• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flexural behaviors of FRP strengthened corroded RC beams

    2014-09-06 10:49:27PanJinlongWangLupingYuanFangHuangYifang
    關(guān)鍵詞:屈服撓度承載力

    Pan Jinlong Wang Luping Yuan Fang Huang Yifang

    (1Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)(2China United Engineering Corporation, Hangzhou 310022, China)

    ?

    Flexural behaviors of FRP strengthened corroded RC beams

    Pan Jinlong1Wang Luping1Yuan Fang1Huang Yifang2

    (1Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)(2China United Engineering Corporation, Hangzhou 310022, China)

    The flexural behavior of eight FRP (fiber reinforced polymer) strengthened RC (reinforced concrete) beams with different steel corrosion rates are numerically studied by Ansys finite element software. The influences of the corrosion rate on crack pattern, failure mechanism, ultimate strength, ductility and deformation capacity are also analyzed. Modeling results show that the beams with low corrosion rates fail by the crushing of the concrete in the compression zone. For the beams with medium corrosion rates, the bond slip between the concrete and the longitudinal reinforcement occurs after steel yielding, and the beams finally fail by the debonding of the FRP plates. For the beams with high corrosion rates, the bond slip occurs before steel yielding, and the beams finally fail by the crushing of the concrete in the compression zone. The higher the corrosion rates of the longitudinal reinforcement, the more the carrying capacity of FRP strengthened RC beams reduces. The carrying capacity of RCB-1 (the corrosion rate is 0) is 115 kN, and the carrying capacity of RCB-7 (the corrosion rate is 20%) is 42 kN. The deformation capacity of FRP strengthened corroded RC beams is higher than that of FRP strengthened uncorroded RC beams. The ultimate deflection of RCB-1 and RCB-7 are 20 mm and 35 mm, respectively, and the ultimate deflection of RCB-5 (the corrosion rate is 10%) reaches 60 mm.

    corroded; reinforced concrete beam; FRP (fiber reinforced polymer); strengthening; numerical analysis; flexural behavior

    Concrete is one of the most widely used construction materials in civil engineering. Cracking and durability problems are the great challenges for the application of concrete in civil infrastructures[1]. For the durability issues, the corrosion of steel reinforcement is a major durability problem for concrete structures under severe environments. A potential solution of the corrosion problem is the application of the non-corroding fiber reinforced polymer (FRP) as strengthening or reinforcement materials for structural members[2].

    The use of the FRP material in structural engineering has attracted great attention due to its high tensile strength, good fatigue performance and inherent corrosion resistance[3]. For corroded RC beams, the bonding of FRP sheets on the tensile side can effectively improve the flexural strength and stiffness, as well as the crack control ability of the beams[4]. Previous studies indicated that the failure modes of FRP strengthened RC beams include the rupture of FRP plates, the crushing of the concrete in the compression zone with or without the tensile steel yielding and debonding of the FRP[5-6]. In this paper, several FRP strengthened RC beams with different steel corrosion rates are numerically studied to investigate the failure mechanism of the beams. With the numerical models, the effect of steel corrosion rate on the ultimate strength, deformation capacity and ductility of the beams are comprehensively studied.

    1 Finite Element Models

    1.1 Model and material parameters

    In the numerical simulations, the dimensions of the beam models are 150 mm in width, 200 mm in height, and 2 200 mm in length. A total of eight FRP strengthened beams are simulated to investigate the influence of the steel corrosion rate on the flexural behaviors. Each beam is loaded under four-point bending with a span of 1 800 mm, and the external loads are applied symmetrically at the locations with 600 mm from the supports[7]. The loading configuration is shown in Fig.1. For the concrete, the Young’s modulus and compressive strength are 30 GPa and 22.9 MPa, respectively. For the FRP sheet, the elastic modulus and the tensile strength are 234 GPa and 4 200 MPa, respectively. Tab.1 shows the mechanical parameters of the steel reinforcement. In this numerical analysis, the constitutive model of the concrete is described by the stress-strain relationship from “Code for design of concrete structures of China (GB 50010—2010)”[8]. The steel reinforcement is assumed to be perfectly elastic-plastic. According to Ref.[9], the yield strength of the corroded reinforcement is calculated by whereαsis the reduction factor of the yield strength of the corroded reinforcement;fy0is the yield strength of the non-corroded reinforcement;As0is the cross section area of the reinforcement. In this numerical analysis, the bond-slip model for the interface element between the steel reinforcement and the concrete is determined based on “CEB-FIB model code 1990”[10]. The bond-slip relationship is shown in Fig.2. The bond-slip relationship between the FRP sheet and the concrete is described by a three-parameter model proposed by Leung and Tung[11], whereτmax,τ0andSmaxare the maximum shear stress, the residual shear stress and the maximum slip, which are assumed to be 9 MPa, 3 MPa and 4 mm, respectively.

    Fig.1 Schematic illustration of test setup and specimen details (unit: mm)

    SteeltypeDiameter/mmModulusofelasticityEf/GPaYieldstrengthfu/MPaMildbar10210210Deformedbar14200380

    Pyc=αsfy0As0

    (1)

    Fig.2 Bond-slip model between steel and concrete in CEB-FIP code

    Eight corrosion rates (0, 2%, 5%, 7%, 10%, 15%, 20% and 25%, which are represented by RCB-1, RCB-2, RCB-3, RCB-4, RCB-5, RCB-6, RCB-7 and RCB-8, respectively) are selected for numerical analysis. The corrosion rate herein is defined by the degree of degradation between the longitudinal reinforcement and the concrete. For example, a corrosion rate of 5% represents that the bond strength of the corroded reinforcement degrades to 95% of that for the non-corroded reinforcement.

