• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conditional autoregressive negative binomial model for analysis of crash count using Bayesian methods

    2014-09-17 06:00:46XuJianSunLu

    Xu Jian Sun Lu

    (1School of Transportation, Southeast University, Nanjing 210096, China)

    (2Center for Transportation Research, University of Texas at Austin, Austin 78712, USA)(3Department of Civil Engineering, Catholic University of America, Washington DC 20064, USA)

    W ith the increase in the number of vehicles,it is interesting and commendable that currently fatalities are decreasing every year in China,the reason of which can be attributed to the optimization of roadway designs,more safety vehicles,as well as many researches of crashes and the contributing factors.However, still 210 812 reported crashes and 62 387 reported fatalities occurred on roadways in 2011 in China according to official reports[1], demanding the further improvement of transportation safety to reduce the traffic accidents and fatalities.

    The possible access to understand the elements of crashes is to develop statistical analysis methods used to distinguish the significant factors,which can be utilized to provide an optimality criterion to policy makers.During the past several years,numerous methods for analyzing crash counts were proposed[2-6].The earliest approach for crash count data is the Poisson model[7], and then it gives rise to more flexible alternatives, e.g., the negative binomial(NB)model[8], the GIS-based Bayesian approach[9], the finite mixture regression model[10], and the quantile regression method[11].Most of the regression methods applied to model crash counts, however, are focused on aspatial(i.e.non-spatial)analysis.Applied work in aspatial models may not be able to capture spatial heterogeneity and spatial dependence at neighborhood areas, a frequently happening issue in crash counts.This leads to the development of alternative methodologies that focus on spatial modeling in the past few decades.Early pioneering work on spatial modeling is reported by Besag[12], and is further enriched by LeSage et al[13-16].Anselin[17]provided two specifications of spatial models,spatial error model(SEM)(i.e., the spatial autocorrelation model(SAC))and the spatial lag model(SLM)(i.e., the spatial autoregressive model(SAR))that is a special type of conditional autoregressive(CAR)model,at least in a continuous-response setting.

    The primary objective of this study is to develop associations between crash counts on homogeneous segments and the contributing factors,using a negative binomial(NB)-based conditional autoregressive model(CAR)which allows for overdispersion,unobserved heterogeneity and spatial autocorrelation.The Bayesian estimation is employed,using Markov chain Monte Carlo methods and the Gibbs sampler.The independent variables consist of traffic characteristics,roadway design and built environments,and the data are derived from on-system highways of Austin, TX, USA in the year 2010.Meanwhile, the exposure variable and the dummy variable are also considered.

    1 Model Structure

    As described before,there are two specifications of spatial models:the spatial autocorrelation model and the spatial autoregressive model.The general formulation of the spatial autoregressive model for cross-sectional spatial data is

    where yicontains ann×1 vector of dependent variables;ρ is the spatial lag coefficient;W1is the spatial weights matrix;φ is the error term for spatial dependence;xirepresents the matrix of independent variables.

    where λ is the spatial autoregressive coefficient;W2is a known spatial weights matrix like W1,usually containing the first-order contiguity relationships; ε ~N(0,σ2In).The SAR model tends to be difficult to develop for limited-response frameworks,especially when dealing with large scale problems involving a large amount of observations,and yields parameter estimates similar to those estimated from the CAR model.Moreover, due to faster computation,the CAR model is preferred in spatial analysis over the SAR model.Under the MRF assumption, the conditional probability density function of the univariate CAR model is[18]

    The joint probability density function is

    whereEiis the exposure variable,which represents vehicle miles traveled(VMT)in this study;τ denotes an unknown parameter for the exposure measure;β0is the intercept term;βkdenotes the coefficient of thek-th covariate;Xikare indicators for thek-th covariate for segmenti;ψifollows the proper CAR prior,as described before;εiis a random error that has a gamma distribution,that is,εi~ Γ(θ,θ).

    2 Data Description

    In this study,roadways and crash data sets of Austin City in USA in 2010 are used to examine the associations between crash counts on mainlanes and the contributing factors.The roadways in this study are on-system highways, containing interstate highways, US highways,state highways,farm-to-market roadways,etc.In order to avoid the modifiable areal unit problem(MAUP)[19],roadways are split into 1 824 homogeneous segments where geometric characteristics are coincident,as shown in Fig.1.Most segments have a length of 0 to 1.6 km and occupy more than 90%of the whole sample.The average of the segment length on mainlanes is 0.459 km.After merging crashes and segments,1 413 crashes on mainlanes are matched.

