• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Icon memory research under different time pressures and icon quantities based on event-related potential

    2014-09-06 10:49:29NiuYafengXueChengqiLiXuesongLiJingWangHaiyanJinTao
    關(guān)鍵詞:東南大學(xué)波幅圖標(biāo)

    Niu Yafeng Xue Chengqi Li Xuesong Li Jing Wang Haiyan Jin Tao

    (1School of Mechanical Engineering, Southeast University, Nanjing 211189, China)(2Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China)

    ?

    Icon memory research under different time pressures and icon quantities based on event-related potential

    Niu Yafeng1Xue Chengqi1Li Xuesong2Li Jing1Wang Haiyan1Jin Tao1

    (1School of Mechanical Engineering, Southeast University, Nanjing 211189, China)(2Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China)

    In order to obtain related brain electrical components and neural bases of physiology assessment of icon elements in a digital human-computer interface, the modified sample-delay matching task experimental paradigm is used under different time pressures (4 000 and 2 000 ms) and different icon quantities (three, five and ten icons) on icon memory based on event-related potential (ERP) technology. Experimental results demonstrate that P300 has significant volatility changes and the maximum amplitude around the middle line of the parietal area (PZ) and P200 has obvious volatility changes around the middle line of the frontal and central area (FCZ) during icon cognition. P300 and P200 amplitudes increase as tasks become more difficult. Thus, P300 latency is positively correlated with task difficulty. ERP research on the characteristics of icon memory will be an important reference standard in guiding user neurocognitive behavior and physiology assessment on interface usability.

    time pressure; icon quantity; event-related potential (ERP); P200; P300

    With the wide application of computer and information technologies in the digital human-computer interface (DHCI), the computer digital interface has increasingly replaced traditional man-machine hardware interfaces and becomes a main carrier of complex systems and human-computer interaction systems. As a key component of the DHCI, icons have become a bridge connecting users and human-computer interactions of complex systems. As information sources for computer digital interfaces in complex systems become more and more informative, information structural relations become more complicated. In this line, icons can simultaneously improve cognitive efficiency and operating performance in task execution. Batch repetitive operation, information overlap, processing and memory load for numerous icons have brought about a sharp increase in memory load, which has led to misuse and human error. Moreover, the interface is an important component of the user experience, eliciting a purely subjective feeling while using a product.

    Event-related potential (ERP) means brain electrical activity and it is an important methodology in cognitive neuroscience research, since it has high time resolution, good reliability and validity and can realize synchronization lock between EEG and experimental task operation. Indicators such as the amplitude, latency, potential and spatial frequency of the electric current of ERP can provide information on working brain processes. This, in turn, directly reflects the electrical activity of nerves and builds mapping and corresponding relationship among operational tasks, brain electrical signals and functional regions. ERP technique application in the DHCI is to seek the DHCI research methods of human endogenous law. Using real-time tracking and brain electrical signal analysis during interface cognition, we can examine the detailed cognitive rules of visual information for different interfaces, and build a visual information evaluation method and design specifications.

    ERP research on icon memory can examine user brain electrical activity in their local interface experience. Using the ERP physiological assessment method, we can obtain the usability and reliability of icons in the interface by electrical indicators. This will be an essential part of interface evaluation, providing corrections and improvements for late-stage icon design. We obtain the brain electrical basis of the user’s icon memory, which is a positive interdisciplinary contribution to both human-machine interactive areas and cognitive neuroscience. Previous icon research is mainly based on icon usage[1], icon visual features[2], computer icon design[3], user age[4], tactile icon technology[5]and a special case study of emergency medical information system icons[6]. Since these studies are based on behavioural and not physiological user data, the purpose of this study is to investigate the neural mechanism of icon memory.

    In cognitive load and working memory of visual information processing, researchers have conducted the following studies: the relationship between reaction time (RT) and prompt forms[7]; colour, direction and movement distribution in attention systems[8]; length and interference influence in working memory stores[9]; cognitive function disorders[10]; ERPs in spatial working memory tasks[11]; test time selection of memory process in working memory[12]; and fERN under high load[13].

    In P300 ERP research, some scholars have investigated P300 in air traffic control systems[14], electrophysiological evidence of dual task interference by the use of P300 latency[15], P300 amplitude[16]and P300a and P300b[17]. In P200 ERP research, studies are conducted on P200 in visual search experiments[18], P200b in related task processing[19]and P200 in early semantic processing of visual information[20].

