 精品一区二区免费观看| 亚洲精品影视一区二区三区av| 一级av片app| 日韩一区二区视频免费看| h日本视频在线播放| 蜜臀久久99精品久久宅男| 色吧在线观看| 插阴视频在线观看视频| 国产久久久一区二区三区| 国产精品99久久久久久久久| 午夜福利在线在线| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 午夜福利成人在线免费观看| 国产精品乱码一区二三区的特点| www日本黄色视频网| 国产视频首页在线观看| 亚洲人与动物交配视频| 亚洲人成网站在线观看播放| 大话2 男鬼变身卡| 久久久成人免费电影| 美女xxoo啪啪120秒动态图| 免费观看的影片在线观看| 中文字幕制服av| 高清视频免费观看一区二区 | av免费观看日本| 中国国产av一级| 99在线视频只有这里精品首页| 老司机福利观看| 亚洲欧美成人精品一区二区| 中文字幕av成人在线电影| 亚洲av免费在线观看| 日本免费a在线| 水蜜桃什么品种好| 亚洲av成人精品一区久久| 国产精品1区2区在线观看.| 少妇人妻一区二区三区视频| 91在线精品国自产拍蜜月| 桃色一区二区三区在线观看| 18+在线观看网站| 永久免费av网站大全| 99久久中文字幕三级久久日本| av在线播放精品| 超碰97精品在线观看| 亚洲性久久影院| 只有这里有精品99| 日韩强制内射视频| 国产片特级美女逼逼视频| 午夜精品一区二区三区免费看| 中文亚洲av片在线观看爽| 日本wwww免费看| 日日摸夜夜添夜夜爱| 亚洲精品456在线播放app| 欧美高清成人免费视频www| 国产免费一级a男人的天堂| 免费电影在线观看免费观看| 一区二区三区免费毛片| 男女那种视频在线观看| 夜夜看夜夜爽夜夜摸| 欧美日韩精品成人综合77777| ponron亚洲| 久久热精品热| 亚洲av电影在线观看一区二区三区 | 久久精品国产鲁丝片午夜精品| av线在线观看网站| 国产精品国产高清国产av| 国产一区二区三区av在线| 免费观看人在逋| 超碰97精品在线观看| 色5月婷婷丁香| 国产亚洲5aaaaa淫片| 长腿黑丝高跟| 秋霞在线观看毛片| 国产精品人妻久久久久久| 欧美一区二区精品小视频在线| 男女边吃奶边做爰视频| 99久国产av精品| 国产色爽女视频免费观看| 伦理电影大哥的女人| 久久亚洲精品不卡| 国产精品熟女久久久久浪| 亚洲丝袜综合中文字幕| 亚洲精品成人久久久久久| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 看十八女毛片水多多多| 亚洲熟妇中文字幕五十中出| 成人鲁丝片一二三区免费| 中文资源天堂在线| 久久久亚洲精品成人影院| 最新中文字幕久久久久| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩卡通动漫| 国产真实乱freesex| 女的被弄到高潮叫床怎么办| 免费观看精品视频网站| 白带黄色成豆腐渣| 亚洲国产高清在线一区二区三| av在线观看视频网站免费| 亚洲精品日韩av片在线观看| 午夜a级毛片| 国产成人福利小说| 色播亚洲综合网| 禁无遮挡网站| 欧美性感艳星| 免费观看人在逋| 日本av手机在线免费观看| 久久久久九九精品影院| 亚洲欧美清纯卡通| 韩国高清视频一区二区三区| av专区在线播放| 亚洲电影在线观看av| 亚洲真实伦在线观看| 全区人妻精品视频| 精品人妻偷拍中文字幕| av免费观看日本| 久久热精品热| 在线观看一区二区三区| 国产三级中文精品| 亚洲欧美成人综合另类久久久 | 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| a级毛片免费高清观看在线播放| 成年免费大片在线观看| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 九九爱精品视频在线观看| 永久网站在线| 精品久久久久久久久av| 亚洲av熟女| 麻豆成人午夜福利视频| 99热这里只有是精品50| 国产精品一区二区性色av| 噜噜噜噜噜久久久久久91| 成人鲁丝片一二三区免费| 一个人看的www免费观看视频| 久久久久久久久久黄片| 国产视频内射| 夜夜看夜夜爽夜夜摸| 色综合站精品国产| 别揉我奶头 嗯啊视频| 国产成人精品久久久久久| 一级毛片电影观看 | 成人毛片a级毛片在线播放| 