    Fig.1 Distribution of homogeneous segments in Austin(Spots are the center points of segments)

    In this study,the dependent variable is the number of crashes,while the exposure variable captures VMT,which is a key crash exposure term(since crash counts closely correlate with VMT,everything else remaining constant),and simply the product of AADT,segment length,and 365 days per year.The dependent variable set contains both continuous and categorical variables,as shown in Tab.1.The indicator for curvature is a dummy variable,that is,if the answer is yes,it equals 1,and 0 otherwise.In addition,traffic characteristics allow for AADT,speed limit,and the percentage of truck AADT.In the past research,environments,especially distances to the nearest hospitals,were rarely employed for the contributing factors to analyze the associations of crash counts.In this study,hospitals are collected for analysis;meanwhile,the distances of which to segments are computed by ArcGIS,as shown in Fig.2.The data of annual rainfall obtained from the US Natural Resources Information System are also collected for analysis.It is noted that it would be best to match the year 2010 crashes to the same year rainfall data,however such information is unavailable,and we cannot find out the data.According to theclimate history in Texas,the annual rainfall changed a little,so 1961—1990 average rainfall is used instead.Fig.3 depicts the distribution of the annual rainfall in Austin.

    Tab.1 Summary statistics of variables for segments

    Fig.2 Distribution of hospitals in Austin

    Fig.3 Distribution of annual rainfall in Austin

    3 Estimation Results and Discussion

    This section discusses the results of the associations between the contributing factors and the crash counts on mainlanes in Austin.Tab.2 shows the parameter estimates of the CAR model for crash counts,based on a total number of 5 000 draws in WinBUGS.

    The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ=0.658 for mainlanes),which follows prior expectations.After controlling the exposure variable(VMT),other covariates regardingcrash rates are estimated,which can be seen in Tab.2.

    Elasticities for total crash counts and fatal crash counts are computed as the average percentage change in the mean crash rate per 1%change in thek-th variable.As shown in Tab.2,crash counts are estimated to have a statistically and practically significant spatial autocorrelation coefficient of 0.624(that is α =0.624).The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on the mean crash rates for mainlanes,while the remaining variables all exhibit negative impacts on the mean crash rates.The elasticity of - 0.123 is found to be that of the curve indicator variables,implying that,holding everything else constant at their means,the mean crash rate is estimated to drop by 0.123 when the indicator variable switches from 0 to 1.The result confirms that the roadway curvature has negative effects on crash rates,which is consistent with the findings of some other studies[5-6].

    Interestingly,the speed limit on mainlanes exhibits negative mean elasticities,implying that higher speed limits are associated with lower mean crash rates,as found in Ref.[4].However,the speed limit has a positive effect on fatality rates,as shown in Tab.2.Rainfall intensity is estimated to be positively associated with crash rates,and an increase of 1%rainfall will result in an increase of 8.622 in crash rates and an increase of 0.283 in fatality rates.As discussed previously,the distances to hospitals rarely appear as contributing factors in the crash modeling literature.It is found that the distances to the nearest hospitals have a negative impact on the mean crash rates,which suggests that shorter distances lead to higher crash rates,however,as expected,positive associations with fatal crash rates(presumably due to more severe collision impacts at higher speeds and time lost in transporting crash victims to an emergency room).

    Tab.2 Estimation results of CAR-NB model for crash and fatal counts

    In this study,the CAR-NB model is compared with another spatial model(CAR-Poisson)and some aspatial models(NB,zero-inflated NB and zero-inflated Poisson),as shown in Tab.3.