    1.2 Model setup

    According to the symmetry of the beam about its vertical axis, a half of the beam model is set up for numerical analysis. The whole loading process is conducted by displacement control. Elements Solid65, Link8 and Shell63 are selected to simulate the concrete, the steel reinforcement and the FRP sheet, respectively. The nonlinear element Combin39 is adopted to simulate the bond-slip relationship between the concrete and the FRP plate or the steel reinforcement.

    2 Simulation Results and Discussions

    2.1 Crack patterns and failure modes

    The failure modes of the beams can be divided into three types, which can be represented by specimens RCB-1, RCB-5 and RCB-7. Fig.3 shows the crack distributions at different load levels for specimen RCB-1. Flexural cracks first occur at a load of 17.8 kN (see Fig.3(a)). With increasing loading, several inclined flexural shear cracks are found to form in the shear span and extend towards the loading point. Finally, specimen RCB-1 fails by the crushing of the concrete in the compression zone. The final crack pattern of specimen RCB-1 is shown in Fig.3(d).

    Fig.3 Crack patterns of RCB-1. (a) 17.8 kN; (b) 43.8 kN; (c) 61.4 kN; (d) 100.0 kN

    For specimen RCB-5, flexural cracks are first observed at a load of 12.4 kN (see Fig.4(a)). With increasing external loading, flexural cracks tend to extend from the bottom of the beam to its top surface. However, the bond strength between the concrete and the longitudinal reinforcement decreases with the steel corrosion rate, resulting in a poor interfacial shear stress transfer. Therefore, the cracks of specimen RCB-5 are mainly concentrated near the pure bending region. Specimen RCB-5 finally fails in a brittle manner with the full development of flexural cracks. The final crack pattern of specimen RCB-5 is shown in Fig.4(d).

    For specimen RCB-7, flexural cracks are first observed at a load of 11.1 kN (see Fig.5(a)).With increasing external loading, flexural cracks tend to extend from the bottom of the beam to its top surface. Compared with specimen RCB-5(Fig.4(b)), specimen RCB-7 shows a larger amount of flexural and flexural shear cracks under the same load of about 42 kN(see Fig.5(c)).The flexural stiffness of the specimen with a larger steel corrosion rate degrades more quickly due to the weakened stress transferring between the longitudinal reinforcement and the concrete. With further increasing loading, flexural cracks extend to the top surface of the beam(see Fig.5(d)), resulting in the premature failure of the concrete in the compression zone.

    Fig.4 Crack patterns of RCB-5.(a) 12.4 kN; (b) 41.2 kN; (c) 66.8 kN; (d) 79.8 kN

    Fig.5 Crack patterns of RCB-7.(a) 11.1 kN; (b) 24.8 kN; (c) 42.0 kN; (d) 60.1 kN

    2.2 Load-displacement curves

    The load-deflection curves for specimens are shown in Fig.6. For the specimens with low corrosion rates (RCB-1, RCB-2, RCB-3 and RCB-4), the load-displacement curves can be divided into three stages. The external load first increases linearly with corresponding deflection before a first cracking load of 10 kN is reached. After that, the slope of the curve drops and keeps almost constant up to a yield load of 80 kN. Beyond yielding, the flexural and flexural shear cracks extend to the top surface of the beam. The inelastic deformation of the beam increases substantially with the increase of the load carrying capacity due to the strengthening effect of the FRP plate. When the load reaches about 115 kN, the beam fails by the crushing of the concrete in the compression zone, which can be considered as a typical flexural failure mode.

    Fig.6 The load-deflection curves of eight specimens

    For the specimen with medium corrosion rates (RCB-5), the load-deflection relationship is similar to that of specimen RCB-1 before a yielding load of 75 kN. The flexural stiffness of specimen RCB-5 is lower than that of specimen RCB-1 due to much more flexural and flexural shear cracks formed in specimen RCB-5.When the external load reaches 80 kN, the bond strength between the concrete and the longitudinal reinforcement drops and bond slip occurs, followed by a sudden drop of external loading. After that, the external load increases linearly with corresponding deflection until the ultimate load of 102 kN is reached due to the partial debonding of the FRP plate, followed by the second drop of external loading. The beam finally fails by the full debonding of the FRP plate with a failure deflection of 60 mm.

    For the specimen with serious steel corrosion, such as RCB-7, the external load suddenly drops due to the occurrence of the bond slip between the concrete and the longitudinal reinforcement. With the increasing displacement, the external load increases with the deflection of the beam due to the strengthening effect of the FRP plate. When the load reaches about 105 kN, the beam fails by the crushing of the concrete in the compression zone. FRP debonding does not occur during the loading process. It is the full development of flexural deformation that leads to the premature failure of specimen RCB-7.

    2.3 Stress and strain development of longitudinal bars

    Fig.7(a) shows the strain distributions along the longitudinal bars at different load levels for specimen RCB-1. It can be observed that the strain values in the pure bending region are identical and the strain value in the flexural shear region decreases with the distance from the middle span of the beam. The strain distributions are the same as the moment distributions, which indicates that there is no bond slip between the concrete and the longitudinal reinforcement. Steel yielding occurs when the strain value reaches 1.9×10-3and the stress value reaches a yield strength of 380 MPa. From the stress-deflection curve of specimen RCB-1 (see Fig.7(b)), it can be seen that the stress value first increases linearly with the middle span deflection before the yield strength is reached. After that, the slope of the curve stays almost constant up to final failure.