    Main task measurement[21]is adopted in this study, in which icon quantities and time pressures are control conditions under the same task component type and complexity. The experimental paradigm used in this study is the modified sample-delayed matching task paradigm based on the experimental working memory paradigm[22-23], which contains the following three stages: stimulus presentation, learning and memorization, and judgment and reaction.

    1 Experimental Procedures

    1.1 Participants

    Participants consist of 20 students (10 males and 10 females) with different majors from Southeast University, including 6 undergraduates, 10 graduates and 4 doctors, with a high proficiency with computer systems or digital interfaces. The participants are between 20 and 28 years of age (mean=24 years), and they are right-handed. They have normal or corrected visual acuity and have no history of mental illness or brain trauma. The study protocol is approved by the Southeast University Ethics Committee.

    1.2 Tasks and procedures

    Each participant put on an electrode cap and sat in a comfortable chair in a soft light and soundproofed room, and eyes gazed at the center of the screen. A 17-inch CRT monitor with a 1 024×768 pixel resolution was used in the experiment. The distance between participant eyes and the screen was approximately 100 cm, while the horizontal and vertical picture viewing angle was within 2.3°[24].

    Fig.1 is the schematic of the experimental flow. In order to make participants familiar with the task, practice is carried out before the experiment. The first step, the continuous different icon quantities (first 3, then 5, at last 10.) under different times (first 4000 ms, then 2000 ms.) are shown to the participants who need to remember the characteristics of these icons. The second step, a sample icon is present randomly to the participants who recall whether the sample icon has appeared before. The third step, participants make judgments and reactions after the emergence of the blank screen and respond by pressing the “A” key if the icon has appeared and the “L” key if not. The last step, participants are asked to fixate on a black cross in the center of a CRT screen for 1 000 ms, and then the next round task starts.

    Fig.1 Modified sample-delayed matching task paradigm

    In this experiment, the stimulus variable is set icons, with each icon uniformly applied most commonly as 48×48 pixel. Icons with identical style and size and no colour from different areas are selected to exclude interference from other factors. Icon quantities[25](three, five and ten icons) and time pressures (2 000 and 4 000 ms) are used in this study. There are six changes between the variables and 60 superposition times for each level to ensure experimental reliability.

    1.3 EEG recording

    Stimuli are presented using E-prime1.1 software. Neuroscan SynamP2 amplifier (Scan 4.3.1, Neurosoft Labs, Inc.) continuously records EEG (0.05 to 100 Hz band-pass; 500 Hz/channel sampling rate) using an electrode cap with a 64 Ag/AgCl electrode based on the extended international 10-20 system. A reference electrode is placed in the binaural protrusions. The ground electrode is located at the midpoint between FZ and FPZ. Electrode impedance is maintained below 5 kΩ throughout the experiment.

    1.4 Data analysis

    EEG recording started from a white screen with a time segment from -100 to 600 ms, causing EEG artifact/fragment rejection when volatility was greater than 80 μV. Epoch depended on the variable type (time pressures: 2 000 and 4 000 ms; icon quantities: three, five and ten icons); each of which needed superposition and were averaged separately. Next, the EEG needed a 30-Hz low-pass filter (48 dB/octave). For subject data analysis, repeated measures by ANOVA and paired-sample t-tests were used, and the significance level was set to be 0.05.

    2 Results

    2.1 Behavioural data analysis

    Behavioural data, including icon memory recognition accuracy rate (ACC) and reaction time (RT), are recorded in accordance with key answers provided by the participants. ACC refers to the ratio between the number of correctly recognized icons and the total number of icons used. Non-reaction test data is not included in the calculation. RT refers to the period between seeing the target stimulus and identification (pressing “A” or “L”), which is based on the shortest icon memory discrimination recognition time and indicates the differences between cognitive memory processing and learning recognition.

    For the same number of icons, the average deviation and standard deviation (SD) of the ACC and RT under 4 000 ms are lower and faster, respectively, than those under 2 000 ms (see Fig.2). The size order of the ACC to different icon quantities under 4 000 and 2 000 ms is 3>10>5 and 3>5>10 icons, respectively, and the SD order is 10>5>3 icons under both 4 000 and 2 000 ms. The size order of RT to different icon quantities under 4 000 and 2 000 ms is 5>10>3 and 10>3>5 icons, respectively, and the SD order is 5>10>3 and 10>5>3 icons, respectively.