    Tab.3 Comparison of results using aspatial models and spatial models

    The deviance information criterion(DIC),as a generalization of the Akaike information criterion(AIC),can be used to compare the goodness-of-fit and complexity of different models estimated under a Bayesian framework.The DIC equation is

    whereD(θˉ)is the deviance evaluated atθˉ which is the posterior mean of the parameters;pDis the effective number of parameters in the model;Dˉ is the posterior mean of the deviance statisticD(θ).With regards to the model superiority and complexity,the lower the DIC,the better the model[20].Tab.3 also presents the log likelihood values,which are used in the likelihood ratio chi-square to test whether all predictors'regression coefficients in the model are simultaneously zero.Meanwhile,Moran'sIis also considered,which is a measure of spatial autocorrelation developed by Moran[21].Negative(positive)values indicate negative(positive)spatial autocorrelation and the values range from -1(indicating perfect dispersion)to+1(perfect correlation).

    It is observed that the CAR-NB model has the lowest DIC and Moran'sIof residuals among these tested models.Meanwhile,mean log likelihood values of the CARNB model are the largest.The statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models due to its lower prediction errors and more robust parameter inference.It can be found that the negative binomial models in Tab.3 are better than the Poisson models due to the fact that overdispersion actually exists in the data.

    4 Conclusions

    1)Statistical tests of DIC,log likelihood and Moran'sIsuggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models,while the negative binomial models are better than the Poisson models.

    2)The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ =0.658 for mainlanes),with crash rates effectively falling as VMT rises.

    3)The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on crash count,while the remaining variables all exhibit negative impacts.

    4)The distances to the nearest hospitals and the speed limit have negative associations with segment-based crash counts but positive associations with fatality counts,presumably as a result of time loss during transporting crash victims and worsened collision impacts at higher speeds.

    [1]Traffic Management Bureau of the Ministry of Public Security of the People's Republic of China.Road traffic accident statistics annual report of the People's Republic of China(2010)[R].Wuxi:Traffic Management Research Institute of the Ministry of Public Security,2011.(in Chinese)

    [2]Qu X,Guo T,Wang W,et al.Measuring speed consistency for freeway diverge areas using factor analysis[J].Journal of Central South University:Science and Technology,2013,20(1):837-840.(in Chinese)

    [3]Pei Y L,Ma J.Research on countermeasures for road condition causes of traffic accidents[J].China Journal of Highway and Transport,2003,16(4):77-82.

    [4]Ma J,Kockelman K M,Damien P.A multivariate Poisson-lognormal regression model for prediction of crash counts by severity,using Bayesian methods[J].Accident Analysis and Prevention,2008,40(3):964-975.

    [5]Quddus M A,Wang C,Ison S G.Road traffic congestion and crash severity:econometric analysis using ordered response models[J].Journal of Transportation Engineering,2010,136(5):424-435.

    [6]Wang C,Quddus M A,Ison S G.Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model[J].Accident Analysis and Prevention,2011,43(6):1979-1990.

    [7]Jovanis P,Chang H L.Modeling the relationship of accidents to miles traveled[J].Transportation Research Record,1986,1068:42-51.

    [8]Lord D.The prediction of accidents on digital networks:characteristics and issues related to the application of accident prediction models[D].Toronto:University of Toronto,2000.

    [9]Li L,Zhu L,Daniel Z S.A GIS-based Bayesian approach for analyzing spatial-temporal patterns of intra-city motor vehicle crashes[J].Journal of Transport Geography,2007,15(4):274-285.

    [10]Park B J,Lord D.Application of finite mixture models for vehicle crash data analysis[J].Accident Analysis and Prevention,2009,41(4):683-91.

    [11]Qin X,Reyes P.Conditional quantile analysis for crash count data[J].Journal of Transportation Engineering,2011,137(9):601-607.

    [12]Besag J E.Nearest-neighbour systems and the auto-logistic model for binary data[J].Journal of the Royal Statistical Society,Series B:Methodological,1972,34(1):75-83.

    [13]LeSage J P.Spatial econometrics[EB/OL].(1999)[2013-03-15].http://www.spatial-econometrics.com/.

    [14]Miaou S,Song J J,Malick B.Roadway traffic crash mapping:a space-time modeling approach[J].Journal of Transportation and Statistics,2003,6(1):33-57.

    [15]Quddus M A.Modeling area-wide count outcomes with spatial correlation and heterogeneity:an analysis of London crash data[J].Accident Analysis and Prevention,2008,40(4):1486-1497.

    [16]Wang Y,Kockelman K M.A conditional-autoregressive count model for pedestrian crashes across neighborhoods[C/CD]//The92nd Annual Meeting of the Transportation Research Board.Washington DC,USA,2013.