    The stress and strain variations in longitudinal bars for specimen RCB-5 are shown in Fig.8. When the external load is lower than 79.8 kN, no sign of slip between the concrete and the longitudinal reinforcement is observed and the strain distributions are identical to those of specimen RCB-1. With increasing external loading, the strain values outside the pure bending region decrease substantially due to the bond slip between the concrete and the longitudinal bars. After that, the increase of deflection results in a decrease in strain values in the pure bending region but has little effect on the strain values outside the pure bending zone. The FRP plate provides a main flexural resistance of the beam in this period. It can be seen from Fig.8(b) that the stress value of the tensile reinforcement at midspan first increases linearly with deflection. After an ultimate stress value of 350 MPa is reached, the stress value decreases with the midspan deflection due to the bond slip between the concrete and the longitudinal bars. With the further increase of deflection, the stress value decreases rapidly due to the debonding of the FRP plate. Afterwards, the stress value keeps almost constant up to final failure.

    (a)

    (b)

    Fig.7 Stress and strain variations in longitudinal bars for specimen RCB-1. (a) Strain distributions along tensile bars; (b) Stress-deflection curve at midspan

    (a)

    (b)

    Fig.8 Stress and strain variations in longitudinal bars for specimen RCB-5. (a) Strain distributions along tensile bars;(b) Stress-deflection curve at midspan

    The strain distributions along the tensile reinforcement of specimen RCB-7 are shown in Fig.9(a). The strain values increase with the external loading when the load is lower than 42 kN. The bond strength between the concrete and the longitudinal reinforcement degrades due to the serious corrosion of the steel reinforcement, and the strain values in the pure bending region decrease with the distance from the midspan of the beam. After that, the strain values show a sudden drop due to the bond slip between the concrete and the longitudinal bars. With the increasing external loading, the strain values keep almost constant and the FRP plate makes significant contributions to the ultimate load capacity. From the stress-deflection curve of specimen RCB-7 (see Fig.9(b)), it can be clearly seen that the stress value first increases linearly with the midspan deflection until an ultimate stress of 170 MPa is reached, followed by a sudden drop of external load. The bond slip between the concrete and the longitudinal bars occurs and bond strength degrades rapidly. With the increasing deflection, the stress value of the longitudinal bars keeps constant while the stress value of the FRP plate increases gradually until final compressive failure occurs.

    (a)

    (b)

    Fig.9 Stress and strain variations in longitudinal bars for specimen RCB-7. (a) Strain distributions along tensile bars;(b) Stress-deflection curve at midspan

    2.4 Bond stress between concrete and longitudinal reinforcement

    Fig.10(a) shows the bond force distributions between the concrete and the longitudinal reinforcement for specimen RCB-1. The bond force herein is defined by the tensile force of the spring element in numerical modeling. In the pure bending region, the bond force maintains around zero before initial flexural cracking is observed. With the increasing external loading, a tiny bond force occurs due to the stress concentration at the vicinity of flexural cracks.

    (a)

    (b)

    (c)

    Fig.10 Bond force distributions between concrete and longitudinal reinforcement. (a) RCB-1; (b) RCB-5; (c) RCB-7

    In the flexural shear region, the bond force increases in the shear flexural region due to the variation in the tensile stress of the steel reinforcement. It can be seen from Fig.10(a) that there are force fluctuations along the beam span. This is due to the fact that many flexural and flexural shear cracks are found to occur along the beam, leading to stress concentrations along the longitudinal bars. The bond force outside the supports reduces to zero gradually.

    The bond force distributions between the concrete and the longitudinal reinforcement at different load levels for specimen RCB-5 are shown in Fig.10(b). When the external load is lower than 79.8 kN, no sign of slip between the concrete and the longitudinal reinforcement is observed and the bond force distributions are identical to those of specimen RCB-1. With the increasing external loading, the bond slip occurs between the concrete and the longitudinal bars, and the bond force increases with the distance from middle span. With the increasing deflection, the bond slip between the concrete and the longitudinal reinforcement increases, and the FRP plate provides more and more contributions to the flexural load capacity. For the regions with large bond slip, bond force degrades to residual bond strength. The region with high bond stress tends to shift towards the midspan with the increasing deflection.

    Fig.10(c) shows the bond force distributions at different levels for specimen RCB-7. The bond force between the steel and the concrete increases with the external load, when the load is smaller than 42 kN. The bond force is very large outside the pure bending region due to the moment variations. With the increasing external loading, the bond slip increases with the distance from the midspan. As a result, the bond force outside the pure bending region degrades to residual bond strength. The region with high bond stress between the steel reinforcement and the concrete is close to the midspan. In this stage, the FRP plate plays an important role in resisting external loading.

    2.5 Strain distribution of FRP sheet and bond-slip behavior between concrete and FRP plate

    Fig.11(a) shows the strain distributions along the FRP sheet at different load levels for specimen RCB-1. The strain values keep almost constant in the pure bending region but decrease with the distance from the midspan outside the pure bending region. The strain distributions are similar to the moment distributions of the beam, which indicates a good deformation compatibility between the FRP and the concrete. Fig.11(b) shows the bond force distributions between the FRP plate and the concrete for specimen RCB-1. It is clearly seen that the bond force in the pure bending region stays around zero, but is much larger in the flexural shear region due to the moment variations. In addition, the development of flexural shear cracks results in bond force fluctuation along the FRP plate.