    (a)

    (b)

    Fig.2 Box plot. (a) Accuracy rate under different conditions; (b) Reaction time under different conditions

    The ACC and RT data are analyzed using paired-sample t-tests and results are as follows: 1) The mean ACC has significant differences for three (p=0.028 3) and five icons (p=0.000 5) between 2 000 and 4 000 ms. The mean RT shows significant differences for three (p=0.004 8) and ten icons (p=0.020 2) between 2 000 and 4 000 ms. 2) The mean ACC shows significant differences under 4 000 (p=0.000 0) and 2 000 ms (p=0.000 0) between three and five icons. Significant differences between three and ten icons under 4 000 ms (p=0.000 0) are also found.

    2.2 Brain electrical data analysis

    We selected six electrodes in the prefrontal cortex, including F3, FZ, F4, FC3, FCZ and FC4 and seven electrodes in the parietal-occipital-temporal association cortex, including the left P3, PO3 midline of CPZ, PZ, POZ, and the right side P4 and PO4.

    Based on ERP components related to numerous studies on working and short-term memory in the prefrontal and parietal-occipital-temporal association cortex[26-32], P200 and P300 are especially important for icon memory. The peak latency of the P300 ERP component is approximately 300 to 600 ms.

    P300 indicates neuronal activity in the cognitive process. Numerous studies have shown that P300 is reflected by elements such as subjective probability, stimulus importance, decision making, decision-making confidence, stimulus uncertainty, attention, memory, emotion and other factors.

    P200 usually appears as a significantly positive component after N1 in the fronto-central cortex, where the latency is approximately 200 ms, which is related to the early identification of target stimuli and reflects task-related processing.

    2.2.1 P300 analysis

    The EEG analysis under different icon quantities is as follows. Repeated ANOVA of mean amplitudes for 300 to 500 ms in 2 (i.e., different time pressures: 4 000 and 2 000 ms)×7 (i.e., seven selected electrodes: PO4, P4, POZ, PZ, CPZ, PO3 and P3), and 3 (i.e., the number of icon quantities: three, five and ten)×7 (i.e. seven selected electrodes: PO4, P4, POZ, PZ, CPZ, PO3 and P3) were conducted. ANOVA showed that mean amplitudes at 300 to 500 ms had significant differences neither between time pressures and electrodes nor between icon quantities and electrodes. Furthermore, there were no interactions not only between time pressures and electrodes but also between icon quantities and electrodes, since allpvalues were less than 0.05.

    Therefore, the ANOVAs of mean amplitudes in both time pressures and the three brain regions (left, middle and right) with different icon quantities were conducted, wherein the seven electrodes were divided into right (PO4, P4), middle (POZ, PZ and CPZ) and left sides (PO3, P3). ANOVA results showed that the mean amplitudes of brain areas all had main effect significances in different icon quantities (three icons:F(4,16)=4.664,p=0.045; five icons:F(4,16)=8.185,p=0.012; ten icons:F(4,16)=13.940,p=0.002). Paired-sample t-tests of mean amplitudes among the right, middle and left sides with different icon quantities were performed separately; if there were significant differences in any region, further t-tests of the mean electrode amplitude included in each region were conducted to determine electrodes with significant differences under both time pressures. Results show that the mean amplitude of PZ has significant differences (p=0.018) in the maximum amplitude between 4 000 (M=1.364 2) and 2 000 ms (M=2.281 4) with three icons.

    Using the same method as above, the EEG analysis shows that the mean amplitude of all the electrodes except PZ does not have significant differences among different icon quantities under both time pressures. According to the above P300 results, the central zone of the parietal cortex presents obvious positive voltage under 2 000 ms compared with that under 4 000 ms; therefore, the PZ potential in the parietal cortex is of utmost concern with three icons under different time pressures. With three icons, the PZ electrode has an obvious P300 late component during the 300 to 500 ms time period under 4 000 and 2 000 ms. The wave peak of 2 000 ms is larger than that of 4 000 ms, consistent with the aforementioned average statistical analysis, revealing that subjects require more psychological and cognitive resources and endure heavy memory load under 2 000 ms (see Fig.3). The P300 amplitude at 2 000 ms is larger than that at 4 000 ms, which is also in accord with previous studies of the dual task experiment in which amplitude is positively correlated with psychological resources[22]. P300 latency under 2 000 ms is longer than that under 4 000 ms, which is also in accord with Kutas’s conclusion[33]which states that P300 latency is positively correlated with task difficulty.