    [17]Anselin L.Spatial econometrics:methods and models[M].Dordrecht:Kluwer Academic Publishers,1988.

    [18]Mariella L,Tarantino M.Spatial temporal conditional auto-regressive model:a new autoregressive matrix [J].Australian Journal of Statistics,2010,39(3):223-244.

    [19]Openshaw S.The modifiable areal unit problem [J].Concepts and Techniques in Modern Geography,1983,38:39-41.

    [20]Spregelhalter D J,Best N G,Carlin B P,et al.Bayesian measures of model complexity and fit[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,2002,64(4):583-639.

    [21]Moran P A P.Notes on continuous stochastic phenomena[J].Biometrika,1950,37(1):17-23.

    netflix在线观看网站| 最新美女视频免费是黄的| 欧美精品人与动牲交sv欧美| 国产真人三级小视频在线观看| 午夜激情av网站| 日韩欧美在线二视频 | 超碰成人久久| 国产成人啪精品午夜网站| 一级,二级,三级黄色视频| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区三区在线| 丝袜美足系列| 在线av久久热| 18禁美女被吸乳视频| 国产高清激情床上av| 国产精品1区2区在线观看. | 亚洲va日本ⅴa欧美va伊人久久| 成熟少妇高潮喷水视频| 久久精品成人免费网站| 99国产精品免费福利视频| 好男人电影高清在线观看| 国产成+人综合+亚洲专区| 国产精品久久电影中文字幕 | 欧美日韩亚洲国产一区二区在线观看 | 一级毛片高清免费大全| 国产亚洲欧美98| 夜夜爽天天搞| 天堂动漫精品| 精品亚洲成a人片在线观看| 久久久久国产精品人妻aⅴ院 | 巨乳人妻的诱惑在线观看| 精品少妇一区二区三区视频日本电影| 91老司机精品| av片东京热男人的天堂| 老鸭窝网址在线观看| 亚洲久久久国产精品| 亚洲精品在线观看二区| 欧美性长视频在线观看| 91大片在线观看| 一进一出抽搐动态| 极品教师在线免费播放| 热99久久久久精品小说推荐| 欧美日韩亚洲高清精品| 国产在视频线精品| 久久午夜综合久久蜜桃| 日韩有码中文字幕| 69av精品久久久久久| 亚洲精品美女久久av网站| 天天躁狠狠躁夜夜躁狠狠躁| 日韩中文字幕欧美一区二区| 热re99久久国产66热| 亚洲精品国产一区二区精华液| 中文欧美无线码| 国产av精品麻豆| 精品国产美女av久久久久小说| 国产欧美日韩一区二区三区在线| 欧美国产精品va在线观看不卡| 国产日韩一区二区三区精品不卡| 国产成人一区二区三区免费视频网站| 亚洲av日韩在线播放| 男女床上黄色一级片免费看| 国产男靠女视频免费网站| 一二三四在线观看免费中文在| 国产欧美亚洲国产| 日韩欧美国产一区二区入口| 国产精品98久久久久久宅男小说| 真人做人爱边吃奶动态| 欧美另类亚洲清纯唯美| 麻豆国产av国片精品| 日本a在线网址| 老汉色av国产亚洲站长工具| 精品亚洲成国产av| 亚洲三区欧美一区| 好看av亚洲va欧美ⅴa在| 最近最新中文字幕大全电影3 | 亚洲av电影在线进入| 国产高清激情床上av| 久久人人97超碰香蕉20202| 成年人午夜在线观看视频| 亚洲 欧美一区二区三区| www.