    (a)

    (b)

    Fig.11 Strain and bond force distributions for specimen RCB-1. (a) Strain distributions of FRP plate; (b)Bond force distributions between FRP plate and concrete

    The strain distributions of the FRP plate for specimen RCB-5 are shown in Fig.12(a). When the external load is lower than 103.0 kN, no sign of slip between the concrete and the FRP sheet is observed and the strain distributions are identical to those of specimen RCB-1. With the increasing external loading, FRP debonding occurs at the end of the FRP plate. As a result, the strain values of the FRP plate reduces to zero in the FRP debonding region. Outside the FRP debonding region, the strain values also reduce substantially due to the sudden drop of flexural resistance. Fig.12(b) shows the bond force distributions between the FRP plate and the concrete for specimen RCB-5. Before FRP debonding, the bond force between the FRP sheet and the concrete increases with the external load. After FRP debonding, the bond force reduces to zero in the FRP debonding region and the region with the concentration of bond stress propagates towards the crack tip of interfacial debonding. The debonding of the FRP plate leads to a substantial drop of flexural resistance of the beam but has little effect on the bond force between the FRP plate and the concrete in the flexural bending region.

    Fig.13(a) shows the strain distributions along the FRP plate at different load levels for specimen RCB-8. The strain values of specimen RCB-8 are greater than those of specimen RCB-1 under the same load level. As a result of serious corrosion, the bond strength between the concrete and the longitudinal reinforcement of specimen RCB-8 degrades and the FRP plate provides a sufficient flexural resistance to the beam. No sign of sudden strain drop of the FRP plate is observed during the loading process, indicating that the debonding of the FRP plate does not occur. Fig.13(b) shows the bond force distributions between the FRP plate and the concrete for specimen RCB-8. It is seen from Fig.13(b) that the bond force increases with the external load. Under the same load level, the bond force between the FRP plate and the concrete of specimen RCB-8 is much larger than that of specimen RCB-1 due to the bond slip between the concrete and the longitudinal reinforcement of specimen RCB-8.

    (a)

    (b)

    Fig.12 Strain and bond force distributions for specimen RCB-5. (a) Strain distributions of FRP plate; (b) Bond force distributions between FRP plate and concrete

    (a)

    (b)

    Fig.13 Strain and bond force distributions for specimen RCB-8. (a) Strain distributions of FRP plate; (b) Bond force distributions between FRP plate and concrete

    3 Conclusion

    In this paper, the beams with low corrosion rates (lower than 7%) fail by the crushing of the concrete in the compression zone. For the beam with a corrosion rate of 10%, the bond slip between the concrete and the longitudinal reinforcement occurs after steel yielding and it finally fails by the debonding of the FRP plate. For the beam with a serious corrosion rate (20%), the bond slip between the concrete and the longitudinal reinforcement occurs before yielding and flexural cracks extend to the bottom of the top surface of the beam, resulting in the premature failure of the concrete in the compression zone. The flexural resistance and stiffness of the beam decreases with the steel corrosion rate due to the weakened mechanical performance of the corroded reinforcement and poor bond strength between the concrete and the longitudinal reinforcement. However, the increase of the corrosion rate results in better deformation ability. The beam with a corrosion rate of 10% shows a significantly improved deformation ability due to the fully debonding of the FRP plate without the crushing failure of the concrete in the compression zone.

    [1]Mehta P K. Reducing the environmental impact of concrete [J].ConcreteInternational, 2001, 23(10): 61-66.

    [2]Ritchie P A, Thomas D A, Lu L W, et al. External reinforcement of concrete beams using fiber reinforced plastics [J].ACIStructuralJournal, 1991, 88(4): 490-500.

    [3]Hollaway L C. The evolution of and the way forward for advanced polymer composites in the civil infrastructure [J].ConstructionandBuildingMaterials, 2003, 17(6): 365-378.

    [4]Chajes M J, Thomson T A Jr, Januszka T F, et al. Flexural strengthening of concrete beams using externally bonded composite materials [J].ConstructionandBuildingMaterials, 1994, 8(3): 191-201.

    [5]Teng J G, Chen J F, Smith S T, et al.FRP:strengthenedRCstructures[M]. Weinheim, Germany: Wiley-VCH, 2002.

    [6]Smith S T, Teng J G. FRP-strengthened RC beams. Ⅰ: review of debonding strength models [J].EngineeringStructures, 2002, 24(4): 385-395.

    [7]Wang X G, Gu X L, Zhang W P. Flexural stiffness of corroded reinforced concrete beams strengthened with carbon fiber composite sheets [J].JournalofBuildingStructures, 2009, 30(5): 169-176.

    [8]Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50010—2010 Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)

    [9]Xi’an University of Architecture and Technology. CECS220:2007 Standard for durability assessment of concrete structure [S]. Beijing: China Architecture and Building Press, 2007. (in Chinese)

    [10]Comité euro-international du béton. CEB-FIP model code 1990: design code [S]. London: FIB-Féd. Int. du Béton, 1993.

    [11]Leung C K, Tung W K. Three-parameter model for debonding of FRP plate from concrete substrate [J].JournalofEngineeringMechanics, 2006, 132(5): 509-518.