    Fig.3 PZ electrode potential oscillogram of three icons under 2 000 and 4 000 ms

    2.2.2 P200 analysis

    The P200 component analysis procedure is similar to that of P300. Compared to P300, the differences of P200 component analyses are the selected electrodes (FC4, F4, FCZ, FZ, F3 and FC3) and the time period (100 to 300 ms). Results show that under the five-icon condition, the mean FCZ electrode amplitude under 2 000 ms (M=0.439 3) is significantly higher (p=0.0256) than that of 4000 ms (M=0.2319) in the middle region. Moreover, the FCZ electrode in the prefrontal central region is the key factor with five icons under different time pressures. Using five icons, the FCZ electrode has an obvious P200 component during the 100 to 300 ms period under 4 000 and 2 000 ms time pressures, and the latency of P200 under 2 000 ms is posterior to that under 4 000 ms (see Fig.4). The difficulty of early task identification and P200 latency may have a positive correlation. Additionally, N1 also appears in the fronto-central cortex prior to P200, in accord with the conclusion obtained previously by Potts et al[19].

    The peak potentials of P300 and P200 are distributed in the parietal and prefrontal central cortices; the P300 for three icons under 2 000 ms (peak value: 2.850 μV, 342 ms) is more remarkable than that under 4 000 ms (peak value: 1.746 μV, 364 ms) in the parietal cortex, while the P200 for five icons under 2 000 ms (peak value: 1.504 μV, 228 ms) is more notable than that under 4 000 ms (peak value: 0.839 μV, 225 ms) in the prefrontal cortex (see Fig.5).

    3 Discussion

    P300 amplitude is used as an indicator of information processing capacity, revealing event stimulus classification network activities that are jointly regulated by attention and working memory[16]. Our study also proves that the memory capacity is related to P300 amplitude, which needs further elucidation with respect to icon memory and recall. Previous studies concluded and summarized on P300a and P300b, wherein P300b was found to be reflected in the parietal cortex, which might be related to attention and memory mechanisms of top-down driven tasks[17]. Overall, we find that the heavier the task load, the larger the P300 amplitude of PZ. This is consistent with previous findings on working memory[33].

    With regard to P200, a previous study[20]found that P200 latency might be associated with early semantic processing of visual information. In FCZ potential, we can

    Fig.5 Topographic maps of maximum amplitudes of P300 at PZ and P200 at FCZ. (a) P300: 3 icons×4 000 ms (364 ms); (b) P300: 3 icons×2 000 ms (342 ms); (c) P200: 5 icons×4 000 ms (225 ms);(d) P200: 5 icons×4 000 ms (228 ms)

    find an obvious N400 which was originally discovered in a semantic experiment in which sentences had incongruent endings[34]. After the experiment, we conduct a survey and find that 76% of participants translated the image codes into literal codes in order to finish the task. The N400 component in our study might have been evoked by multiple dimensional conflicts of icon quantities and time pressures, as well as icon semantic transition including image and literal codes. Focus analysis on FCZ of the fronto-central cortex found the emergence of N100 preceding the appearance of P200. This conclusion is consistent with a previous report on presentation law in the early visual recognition component[19].

    One previous study[25]found that short-term memory span was (7±2) chunks and short-term memory capacity was approximately 7 chunks. Compared with the icon quantities in our study, only three and five icons under different time pressures had significant ERP differences in different brain areas. However, there were no differences in ERP when ten icons appeared. This phenomenon might be caused by icon overload, although the reason behind selecting ten icons was based on the complexity of the interface element in a complex system. Biederman’s object identification theory[35]showed that object identification depended on the object’s edge rather than surface information, such as colour. Based on this theory, we chose icons without a colour code to eliminate its potential effect on the aim of our experiment. The “real” icon, which includes colour and shape codes, will be sequentially analyzed in future experiments. Why were three and five icons capable of causing noticeable P300 and P200 EEG changes, while ten icons were not? What is the connection between RT and ACC? These questions will be addressed in future studies. Furthermore, we will explore the brain mechanism involved in the functional modules of the digital interface, such as layout, navigation bar and information coding form.