精华液| 亚洲欧美激情综合另类| 这个男人来自地球电影免费观看| 老司机影院毛片| 高清视频免费观看一区二区| 在线视频色国产色| 久久婷婷成人综合色麻豆| 一边摸一边抽搐一进一出视频| 看片在线看免费视频| 多毛熟女@视频| 男人的好看免费观看在线视频 | 亚洲五月婷婷丁香| av有码第一页| 啦啦啦免费观看视频1| 飞空精品影院首页| 搡老熟女国产l中国老女人| 丰满迷人的少妇在线观看| 亚洲精品乱久久久久久| 别揉我奶头~嗯~啊~动态视频| 久久亚洲真实| 90打野战视频偷拍视频| 国产一卡二卡三卡精品| 色在线成人网| 热re99久久精品国产66热6| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美网| 人妻丰满熟妇av一区二区三区 | 无限看片的www在线观看| 国产激情欧美一区二区| 91大片在线观看| 成熟少妇高潮喷水视频| 日本vs欧美在线观看视频| 久久九九热精品免费| 天天操日日干夜夜撸| 精品久久久久久久毛片微露脸| 精品人妻熟女毛片av久久网站| 国产真人三级小视频在线观看| 99久久人妻综合| 午夜视频精品福利| 女同久久另类99精品国产91| 成年人午夜在线观看视频| 好看av亚洲va欧美ⅴa在| 黄色毛片三级朝国网站| 欧美大码av| 国产精品久久电影中文字幕 | 成人精品一区二区免费| 亚洲在线自拍视频| 久久久国产一区二区| 国产成人一区二区三区免费视频网站| 久久午夜亚洲精品久久| 最近最新免费中文字幕在线| 狠狠狠狠99中文字幕| 国产男女超爽视频在线观看| 亚洲精品美女久久久久99蜜臀| 人妻 亚洲 视频| 久久狼人影院| 亚洲第一av免费看| 极品少妇高潮喷水抽搐| 欧美日韩亚洲高清精品| 国产99白浆流出| 国产精品亚洲一级av第二区| 成年版毛片免费区| 热99国产精品久久久久久7| 美国免费a级毛片| 日日夜夜操网爽| 欧美大码av| 欧美成狂野欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 中文字幕av电影在线播放| 最新美女视频免费是黄的| 夫妻午夜视频| av网站在线播放免费| 18禁裸乳无遮挡动漫免费视频| 精品久久久久久电影网| 午夜老司机福利片| 亚洲人成电影免费在线| 一区在线观看完整版| 成人黄色视频免费在线看| 男人的好看免费观看在线视频 | 女同久久另类99精品国产91| 国产精品一区二区精品视频观看| av不卡在线播放| av不卡在线播放| 亚洲va日本ⅴa欧美va伊人久久| 久久精品亚洲精品国产色婷小说| 一级毛片高清免费大全| 中文字幕高清在线视频| 99国产精品99久久久久| 少妇猛男粗大的猛烈进出视频| xxxhd国产人妻xxx| 精品国内亚洲2022精品成人 | 99久久人妻综合| 80岁老熟妇乱子伦牲交| 国产又色又爽无遮挡免费看| 久久国产精品男人的天堂亚洲| tube8黄色片| 国产真人三级小视频在线观看| 国产一区在线观看成人免费| 在线观看一区二区三区激情| 一级a爱片免费观看的视频| 久久国产精品男人的天堂亚洲| 日韩 欧美 亚洲 中文字幕| 巨乳人妻的诱惑在线观看| 亚洲国产看品久久| 久久亚洲精品不卡| 欧美午夜高清在线| 黄片小视频在线播放| 日本精品一区二区三区蜜桃| 亚洲av美国av| 国产精品二区激情视频| 亚洲久久久国产精品| 亚洲熟妇熟女久久| 19禁男女啪啪无遮挡网站| 成人亚洲精品一区在线观看| 久久久久久久午夜电影 | 中文亚洲av片在线观看爽 | 天堂中文最新版在线下载| 日本a在线网址| 久久亚洲真实| 黄片大片在线免费观看| 波多野结衣一区麻豆| 日韩有码中文字幕| 亚洲人成伊人成综合网2020| 少妇的丰满在线观看| 巨乳人妻的诱惑在线观看| 亚洲av成人一区二区三| 少妇猛男粗大的猛烈进出视频| 黑人操中国人逼视频| 高清欧美精品videossex| 亚洲午夜精品一区,二区,三区| 亚洲欧美日韩另类电影网站| 亚洲精品国产区一区二| 三上悠亚av全集在线观看| av中文乱码字幕在线| 亚洲国产看品久久| 久久天堂一区二区三区四区| 