欧美性猛交╳xxx乱大交人| 亚洲欧美精品综合久久99| 夫妻性生交免费视频一级片| 爱豆传媒免费全集在线观看| 美女高潮的动态| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| 91久久精品电影网| 天天躁日日操中文字幕| 久久久精品大字幕| av免费观看日本| 亚洲欧美清纯卡通| 欧美+日韩+精品| 亚洲欧美成人综合另类久久久 | 国产亚洲5aaaaa淫片| 卡戴珊不雅视频在线播放| 午夜精品一区二区三区免费看| 亚洲精品,欧美精品| 一二三四中文在线观看免费高清| 夜夜爽夜夜爽视频| 午夜a级毛片| 精品欧美国产一区二区三| 日韩欧美在线乱码| 亚州av有码| 免费黄色在线免费观看| 成人高潮视频无遮挡免费网站| 国产成人91sexporn| 成人av在线播放网站| 欧美激情国产日韩精品一区| 久久精品影院6| 嘟嘟电影网在线观看| 亚洲中文字幕日韩| 最近中文字幕高清免费大全6| 国产又黄又爽又无遮挡在线| 日本午夜av视频| 午夜精品在线福利| 两性午夜刺激爽爽歪歪视频在线观看| 久久人人爽人人爽人人片va| 亚洲人成网站在线播| 我的老师免费观看完整版| 观看美女的网站| 乱码一卡2卡4卡精品| 在线观看av片永久免费下载| 亚洲欧美清纯卡通| 99久久九九国产精品国产免费| 长腿黑丝高跟| 亚洲av不卡在线观看| 麻豆久久精品国产亚洲av| 精品免费久久久久久久清纯| 小蜜桃在线观看免费完整版高清| 亚洲精品乱久久久久久| 亚洲av电影不卡..在线观看| 国产精品国产三级专区第一集| 毛片一级片免费看久久久久| 欧美潮喷喷水| 国产精品久久久久久精品电影| 能在线免费观看的黄片| 网址你懂的国产日韩在线| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 亚洲自拍偷在线| 午夜老司机福利剧场| 看黄色毛片网站| 亚洲怡红院男人天堂| av播播在线观看一区| 女人十人毛片免费观看3o分钟| 成人一区二区视频在线观看| 亚洲国产精品专区欧美| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕一区二区三区有码在线看| 天美传媒精品一区二区| 国产欧美日韩精品一区二区| 久久久久久久久大av| 韩国高清视频一区二区三区| 美女脱内裤让男人舔精品视频| 久久久精品欧美日韩精品| 国产亚洲av片在线观看秒播厂 | 亚洲精品成人久久久久久| 在线免费十八禁| 看十八女毛片水多多多| 一夜夜www| 免费观看精品视频网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇的逼好多水| 欧美高清性xxxxhd video| 成人毛片a级毛片在线播放| 毛片一级片免费看久久久久| 久久亚洲国产成人精品v| 丰满人妻一区二区三区视频av| 国产单亲对白刺激| 国产亚洲5aaaaa淫片| 一本一本综合久久| 熟女电影av网| 少妇猛男粗大的猛烈进出视频 | 日韩欧美国产在线观看| 日韩欧美精品v在线| 亚洲国产精品成人久久小说| 日本黄色视频三级网站网址| 精品久久久久久久末码| 国产成人freesex在线| 爱豆传媒免费全集在线观看| 午夜精品国产一区二区电影 | 久久久国产成人免费| 亚洲av二区三区四区| 国产精品爽爽va在线观看网站| 亚洲天堂国产精品一区在线| 最新中文字幕久久久久| 色视频www国产| 1000部很黄的大片| 国产精品熟女久久久久浪| 国产成人freesex在线| 色吧在线观看| 亚洲成人中文字幕在线播放| 精品一区二区免费观看| 午夜免费激情av| 青春草视频在线免费观看| av.在线天堂| 亚洲国产精品专区欧美| 免费观看的影片在线观看| 黄色欧美视频在线观看| 亚洲丝袜综合中文字幕| 午夜视频国产福利| 国内精品美女久久久久久| 男女国产视频网站| 少妇人妻精品综合一区二区| 国产成人午夜福利电影在线观看| 国产av在哪里看| 亚洲av一区综合| 特大巨黑吊av在线直播| 一级黄色大片毛片| 国产精品国产三级国产av玫瑰| 中文乱码字字幕精品一区二区三区 | 18禁在线无遮挡免费观看视频| 99国产精品免费福利视频| 国国产精品蜜臀av免费| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 国产亚洲精品第一综合不卡 | 