    4 Conclusion

    P300 has significant volatility changes and the maximum amplitude around the PZ area and P200 has significant changes around the FCZ area under different conditions. Overall, the more difficult the task, the larger the P300 and P200 amplitudes. P300 latency is positively correlated with task difficulty. The user experience engineer and GUI designer can utilize P200 and P300 as a reference standard in interface design and evaluation processes.

    [1]Rogers Y. Icons at the interface: their usefulness [J].InteractingwithComputers, 1989, 1(1): 105-117.

    [2]Lin R. A study of visual features for icon design [J].DesignStudies, 1994, 15(2): 185-197.

    [3]Huang S M, Shieh K K, Chi C F. Factors affecting the design of computer icons [J].InternationalJournalofIndustrialErgonomics, 2002, 29(4): 211-218.

    [4]Lindberg T, N?s?nen R, Müller K. How age affects the speed of perception of computer icons [J].Displays, 2006, 27(4): 170-177.

    [5]Chan A, MacLean K, McGrenere J. Designing haptic icons to support collaborative turn-taking [J].InternationalJournalofHuman-ComputerStudies, 2008, 66(5): 333-355.

    [6]Salman Y B, Cheng H I, Patterson P E. Icon and user interface design for emergency medical information systems: a case study [J].InternationalJournalofMedicalInformatics, 2012, 81(1): 29-35.

    [7]Posner M I. Orienting of attention [J].QuartExperimentPsychol, 1980, 32(1): 3-25.

    [8]Girelli M, Luck S J. Are the same attentional mechanism used to detect visual search targets defined by color, orientation, and motion?[J].CognitiveNeuroscience, 1997, 9(2): 238-258.

    [9]Kusak G, Grune K, Hagendorf H, et al. Updating of working memory in a running memory task: an event-related potential study [J].InternPsychophysiology, 2000, 39(1): 51-65.

    [10]Missonnier P, Deiber M P, Gold G, et al. Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment [J].Neuroscience, 2007, 150(2): 346-356.

    [11]Rader S K, Holmes J L, Golob E J. Auditory event-related potentials during a spatial working memory task [J].ClinicalNeurophysiology, 2008, 119(5): 1176-1189.

    [12]Yi Y, Friedman D. Event-related potential (ERP) measures reveal the timing of memory selection processes and proactive interference resolution in working memory [J].BrainResearch, 2011, 1411: 41-56.

    [13]Krigolson O E, Heinekey H, Kent C M, et al. Cognitive load impacts error evaluation within medial-frontal cortex [J].BrainResearch, 2012, 1430: 62-67.

    [14]Isreal J B, Wickens C D, Donchin E. The dynamics of P300 during dual-task performance [J].ProgressinBrainResearch, 1980, 54: 416-421.

    [15]Luck S J. Sources of dual-task interference: evidence from human electrophysiology [J].PsychologicalScience, 1998, 9(3): 223-227.

    [16]Kok A. On the utility of P300 amplitude as a measure of processing capacity [J].Psychophysiology, 2001, 38(3): 557-577.

    [17]Polich J. Updating P300: an integrative theory of P300a and P300b [J].ClinicalNeurophysiology, 2007, 118(10): 2128-2148.

    [18]Luck S J, Hillyard S A. Electrophysiological correlates of feature analysis during visual search [J].Psychophysiology, 1994, 31(3): 291-308.

    [19]Potts G F, Tucker D M. Frontal evaluation and posterior representation in target detection [J].CognitiveBrainResearch, 2001, 11(1): 147-156.

    [20]Zhao L, Li J. Visual mismatch negativity elicited by facial expressions under non-attentional conditions [J].NeuroscienceLetters, 2006, 410(2): 126-131.

    [21]Huang Y Q, Li X, Li R L.Designhuman-computerinterface[M]. Beijing: Beijing Institute of Technology Press, 2007: 100-110.(in Chinese)

    [22]Wei, J H, Luo Y J.Thetheoryandtechnologyofevent-relatedpotentials[M]. Beijing: Science Press, 2010:52-55.(in Chinese)

    [23]Smith E E, Jonides J, Koeppe R A. Dissociation verbal and spatial working memory using PET [J].CerebralCortex, 1996, 6(1): 11-20.