    FRP加固銹蝕鋼筋混凝土梁的受彎性能分析

    潘金龍1王路平1袁 方1黃毅芳2

    (1東南大學(xué)混凝土及預(yù)應(yīng)力混凝土教育部重點(diǎn)實(shí)驗(yàn)室,南京210096) (2中國聯(lián)合工程公司,杭州310022)

    采用Ansys有限元軟件對8根不同銹蝕率的FRP片材加固鋼筋混凝土梁的受彎性能進(jìn)行數(shù)值分析,研究縱筋銹蝕率對FRP加固梁的裂紋開展、破壞模式、承載能力以及延性和變形能力的影響.研究結(jié)果表明:低鋼筋銹蝕率的梁發(fā)生受壓區(qū)混凝土壓碎破壞;中等銹蝕率的梁鋼筋屈服后,鋼筋與混凝土界面發(fā)生黏結(jié)滑移,最后FRP剝離破壞;高銹蝕率的梁鋼筋沒有達(dá)到屈服強(qiáng)度便發(fā)生黏結(jié)滑移,最后發(fā)生受壓區(qū)混凝土壓碎破壞.鋼筋銹蝕越嚴(yán)重,FRP加固鋼筋混凝土梁的承載力降低得越多.試件RCB-1(銹蝕率為0)的承載力為115 kN,而試件RCB-7(銹蝕率為20%)的承載力僅為42 kN.與FRP加固未銹蝕的鋼筋混凝土梁相比,FRP加固銹蝕鋼筋混凝土梁的變形能力較高.試件RCB-1和試件RCB-7的最大跨中撓度分別為20 mm和35 mm,而試件RCB-5(銹蝕率為10%) 的最大跨中撓度達(dá)到了60 mm.

    銹蝕鋼筋混凝土梁;FRP;加固;數(shù)值分析;受彎性能

    TU375

    s:The National Natural Science Foundation of China (No.51278118), Scientific and Technological Research Project of Ministry of Education (No.113028A), the Natural Science Foundation of Jiangsu Province (No.BK2012756), the Program for Special Talents in Six Fields of Jiangsu Province (No.2011-JZ-010).

    :Pan Jinlong, Wang Luping, Yuan Fang, et al. Flexural behaviors of FRP strengthened corroded RC beams[J].Journal of Southeast University (English Edition),2014,30(1):77-83.

    10.3969/j.issn.1003-7985.2014.01.015

    10.3969/j.issn.1003-7985.2014.01.015

    Received 2013-11-07.

    Biography:Pan Jinlong (1976—), male, doctor, professor, jinlongp@gmail.com.