99国产精品免费福利视频| 久久久国产精品麻豆| 国产亚洲精品久久久久5区| 亚洲aⅴ乱码一区二区在线播放 | 国产视频一区二区在线看| 亚洲精品在线美女| 欧美 日韩 精品 国产| 丝瓜视频免费看黄片| 久久国产乱子伦精品免费另类| 精品一品国产午夜福利视频| 国产91精品成人一区二区三区| 老汉色av国产亚洲站长工具| 老司机影院毛片| 国产精品久久久久久人妻精品电影| 中国美女看黄片| 欧美日韩一级在线毛片| 夜夜夜夜夜久久久久| 成人国语在线视频| 男女高潮啪啪啪动态图| 亚洲精品久久午夜乱码| 香蕉久久夜色| 在线观看66精品国产| 老熟妇仑乱视频hdxx| 亚洲国产精品sss在线观看 | av不卡在线播放| 中文亚洲av片在线观看爽 | 欧美日韩乱码在线| 国产黄色免费在线视频| 久99久视频精品免费| 久久久久国产一级毛片高清牌| 免费av中文字幕在线| 国精品久久久久久国模美| 99国产精品一区二区三区| 老司机在亚洲福利影院| 丝袜在线中文字幕| 涩涩av久久男人的天堂| 另类亚洲欧美激情| 黄色视频不卡| 国产成人精品无人区| 大香蕉久久成人网| 久久这里只有精品19| av网站在线播放免费| 精品国产乱子伦一区二区三区| 在线观看舔阴道视频| 国产精品免费视频内射| 成人av一区二区三区在线看| 精品久久久久久,| a级片在线免费高清观看视频| 91成年电影在线观看| 后天国语完整版免费观看| 女人被狂操c到高潮| 亚洲午夜理论影院| 99国产极品粉嫩在线观看| 国产三级黄色录像| 免费在线观看亚洲国产| 高清欧美精品videossex| 国产91精品成人一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲专区字幕在线| 亚洲精品在线美女| 黄色视频不卡| 亚洲aⅴ乱码一区二区在线播放 | 丰满饥渴人妻一区二区三| 新久久久久国产一级毛片| 亚洲成人国产一区在线观看| 成在线人永久免费视频| 嫁个100分男人电影在线观看| bbb黄色大片| 午夜成年电影在线免费观看| 黑人操中国人逼视频| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 欧美日韩成人在线一区二区| 亚洲免费av在线视频| 国产在线精品亚洲第一网站| av电影中文网址| 悠悠久久av| 久久久精品免费免费高清| 一个人免费在线观看的高清视频| 一级片免费观看大全| 美女 人体艺术 gogo| 高清在线国产一区| 一本综合久久免费| 亚洲精品在线美女| 一区福利在线观看| 久久久国产精品麻豆| 欧美日韩成人在线一区二区| 亚洲第一欧美日韩一区二区三区| 精品少妇久久久久久888优播| 欧美日韩av久久| 国产日韩欧美亚洲二区| 捣出白浆h1v1| 电影成人av| e午夜精品久久久久久久| 久久人人爽av亚洲精品天堂| 色老头精品视频在线观看| 欧美+亚洲+日韩+国产| 在线免费观看的www视频| 国产成人精品久久二区二区91| 国产国语露脸激情在线看| 久久人妻av系列| 老司机在亚洲福利影院| 涩涩av久久男人的天堂| 日本黄色日本黄色录像| 中国美女看黄片| 色综合欧美亚洲国产小说| 99久久99久久久精品蜜桃| 超碰97精品在线观看| 国产av一区二区精品久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成电影免费在线| 国产日韩一区二区三区精品不卡| 国产精品国产高清国产av | 国产精品美女特级片免费视频播放器 | 999久久久国产精品视频| 亚洲视频免费观看视频| 黑丝袜美女国产一区| 国产欧美日韩一区二区精品| 伦理电影免费视频| 亚洲一区中文字幕在线| 村上凉子中文字幕在线| 成人免费观看视频高清| 国产精品成人在线| 国产片内射在线| 老熟妇乱子伦视频在线观看| 91成人精品电影| 人人妻人人澡人人爽人人夜夜| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕最新亚洲高清| 下体分泌物呈黄色| 