    [24]Wang H L, Feng T Y, Suo T, et al. The process of counterfactual thinking after decision-making: evidence from an ERP study [J].ChineseScienceBulletin, 2010, 55(12): 1113-1121.

    [25]Miller G A. The magic number seven, plus or minus two: Some limits on our capacity for processing information [J].PsychologicalReview, 1956, 63(2): 81-97.

    [26]Cowan N, Saults J S, Morey C C. Development of working memory for verbal-spatial associations [J].JournalofMemoryandLanguage, 2006, 55(2): 274-289.

    [27]Unsworth N, Spillers G J. Working memory capacity: attention control, secondary memory, or both? A direct test of the dual-component model [J].JournalofMemoryandLanguage, 2010, 62(4): 392-406.

    [28]Pimperton H, Nation K. Suppressing irrelevant information from working memory: evidence for domain-specific deficits in poor comprehenders [J].JournalofMemoryandLanguage, 2010, 62(4): 380-391.

    [29]van der Ham I J, van Strien J W, Oleksiak A, et al. Temporal characteristics of working memory for spatial relations: an ERP study [J].InternationalJournalofPsychophysiology, 2010, 77(2): 83-94.

    [30]Shucard J L, Tekok-Kilic A, Shiels K, et al. Stage and load effects on ERP topography during verbal and spatial working memory [J].BrainResearch, 2009, 1254: 49-62.

    [31]Agam Y, Sekuler R. Interactions between working memory and visual perception: an ERP/EEG study [J].NeuroImage, 2007, 36(3): 933-942.

    [32]Hajcak G, Moser J S, Simons R F. Attending to affect: appraisal strategies modulate the electro cortical response to arousing pictures [J].Emotion, 2006, 6(3): 517-522.

    [33]Kutas M, Mccarthy G, Donchin E. Augmenting mental chronometry: P300 as a measure of stimulus evaluation time [J].Science, 1977, 197(4305): 792-795.

    [34]Kutas M, Hillyard S A. Reading senseless sentences: brain potentials reflect semantic incongruity [J].Science, 1980, 207(4427): 203-205.

    [35]Biedermann I, Ju G. Surface versus edge-based determinants of visual recognition [J].CognitivePsychology, 1988, 20(1): 38-64.

    基于事件相關(guān)電位的不同時(shí)間壓力和數(shù)量下的圖標(biāo)記憶

    牛亞峰1薛澄岐1李雪松2李 晶1王海燕1金 濤1

    (1東南大學(xué)機(jī)械工程學(xué)院, 南京 211189) (2東南大學(xué)兒童發(fā)展與學(xué)習(xí)科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室, 南京 210096)

    為獲取人機(jī)交互數(shù)字界面中圖標(biāo)元素生理評(píng)估的相關(guān)腦電成分和神經(jīng)學(xué)依據(jù),基于事件相關(guān)電位技術(shù),采用改進(jìn)的樣本延遲匹配任務(wù)實(shí)驗(yàn)范式,研究在不同時(shí)間壓力(4 000 ms,2 000 ms)和不同圖標(biāo)數(shù)量(3個(gè)圖標(biāo),5個(gè)圖標(biāo),10個(gè)圖標(biāo))下圖標(biāo)記憶.實(shí)驗(yàn)結(jié)果表明:在圖標(biāo)認(rèn)知過(guò)程中,P300有顯著波幅差異,并在PZ電極附近存在最大波幅;P200在FCZ附近有明顯波幅變化;P300和P200的波幅隨任務(wù)難度的增加呈增大趨勢(shì);P300的潛伏期和任務(wù)難度呈現(xiàn)負(fù)相關(guān)現(xiàn)象.圖標(biāo)記憶特征的事件相關(guān)電位研究,對(duì)用戶神經(jīng)認(rèn)知行為和界面可用性生理評(píng)估有非常重要的參考價(jià)值和指導(dǎo)意義.

    時(shí)間壓力;圖標(biāo)數(shù)量;事件相關(guān)電位;P200;P300

    TP301

    s:The National Natural Science Foundation of China (No.71271053, 71071032), the Scientific Innovation Research of College Graduates in Jiangsu Province (No.CXZZ12_0093).