    猜你喜歡
    屈服撓度承載力
    牙被拔光也不屈服的史良大律師秘書
    紅巖春秋(2022年1期)2022-04-12 00:37:34
    Spontaneous multivessel coronary artery spasm diagnosed with intravascular ultrasound imaging:A case report
    The Classic Lines of A Love so Beautiful
    勇敢
    CFRP-PCP板加固混凝土梁的抗彎承載力研究
    百折不撓
    耐火鋼圓鋼管混凝土柱耐火極限和承載力
    潛艇極限承載力計(jì)算與分析
    懸高測量在橋梁撓度快速檢測中的應(yīng)用
    對受壓加勁板極限承載力計(jì)算方法的評述
    亚洲国产精品999| 99热网站在线观看| 水蜜桃什么品种好| 少妇人妻久久综合中文| 亚洲第一青青草原| 三级国产精品片| 国产高清国产精品国产三级| 亚洲成人av在线免费| 97精品久久久久久久久久精品| 日本猛色少妇xxxxx猛交久久| 亚洲av欧美aⅴ国产| 免费少妇av软件| 亚洲,一卡二卡三卡| 久久精品亚洲av国产电影网| 久久久欧美国产精品| 午夜福利影视在线免费观看| 91国产中文字幕| 日本欧美视频一区| 国产精品一二三区在线看| 99久久综合免费| 免费观看在线日韩| 成年动漫av网址| 男人爽女人下面视频在线观看| 亚洲精品国产色婷婷电影| 欧美激情高清一区二区三区 | 国产成人欧美| 啦啦啦中文免费视频观看日本| 国产精品成人在线| 国产亚洲精品第一综合不卡| av女优亚洲男人天堂| 精品一区在线观看国产| 国产精品 国内视频| 熟女电影av网| 五月开心婷婷网| 久久久久久久大尺度免费视频| 老司机影院成人| 男女边吃奶边做爰视频| 免费播放大片免费观看视频在线观看| 欧美日韩综合久久久久久| 久久久久久免费高清国产稀缺| 亚洲欧美清纯卡通| 2018国产大陆天天弄谢| 午夜日本视频在线| 国产av码专区亚洲av| 精品一品国产午夜福利视频| 久久人妻熟女aⅴ| 欧美老熟妇乱子伦牲交| 亚洲国产精品国产精品| 久久 成人 亚洲| 菩萨蛮人人尽说江南好唐韦庄| 国产精品无大码| 国产高清不卡午夜福利| 伊人久久大香线蕉亚洲五| 国产精品一二三区在线看| 热re99久久国产66热| 国产亚洲欧美精品永久| 制服丝袜香蕉在线| 深夜精品福利| 午夜福利视频在线观看免费| 亚洲精品成人av观看孕妇| 看免费av毛片| 亚洲国产av新网站| 日韩人妻精品一区2区三区| 99re6热这里在线精品视频| 纯流量卡能插随身wifi吗| 中文字幕制服av| 老司机影院成人| 午夜福利视频精品| 精品久久蜜臀av无| 两性夫妻黄色片| 亚洲经典国产精华液单| 波多野结衣av一区二区av| 免费看av在线观看网站| 黄色怎么调成土黄色| 中文字幕色久视频| 只有这里有精品99| 亚洲第一区二区三区不卡| 97在线人人人人妻| 999精品在线视频| 夜夜骑夜夜射夜夜干| 日日摸夜夜添夜夜爱| 七月丁香在线播放| 亚洲精品视频女| 国产女主播在线喷水免费视频网站| 人人妻人人澡人人爽人人夜夜| 国产一级毛片在线| av女优亚洲男人天堂| 国产精品国产三级国产专区5o| 国产亚洲一区二区精品| 欧美成人午夜精品| 亚洲精品日本国产第一区| 免费观看无遮挡的男女| 国产激情久久老熟女| 精品国产一区二区久久| 99国产精品免费福利视频| av在线老鸭窝| 亚洲美女搞黄在线观看| 国产 精品1| 日本欧美国产在线视频| 91精品伊人久久大香线蕉| 久久久久久久久免费视频了| 亚洲综合色惰| 国产熟女欧美一区二区| 午夜免费男女啪啪视频观看| tube8黄色片| 亚洲av综合色区一区| 国产片特级美女逼逼视频| 久久久精品94久久精品| 日韩大片免费观看网站| freevideosex欧美| 人体艺术视频欧美日本| 亚洲精品一二三| 男人添女人高潮全过程视频| 老女人水多毛片| 在线亚洲精品国产二区图片欧美| 啦啦啦啦在线视频资源| 中文字幕av电影在线播放| 久久ye,这里只有精品| www.精华液| 日韩伦理黄色片| 亚洲精品,欧美精品| 女人久久www免费人成看片| 亚洲成av片中文字幕在线观看 | 成人18禁高潮啪啪吃奶动态图| 亚洲av成人精品一二三区| 波多野结衣一区麻豆| 日韩av不卡免费在线播放| 欧美最新免费一区二区三区| 亚洲第一av免费看| 自线自在国产av| 日韩 亚洲 欧美在线| 2021少妇久久久久久久久久久| 久久综合国产亚洲精品| 日韩伦理黄色片| 国产精品久久久久成人av| 日日爽夜夜爽网站| 色婷婷av一区二区三区视频| 亚洲一区二区三区欧美精品| 国产在线一区二区三区精| 最近中文字幕高清免费大全6| 日韩制服骚丝袜av| 最新的欧美精品一区二区| 高清黄色对白视频在线免费看| 大香蕉久久网| 巨乳人妻的诱惑在线观看| 韩国精品一区二区三区| 999久久久国产精品视频| 亚洲四区av| 在线观看免费高清a一片| 多毛熟女@视频| 高清av免费在线| 成年女人毛片免费观看观看9 | 亚洲五月色婷婷综合| 久久国产亚洲av麻豆专区| av又黄又爽大尺度在线免费看| 日日撸夜夜添| 亚洲伊人久久精品综合| 欧美bdsm另类| 日本午夜av视频| 美女主播在线视频| 99国产综合亚洲精品| 狠狠婷婷综合久久久久久88av| 老汉色av国产亚洲站长工具| 80岁老熟妇乱子伦牲交| 国产免费又黄又爽又色| 国产精品不卡视频一区二区| 午夜福利乱码中文字幕| 午夜影院在线不卡| 在线观看免费视频网站a站| 欧美97在线视频| 18禁观看日本| 日韩制服丝袜自拍偷拍| 18禁观看日本| 三上悠亚av全集在线观看| 欧美 亚洲 国产 日韩一| 人人妻人人添人人爽欧美一区卜| 中文字幕色久视频| 大片电影免费在线观看免费| 视频区图区小说| 日韩不卡一区二区三区视频在线| 如日韩欧美国产精品一区二区三区| av.在线天堂| 欧美日韩综合久久久久久| 色94色欧美一区二区| 亚洲欧美一区二区三区黑人 | 日韩电影二区| 国产亚洲av片在线观看秒播厂| 一级爰片在线观看| 欧美在线黄色| 精品亚洲乱码少妇综合久久| 国产成人欧美| 如何舔出高潮| 国产欧美日韩一区二区三区在线| 丰满饥渴人妻一区二区三| 九色亚洲精品在线播放| 国产 精品1| 日本欧美国产在线视频| 高清欧美精品videossex| av国产久精品久网站免费入址| 91精品伊人久久大香线蕉| 免费观看无遮挡的男女| 国精品久久久久久国模美| 日本爱情动作片www.