在线观看一区二区三区激情| 黑丝袜美女国产一区| 一进一出抽搐动态| 99精品在免费线老司机午夜| 久久久久久久久免费视频了| 久久国产亚洲av麻豆专区| 一级毛片精品| cao死你这个sao货| 十分钟在线观看高清视频www| 日日爽夜夜爽网站| 久久婷婷成人综合色麻豆| 久久中文看片网| 在线观看午夜福利视频| 国产精品欧美亚洲77777| 欧美国产精品va在线观看不卡| videos熟女内射| 国产男女超爽视频在线观看| 99久久国产精品久久久| 亚洲精品av麻豆狂野| 老司机靠b影院| 久久久久精品人妻al黑| 如日韩欧美国产精品一区二区三区| 成人影院久久| 在线观看免费视频日本深夜| av视频免费观看在线观看| 高清黄色对白视频在线免费看| 久久久久视频综合| 亚洲专区字幕在线| tube8黄色片| 久久人妻熟女aⅴ| 狂野欧美激情性xxxx| 中文字幕高清在线视频| 亚洲全国av大片| 国产欧美亚洲国产| 久久久国产成人免费| 99精品在免费线老司机午夜| 欧美 日韩 精品 国产| 在线天堂中文资源库| 中文字幕人妻熟女乱码| 窝窝影院91人妻| 天天躁夜夜躁狠狠躁躁| 成人免费观看视频高清| 国产麻豆69| 亚洲一区二区三区不卡视频| 久久久国产欧美日韩av| 黄频高清免费视频| 精品欧美一区二区三区在线| 亚洲国产精品合色在线| 成年动漫av网址| 国产精品久久视频播放| 黄色丝袜av网址大全| 国产亚洲精品久久久久久毛片 | 婷婷丁香在线五月| 老司机亚洲免费影院| avwww免费| 又大又爽又粗| 9色porny在线观看| 国产成人欧美| 午夜福利免费观看在线| 国产亚洲欧美98| 热99国产精品久久久久久7| 国产真人三级小视频在线观看| 交换朋友夫妻互换小说| 国产高清videossex| 久久久精品区二区三区| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 高清欧美精品videossex| 国产一区在线观看成人免费| av超薄肉色丝袜交足视频| 国产高清国产精品国产三级| 不卡一级毛片| 国产精品.久久久| 最新在线观看一区二区三区| 色婷婷久久久亚洲欧美| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 黄色怎么调成土黄色| www.自偷自拍.com| 黄频高清免费视频| 国产精品欧美亚洲77777| 久久久精品区二区三区| 国产精品九九99| 夜夜夜夜夜久久久久| 老熟妇乱子伦视频在线观看| 国产不卡av网站在线观看| 国产熟女午夜一区二区三区| 精品国产国语对白av| 精品一区二区三卡| a在线观看视频网站| 日日爽夜夜爽网站| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| xxx96com| 男人舔女人的私密视频| 精品免费久久久久久久清纯 | 日本欧美视频一区| 日韩大码丰满熟妇| 一级毛片高清免费大全| 国产一区有黄有色的免费视频| 久久天躁狠狠躁夜夜2o2o| 高潮久久久久久久久久久不卡| 十分钟在线观看高清视频www| 亚洲国产精品合色在线| 黄片小视频在线播放| 午夜老司机福利片| 一边摸一边抽搐一进一出视频| 国产精品免费一区二区三区在线 | 久久人人爽av亚洲精品天堂| 成人国产一区最新在线观看| 久久99一区二区三区| 久久人人爽av亚洲精品天堂| av天堂在线播放| 亚洲五月天丁香| 日日爽夜夜爽网站| 亚洲第一av免费看| 青草久久国产| 9191精品国产免费久久| 久久精品国产亚洲av香蕉五月 | 国产亚洲精品久久久久久毛片 | 国产成人av激情在线播放| av天堂在线播放| 色精品久久人妻99蜜桃| 免费一级毛片在线播放高清视频 | 国产97色在线日韩免费| 一级黄色大片毛片| av在线播放免费不卡| 夜夜爽天天搞| 亚洲色图综合在线观看| 久久人人爽av亚洲精品天堂| 婷婷精品国产亚洲av在线 | 在线观看免费视频网站a站| 亚洲熟女精品中文字幕| 国产精品久久久久成人av| 亚洲,欧美精品.