    :Niu Yafeng, Xue Chengqi, Li Xuesong, et al. Icon memory research under different time pressures and icon quantities based on event-related potential[J].Journal of Southeast University (English Edition),2014,30(1):45-50.

    10.3969/j.issn.1003-7985.2014.01.009

    10.3969/j.issn.1003-7985.2014.01.009

    Received 2013-07-12.

    Biographies:Niu Yafeng (1988—), male, graduate; Xue Chengqi (corresponding author), male, doctor, professor, ipd_xcq@seu.edu.cn.

    猜你喜歡
    東南大學(xué)波幅圖標(biāo)
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    開封市健康人群面神經(jīng)分支復(fù)合肌肉動(dòng)作電位波幅分布范圍研究
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    Android手機(jī)上那些好看的第三方圖標(biāo)包
    開不同位置方形洞口波紋鋼板剪力墻抗側(cè)性能
    中國(guó)風(fēng)圖標(biāo)設(shè)計(jì)
    考慮傳輸函數(shù)特性的行波幅值比較式縱聯(lián)保護(hù)原理
    頻率偏移時(shí)基波幅值計(jì)算誤差對(duì)保護(hù)的影響及其改進(jìn)算法
    超色免费av| 一级毛片女人18水好多| 一区二区三区四区激情视频| av不卡在线播放| 中文字幕高清在线视频| 亚洲av电影在线观看一区二区三区| 久久ye,这里只有精品| 欧美少妇被猛烈插入视频| 国产精品一区二区免费欧美 | 亚洲精品美女久久av网站| 1024视频免费在线观看| 欧美国产精品一级二级三级| 少妇 在线观看| 一个人免费看片子| 天堂中文最新版在线下载| 日韩一卡2卡3卡4卡2021年| 啦啦啦中文免费视频观看日本| 亚洲成人免费电影在线观看| 免费少妇av软件| 黑丝袜美女国产一区| 国产欧美日韩综合在线一区二区| xxxhd国产人妻xxx| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 亚洲av男天堂| 国产在视频线精品| 国产精品久久久av美女十八| 免费观看av网站的网址| 欧美另类亚洲清纯唯美| 久热爱精品视频在线9| 亚洲国产看品久久| 国产精品久久久久久人妻精品电影 | 两性夫妻黄色片| 国产高清videossex| 男人爽女人下面视频在线观看| videos熟女内射| 亚洲精品粉嫩美女一区| 日本黄色日本黄色录像| 午夜91福利影院| 91九色精品人成在线观看| 午夜久久久在线观看| 日日爽夜夜爽网站| 曰老女人黄片| 亚洲欧美精品综合一区二区三区| 久久久久国产精品人妻一区二区| 亚洲欧美激情在线| 纯流量卡能插随身wifi吗| 黑人巨大精品欧美一区二区蜜桃| tube8黄色片| 美女午夜性视频免费| 欧美午夜高清在线| 亚洲精品美女久久久久99蜜臀| 欧美日韩中文字幕国产精品一区二区三区 | av一本久久久久| 狂野欧美激情性bbbbbb| 久久久精品免费免费高清| 久久精品国产亚洲av高清一级| 狂野欧美激情性xxxx| 亚洲精品国产av成人精品| 极品少妇高潮喷水抽搐| 国产成人精品久久二区二区91| 婷婷丁香在线五月| 一级黄色大片毛片| 久久av网站| 久久九九热精品免费| 久久国产精品人妻蜜桃| 狠狠精品人妻久久久久久综合| 欧美日本中文国产一区发布| 欧美黄色淫秽网站| 九色亚洲精品在线播放| 国产91精品成人一区二区三区 | 亚洲综合色网址| 久久国产精品人妻蜜桃| 欧美亚洲日本最大视频资源| 19禁男女啪啪无遮挡网站| 