在线观看| 黄片播放在线免费| 性少妇av在线| 看非洲黑人一级黄片| 香蕉国产在线看| 国产精品无大码| 亚洲综合色惰| 欧美另类一区| av一本久久久久| 夫妻午夜视频| 国产精品免费大片| www.熟女人妻精品国产| 日韩av免费高清视频| 有码 亚洲区| 97在线视频观看| 久久久久人妻精品一区果冻| 9色porny在线观看| 热re99久久国产66热| 9191精品国产免费久久| 又黄又粗又硬又大视频| 午夜福利影视在线免费观看| 午夜精品国产一区二区电影| 女性被躁到高潮视频| www日本在线高清视频| 亚洲欧美日韩另类电影网站| 最近2019中文字幕mv第一页| 久久精品久久久久久久性| 久久久久久人人人人人| 晚上一个人看的免费电影| 亚洲图色成人| 在线观看一区二区三区激情| 天天躁狠狠躁夜夜躁狠狠躁| 国产深夜福利视频在线观看| 97在线人人人人妻| 自线自在国产av| 女人高潮潮喷娇喘18禁视频| 国产深夜福利视频在线观看| 精品99又大又爽又粗少妇毛片| 狠狠精品人妻久久久久久综合| 香蕉精品网在线| 国产一级毛片在线| 女的被弄到高潮叫床怎么办| 激情视频va一区二区三区| 亚洲三区欧美一区| 人妻系列 视频| 啦啦啦啦在线视频资源| 啦啦啦啦在线视频资源| 国产精品久久久久久精品古装| 国产精品蜜桃在线观看| 伊人久久大香线蕉亚洲五| 天天躁夜夜躁狠狠躁躁| 十八禁高潮呻吟视频| 亚洲国产毛片av蜜桃av| 久久这里有精品视频免费| 蜜桃在线观看..| 亚洲国产日韩一区二区| 90打野战视频偷拍视频| 国产av码专区亚洲av| 精品国产乱码久久久久久男人| 汤姆久久久久久久影院中文字幕| 久久99蜜桃精品久久| 亚洲国产av新网站| 欧美日韩亚洲国产一区二区在线观看 | 欧美成人午夜精品| 成人二区视频| 韩国精品一区二区三区| 亚洲精品久久成人aⅴ小说| 久久精品人人爽人人爽视色| 老鸭窝网址在线观看| 99香蕉大伊视频| 26uuu在线亚洲综合色| 男女边吃奶边做爰视频| 精品少妇内射三级| 搡老乐熟女国产| 久久韩国三级中文字幕| 国产在视频线精品| 在现免费观看毛片| 天堂俺去俺来也www色官网| 欧美日韩亚洲高清精品| 老熟女久久久| 最近手机中文字幕大全| 午夜福利影视在线免费观看| 男男h啪啪无遮挡| 少妇 在线观看| videos熟女内射| 久久久精品免费免费高清| 国产伦理片在线播放av一区| 夫妻性生交免费视频一级片| 国产女主播在线喷水免费视频网站| 老鸭窝网址在线观看| 日本色播在线视频| 大片电影免费在线观看免费| 多毛熟女@视频| 大片免费播放器 马上看| 国产精品99久久99久久久不卡 | av在线观看视频网站免费| 五月伊人婷婷丁香| av又黄又爽大尺度在线免费看| 欧美另类一区| 久久青草综合色| 中文字幕精品免费在线观看视频| 水蜜桃什么品种好| 亚洲精品国产av蜜桃| 成年动漫av网址| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产野战对白在线观看| 赤兔流量卡办理| 色94色欧美一区二区| 亚洲熟女精品中文字幕| 七月丁香在线播放| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区久久| 午夜激情av网站| 久久久久久久大尺度免费视频| 国产日韩欧美亚洲二区| 日韩精品免费视频一区二区三区| 看免费成人av毛片| 丝袜美腿诱惑在线| 久久久久久久久久久久大奶| 精品视频人人做人人爽| 在线精品无人区一区二区三| 超色免费av| 大片电影免费在线观看免费| 国产精品久久久久久精品电影小说| 久久精品aⅴ一区二区三区四区 | 男的添女的下面高潮视频| 日韩av在线免费看完整版不卡| 欧美少妇被猛烈插入视频| 国产精品女同一区二区软件| 少妇熟女欧美另类| 激情视频va一区二区三区| 国产亚洲av片在线观看秒播厂| 美女脱内裤让男人舔精品视频| 日韩一本色道免费dvd| 伦理电影免费视频| 性色av一级| 99re6热这里在线精品视频| 亚洲av日韩在线播放| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区久久| 精品视频人人做人人爽| 国产精品国产三级专区第一集| av网站在线播放免费| 一本久久精品| 中文字幕亚洲精品专区| av.在线天堂| 91久久精品国产一区二区三区| 人妻系列 视频| av视频免费观看在线观看| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图| 丝袜脚勾引网站| 亚洲精品一二三| 只有这里有精品99| 亚洲精品久久午夜乱码| 香蕉精品网在线| 黄色一级大片看看| 亚洲av福利一区| 蜜桃国产av成人99| 国产免费福利视频在线观看| 久久久久久久久免费视频了| 男女午夜视频在线观看| 叶爱在线成人免费视频播放| 午夜福利在线观看免费完整高清在| 亚洲精品国产一区二区精华液| 高清在线视频一区二区三区| 男人操女人黄网站| 不卡av一区二区三区| 久久女婷五月综合色啪小说| 亚洲 欧美一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 欧美 日韩 精品 国产| 久久久亚洲精品成人影院| 男男h啪啪无遮挡| 欧美精品高潮呻吟av久久| 久久久久久久久久久久大奶| 9色porny在线观看| 9热在线视频观看99| 在线观看免费视频网站a站| 电影成人av| 一边亲一边摸免费视频| 97精品久久久久久久久久精品| 国产又色又爽无遮挡免| 亚洲美女黄色视频免费看| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 日韩,欧美,国产一区二区三区| 一区二区三区精品91| 毛片一级片免费看久久久久| 日韩av免费高清视频| 欧美日韩亚洲国产一区二区在线观看 | 久久午夜福利片| 国产日韩欧美亚洲二区| 一级毛片黄色毛片免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久网色| 一区二区日韩欧美中文字幕| 国产女主播在线喷水免费视频网站| 国产片内射在线| 