国产一区有黄有色的免费视频| 看非洲黑人一级黄片| 麻豆乱淫一区二区| 1024视频免费在线观看| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区久久久樱花| 国精品久久久久久国模美| 尾随美女入室| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| 在线观看三级黄色| 少妇精品久久久久久久| 少妇的丰满在线观看| 内地一区二区视频在线| 草草在线视频免费看| 热re99久久精品国产66热6| 亚洲精品自拍成人| 侵犯人妻中文字幕一二三四区| 日本-黄色视频高清免费观看| 91精品国产国语对白视频| 日本黄色日本黄色录像| av在线播放精品| 欧美人与善性xxx| 少妇人妻 视频| 国产无遮挡羞羞视频在线观看| 母亲3免费完整高清在线观看 | 韩国高清视频一区二区三区| 日本与韩国留学比较| 国产黄色视频一区二区在线观看| 中文天堂在线官网| 99久久综合免费| 亚洲中文av在线| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久久久99蜜臀 | 中国美白少妇内射xxxbb| 欧美另类一区| 国产不卡av网站在线观看| √禁漫天堂资源中文www| 精品国产一区二区三区四区第35| 九色成人免费人妻av| 青春草视频在线免费观看| 亚洲精品乱久久久久久| videos熟女内射| 最黄视频免费看| 欧美3d第一页| 美女主播在线视频| 国产精品久久久久久精品古装| av播播在线观看一区| 建设人人有责人人尽责人人享有的| freevideosex欧美| 丰满饥渴人妻一区二区三| 亚洲av国产av综合av卡| 丰满饥渴人妻一区二区三| 在线观看免费日韩欧美大片| 99热6这里只有精品| 亚洲精品自拍成人| 丰满饥渴人妻一区二区三| 大香蕉久久成人网| 久久久精品区二区三区| 两性夫妻黄色片 | 九草在线视频观看| 久久久国产一区二区| 热re99久久精品国产66热6| 日韩人妻精品一区2区三区| 国产老妇伦熟女老妇高清| 成人毛片60女人毛片免费| 久久国内精品自在自线图片| 国产成人精品久久久久久| www日本在线高清视频| 全区人妻精品视频| av不卡在线播放| 国产精品久久久久久久电影| 中文乱码字字幕精品一区二区三区| 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 一级,二级,三级黄色视频| 97精品久久久久久久久久精品| 亚洲av中文av极速乱| 少妇熟女欧美另类| 男女边摸边吃奶| 99热全是精品| 另类精品久久| 69精品国产乱码久久久| 国产深夜福利视频在线观看| 日韩精品有码人妻一区| 乱人伦中国视频| 亚洲国产精品专区欧美| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 秋霞伦理黄片| 国产亚洲最大av| 国产不卡av网站在线观看| 成人漫画全彩无遮挡| 尾随美女入室| 亚洲,一卡二卡三卡| 久久久久久久久久久免费av| 国语对白做爰xxxⅹ性视频网站| 亚洲成人av在线免费| 午夜老司机福利剧场| 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 免费人妻精品一区二区三区视频| 欧美3d第一页| 一区二区av电影网| 国产日韩欧美在线精品| 男女国产视频网站| 精品人妻熟女毛片av久久网站| 黄色毛片三级朝国网站| 一级毛片黄色毛片免费观看视频| av女优亚洲男人天堂| 日韩av不卡免费在线播放| 国产精品一二三区在线看| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 桃花免费在线播放| 日本欧美视频一区| 插逼视频在线观看| 中文欧美无线码| 老司机亚洲免费影院| 日韩成人伦理影院| 欧美人与性动交α欧美精品济南到 | 青春草视频在线免费观看| 久久这里只有精品19| 一边摸一边做爽爽视频免费| 久久人妻熟女aⅴ| 少妇猛男粗大的猛烈进出视频| 人妻 亚洲 视频| 极品人妻少妇av视频| 欧美日韩亚洲高清精品| 男女啪啪激烈高潮av片| 国产精品熟女久久久久浪| 免费高清在线观看日韩| 在线观看国产h片| h视频一区二区三区| 桃花免费在线播放| 精品99又大又爽又粗少妇毛片| 婷婷色综合大香蕉| 飞空精品影院首页| 