| 亚洲免费av在线视频| 一边摸一边做爽爽视频免费| 国产男女超爽视频在线观看| av一本久久久久| 国产在线一区二区三区精| 日韩人妻精品一区2区三区| 久久国产亚洲av麻豆专区| 久久亚洲精品不卡| 三级毛片av免费| 又紧又爽又黄一区二区| 老司机影院毛片| 国产日韩一区二区三区精品不卡| 免费看a级黄色片| 国产精华一区二区三区| 国产成+人综合+亚洲专区| 99精品欧美一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三区视频在线观看免费 | 人人澡人人妻人| 欧美在线黄色| 国产精品美女特级片免费视频播放器 | 一级片'在线观看视频| 精品电影一区二区在线| 一级,二级,三级黄色视频| 搡老熟女国产l中国老女人| 亚洲精品中文字幕在线视频| 国产一区二区三区在线臀色熟女 | 免费在线观看亚洲国产| 麻豆乱淫一区二区| 久久中文字幕人妻熟女| 人人澡人人妻人| 精品一区二区三卡| 午夜老司机福利片| 亚洲成人免费电影在线观看| 天堂中文最新版在线下载| 亚洲色图综合在线观看| 精品人妻在线不人妻| 99热网站在线观看| 欧美日韩黄片免| 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 日韩欧美国产一区二区入口| 久久精品亚洲av国产电影网| 色老头精品视频在线观看| 老司机影院毛片| 一级毛片女人18水好多| 两个人免费观看高清视频| 国产区一区二久久| 午夜视频精品福利| 99riav亚洲国产免费| 欧美日韩瑟瑟在线播放| 人人妻人人澡人人爽人人夜夜| 两个人看的免费小视频| 精品一品国产午夜福利视频| 国产亚洲欧美98| 纯流量卡能插随身wifi吗| a在线观看视频网站| 手机成人av网站| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频 | 在线播放国产精品三级| 搡老岳熟女国产| 日本vs欧美在线观看视频| 12—13女人毛片做爰片一| a在线观看视频网站| 成年版毛片免费区| 黄频高清免费视频| 黑人操中国人逼视频| 久久久水蜜桃国产精品网| 亚洲欧洲精品一区二区精品久久久| 欧美精品高潮呻吟av久久| 很黄的视频免费| 国产欧美日韩一区二区三区在线| 久久精品亚洲av国产电影网| 国产精品99久久99久久久不卡| 男女之事视频高清在线观看| 欧美日韩国产mv在线观看视频| 亚洲精品粉嫩美女一区| 精品一区二区三区av网在线观看| 他把我摸到了高潮在线观看| 亚洲精品国产一区二区精华液| 无遮挡黄片免费观看| 极品人妻少妇av视频| 自线自在国产av| 精品熟女少妇八av免费久了| 身体一侧抽搐| 成年人黄色毛片网站| 亚洲熟女毛片儿| 又大又爽又粗| 麻豆成人av在线观看| 久久亚洲真实| 老熟妇乱子伦视频在线观看| 亚洲国产精品一区二区三区在线| 国产成+人综合+亚洲专区| 久久中文字幕人妻熟女| 王馨瑶露胸无遮挡在线观看| 久久久久久久午夜电影 | 国产精品一区二区免费欧美| 亚洲精品一二三| 欧美大码av| 亚洲第一青青草原| 成人18禁高潮啪啪吃奶动态图| 另类亚洲欧美激情| 国内久久婷婷六月综合欲色啪| 久久精品熟女亚洲av麻豆精品| 亚洲成国产人片在线观看| 精品亚洲成国产av| 最新在线观看一区二区三区| 91成人精品电影| 在线av久久热| 欧美av亚洲av综合av国产av| 成人国语在线视频| 国产成人系列免费观看| 成年女人毛片免费观看观看9 | 国产免费现黄频在线看| 一区二区三区国产精品乱码| 国产免费现黄频在线看| 丝袜美足系列| 极品教师在线免费播放| 国产亚洲精品一区二区www | 国精品久久久久久国模美| 国产午夜精品久久久久久| 黄色毛片三级朝国网站| videosex国产| 欧美乱码精品一区二区三区| 免费观看人在逋| 欧美精品啪啪一区二区三区| 满18在线观看网站| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 久久香蕉精品热| 欧美成狂野欧美在线观看|