国产亚洲一区二区精品| 久久久久久久久久久免费av| 日韩大片免费观看网站| 不卡av一区二区三区| 精品亚洲成国产av| 午夜日本视频在线| 九色亚洲精品在线播放| 看免费成人av毛片| 高清不卡的av网站| 99re6热这里在线精品视频| 欧美精品av麻豆av| 午夜福利乱码中文字幕| 国产激情久久老熟女| 国产日韩欧美在线精品| 午夜日本视频在线| 精品少妇一区二区三区视频日本电影 | 亚洲综合精品二区| 色网站视频免费| 在线观看免费高清a一片| 国产探花极品一区二区| 国产人伦9x9x在线观看 | 人人澡人人妻人| 亚洲人成网站在线观看播放| 久久久精品94久久精品| av视频免费观看在线观看| 一边亲一边摸免费视频| 久久国产精品男人的天堂亚洲| 日韩av免费高清视频| 男人添女人高潮全过程视频| 各种免费的搞黄视频| 久久精品国产鲁丝片午夜精品| 欧美日韩一级在线毛片| 久久久久久久国产电影| 最新中文字幕久久久久| 国产精品国产三级国产专区5o| 一区在线观看完整版| 啦啦啦啦在线视频资源| 欧美精品一区二区免费开放| 国产亚洲一区二区精品| 91国产中文字幕| 少妇 在线观看| 大话2 男鬼变身卡| 日韩中文字幕欧美一区二区 | 免费黄网站久久成人精品| 日本av免费视频播放| 精品国产超薄肉色丝袜足j| 超色免费av| 99热全是精品| 一区二区三区精品91| 三级国产精品片| 亚洲精品视频女| 97精品久久久久久久久久精品| 精品人妻偷拍中文字幕| 免费黄色在线免费观看| 国产福利在线免费观看视频| www日本在线高清视频| 尾随美女入室| 有码 亚洲区| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂| 亚洲成av片中文字幕在线观看 | 国产精品久久久av美女十八| 日本欧美视频一区| 在线观看免费日韩欧美大片| 国产男女内射视频| 国产乱来视频区| 最近中文字幕2019免费版| 欧美日韩精品成人综合77777| 国产精品熟女久久久久浪| 高清视频免费观看一区二区| 亚洲激情五月婷婷啪啪| 日日爽夜夜爽网站| 精品一品国产午夜福利视频| 成人毛片60女人毛片免费| 国精品久久久久久国模美| 精品国产一区二区三区四区第35| 国产精品无大码| 老司机影院成人| 亚洲视频免费观看视频| 国产成人91sexporn| 久久久久久免费高清国产稀缺| 黄频高清免费视频| 成人漫画全彩无遮挡| 免费少妇av软件| 最黄视频免费看| 少妇人妻精品综合一区二区| 天堂中文最新版在线下载| 91久久精品国产一区二区三区| 丝袜脚勾引网站| 国产成人精品久久二区二区91 | 大片电影免费在线观看免费| 亚洲少妇的诱惑av| 亚洲色图 男人天堂 中文字幕| 天堂俺去俺来也www色官网| 免费高清在线观看视频在线观看| 一级黄片播放器| 2022亚洲国产成人精品| 亚洲三区欧美一区| 大香蕉久久成人网| 日韩中文字幕欧美一区二区 | 亚洲国产精品999| 中国国产av一级| 蜜桃在线观看..| xxx大片免费视频| 久久久久久久亚洲中文字幕| 亚洲国产av影院在线观看| 中文字幕亚洲精品专区| 欧美日韩精品成人综合77777| 久热久热在线精品观看| 波多野结衣一区麻豆| 国产精品久久久久久精品古装| 中文欧美无线码| 如何舔出高潮| 日韩伦理黄色片| 丝瓜视频免费看黄片| 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 国产国语露脸激情在线看| 久久精品国产亚洲av天美| 国产极品粉嫩免费观看在线| 欧美成人午夜免费资源| av片东京热男人的天堂| 日本91视频免费播放| av又黄又爽大尺度在线免费看| 亚洲三级黄色毛片| www.精华液| kizo精华| 观看美女的网站| 九草在线视频观看| 国产1区2区3区精品| 国产精品.久久久| videossex国产| 国产有黄有色有爽视频| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 国产麻豆69| 中文字幕亚洲精品专区| 亚洲精品aⅴ在线观看| 我的亚洲天堂| 久久av网站| 青青草视频在线视频观看| 在线精品无人区一区二区三| 亚洲精品av麻豆狂野| 国产成人精品在线电影| 精品久久久精品久久久| 成年美女黄网站色视频大全免费| 在现免费观看毛片| 久久免费观看电影| 日韩中文字幕欧美一区二区 | 亚洲三级黄色毛片| 久久久精品94久久精品| 亚洲第一青青草原| 久久青草综合色| 久久女婷五月综合色啪小说| 国产在视频线精品| 国产女主播在线喷水免费视频网站| 狂野欧美激情性bbbbbb| 亚洲激情五月婷婷啪啪| 啦啦啦啦在线视频资源| 久久精品国产自在天天线| 亚洲国产精品国产精品| av又黄又爽大尺度在线免费看| 精品视频人人做人人爽| 国产视频首页在线观看| 1024香蕉在线观看| 在线观看国产h片| 在线精品无人区一区二区三| 免费观看无遮挡的男女| 夫妻性生交免费视频一级片| 久久午夜福利片| 亚洲国产精品一区二区三区在线| 国产成人aa在线观看| 青草久久国产| 欧美成人午夜免费资源| 少妇的丰满在线观看| 亚洲精品久久成人aⅴ小说| 亚洲av电影在线观看一区二区三区| 欧美日本中文国产一区发布| av国产久精品久网站免费入址| 国产有黄有色有爽视频| 9热在线视频观看99| 两性夫妻黄色片| 亚洲图色成人| 午夜激情久久久久久久| 亚洲国产精品999| 国产精品久久久久久av不卡| 久久人妻熟女aⅴ| 在线免费观看不下载黄p国产| 免费人妻精品一区二区三区视频| 黄色 视频免费看| av免费在线看不卡| 亚洲国产看品久久| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀 | 国产免费福利视频在线观看| 久久久久网色| 2022亚洲国产成人精品| 欧美日韩亚洲高清精品| av片东京热男人的天堂| 成年女人在线观看亚洲视频| 亚洲情色 制服丝袜| 国产精品一区二区在线观看99| 在线 av 中文字幕| 久久精品亚洲av国产电影网| 久久精品国产a三级三级三级| 欧美精品国产亚洲| 日韩在线高清观看一区二区三区| 亚洲精品av麻豆狂野| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区国产| 免费观看a级毛片全部| videos熟女内射| 亚洲欧洲精品一区二区精品久久久 |