免费高清在线观看视频在线观看| 人妻人人澡人人爽人人| 22中文网久久字幕| 在线观看www视频免费| 日韩精品有码人妻一区| 在线观看一区二区三区激情| 成人影院久久| 不卡视频在线观看欧美| 亚洲成人手机| 欧美精品一区二区大全| 另类精品久久| 久久久久久伊人网av| 免费人成在线观看视频色| 精品一区在线观看国产| 国产成人精品福利久久| av电影中文网址| 母亲3免费完整高清在线观看 | 最近2019中文字幕mv第一页| 黄片无遮挡物在线观看| 97在线人人人人妻| 大码成人一级视频| 考比视频在线观看| 国精品久久久久久国模美| 国产av码专区亚洲av| 九色亚洲精品在线播放| 如日韩欧美国产精品一区二区三区| 国产乱来视频区| 国产黄频视频在线观看| 免费黄网站久久成人精品| 亚洲精品色激情综合| 免费看不卡的av| 日日摸夜夜添夜夜爱| 大陆偷拍与自拍| 午夜激情av网站| 日产精品乱码卡一卡2卡三| 男人舔女人的私密视频| 中文精品一卡2卡3卡4更新| 美女脱内裤让男人舔精品视频| 嫩草影院入口| 波野结衣二区三区在线| 亚洲av欧美aⅴ国产| av天堂久久9| 国产1区2区3区精品| 伦理电影大哥的女人| 18禁在线无遮挡免费观看视频| 大陆偷拍与自拍| 成人无遮挡网站| 在线天堂最新版资源| 高清欧美精品videossex| 永久免费av网站大全| 五月天丁香电影| 香蕉丝袜av| 最近手机中文字幕大全| 国产精品一区二区在线观看99| 国语对白做爰xxxⅹ性视频网站| 九九在线视频观看精品| 欧美 亚洲 国产 日韩一| 国产成人精品福利久久| 亚洲精品av麻豆狂野| 在线精品无人区一区二区三| 国产成人av激情在线播放| 亚洲成av片中文字幕在线观看 | 99国产综合亚洲精品| 久久97久久精品| 亚洲精品美女久久久久99蜜臀 | 美女福利国产在线| 亚洲人成77777在线视频| 成人无遮挡网站| 免费观看av网站的网址| 中文字幕精品免费在线观看视频 | 高清不卡的av网站| 免费大片黄手机在线观看| 看免费av毛片| 精品人妻熟女毛片av久久网站| 黄色怎么调成土黄色| 国产欧美亚洲国产| 91精品国产国语对白视频| 久久久久久久久久久免费av| 亚洲成人手机| 黑丝袜美女国产一区| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 精品一区二区三区视频在线| 久久久久久久久久久久大奶| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 国产日韩欧美视频二区| 国产精品偷伦视频观看了| 婷婷成人精品国产| 日韩中字成人| 亚洲图色成人| 七月丁香在线播放| 久久国产精品男人的天堂亚洲 | 男女无遮挡免费网站观看| √禁漫天堂资源中文www| 午夜福利乱码中文字幕| 精品第一国产精品| 免费女性裸体啪啪无遮挡网站| 欧美3d第一页| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线视频一区二区| 中文乱码字字幕精品一区二区三区| 免费观看a级毛片全部| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 久久99一区二区三区| 中文字幕制服av| 一级片'在线观看视频| 国产成人精品福利久久| 欧美精品亚洲一区二区| 日韩制服骚丝袜av| 蜜桃在线观看..| 亚洲精品国产av成人精品| 如日韩欧美国产精品一区二区三区| 亚洲第一av免费看| 亚洲欧美日韩卡通动漫| 日韩av不卡免费在线播放| 精品亚洲乱码少妇综合久久| 亚洲精品日本国产第一区| 两性夫妻黄色片 | 久久这里只有精品19| 蜜桃在线观看..| 又黄又粗又硬又大视频| 亚洲美女黄色视频免费看| 精品国产一区二区三区四区第35| 久久国产亚洲av麻豆专区| 视频在线观看一区二区三区| 91成人精品电影| 9色porny在线观看| 亚洲国产精品一区二区三区在线| 在线 av 中文字幕| 最新的欧美精品一区二区| 多毛熟女@视频| 国产精品久久久久久精品古装| 蜜臀久久99精品久久宅男| 999精品在线视频| 视频区图区小说| av在线app专区| 色吧在线观看| 日韩视频在线欧美| 欧美少妇被猛烈插入视频| 18禁国产床啪视频网站| 色视频在线一区二区三区| 黄色一级大片看看| 99久久综合免费| 国产免费一级a男人的天堂|