亚洲五月婷婷丁香| 淫妇啪啪啪对白视频 | kizo精华| 亚洲av国产av综合av卡| 国产一区二区 视频在线| 国产精品免费视频内射| 久久av网站| 免费人妻精品一区二区三区视频| 两个人看的免费小视频| 天天躁夜夜躁狠狠躁躁| 极品少妇高潮喷水抽搐| 叶爱在线成人免费视频播放| 亚洲免费av在线视频| 99国产精品99久久久久| 自线自在国产av| 视频区欧美日本亚洲| 午夜精品久久久久久毛片777| 久久国产精品人妻蜜桃| 亚洲国产欧美日韩在线播放| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻熟女乱码| 精品国内亚洲2022精品成人 | 亚洲五月婷婷丁香| 久久影院123| 亚洲五月色婷婷综合| 国产又色又爽无遮挡免| 中文欧美无线码| 国产精品一区二区在线不卡| 亚洲精品国产区一区二| 国产精品九九99| 欧美日韩一级在线毛片| 国产成人a∨麻豆精品| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| 桃红色精品国产亚洲av| 午夜免费鲁丝| 成人av一区二区三区在线看 | 啦啦啦视频在线资源免费观看| 999精品在线视频| 精品人妻熟女毛片av久久网站| 国内毛片毛片毛片毛片毛片| bbb黄色大片| 国产片内射在线| 国产成人a∨麻豆精品| 黑人巨大精品欧美一区二区蜜桃| 天堂中文最新版在线下载| 中文字幕色久视频| 国产精品免费视频内射| 精品人妻熟女毛片av久久网站| 波多野结衣一区麻豆| 人人澡人人妻人| 亚洲欧美日韩另类电影网站| 亚洲成人国产一区在线观看| 久9热在线精品视频| av国产精品久久久久影院| 老熟妇仑乱视频hdxx| www.av在线官网国产| 国产极品粉嫩免费观看在线| 亚洲av片天天在线观看| 亚洲国产看品久久| 成人手机av| 久久久久久久精品精品| 久久久国产欧美日韩av| 久久性视频一级片| 精品卡一卡二卡四卡免费| 在线观看一区二区三区激情| 丝袜人妻中文字幕| netflix在线观看网站| 国产真人三级小视频在线观看| 亚洲精华国产精华精| 久久ye,这里只有精品| 蜜桃国产av成人99| 亚洲av日韩在线播放| 久久午夜综合久久蜜桃| 国产在线一区二区三区精| 久久人妻熟女aⅴ| 欧美国产精品一级二级三级| av线在线观看网站| 超色免费av| 中文字幕av电影在线播放| 亚洲av成人不卡在线观看播放网 | 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久久久99蜜臀| 久久久精品国产亚洲av高清涩受| 水蜜桃什么品种好| 欧美日韩中文字幕国产精品一区二区三区 | 啪啪无遮挡十八禁网站| 午夜日韩欧美国产| 两个人免费观看高清视频| 制服诱惑二区| 女性被躁到高潮视频| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 老司机亚洲免费影院| 久久久久国产精品人妻一区二区| 日韩 亚洲 欧美在线| 精品一区二区三卡| 天天添夜夜摸| 制服诱惑二区| 国产高清国产精品国产三级| 成年人午夜在线观看视频| 亚洲精品一区蜜桃| www.av在线官网国产| 成人手机av| 久久ye,这里只有精品| 9热在线视频观看99| 欧美在线黄色| 欧美日韩亚洲综合一区二区三区_| 精品国产乱码久久久久久小说| 国产成人av激情在线播放| 色老头精品视频在线观看| 日韩视频在线欧美| 亚洲精华国产精华精| 久久国产精品人妻蜜桃| 麻豆乱淫一区二区| 国产又色又爽无遮挡免| 久久中文字幕一级| 中国美女看黄片| 最新在线观看一区二区三区| 国产av国产精品国产| 999精品在线视频| 久久久精品免费免费高清| 美女脱内裤让男人舔精品视频| 日本一区二区免费在线视频| 50天的宝宝边吃奶边哭怎么回事| 少妇 在线观看| 午夜影院在线不卡| 在线天堂中文资源库| 国产色视频综合| 久久ye,这里只有精品| 日韩 亚洲 欧美在线| 人妻 亚洲 视频| 纵有疾风起免费观看全集完整版| 脱女人内裤的视频| 80岁老熟妇乱子伦牲交| 亚洲成国产人片在线观看| 亚洲三区欧美一区| 香蕉丝袜av| 欧美少妇被猛烈插入视频| 男人操女人黄网站| 下体分泌物呈黄色| 欧美激情高清一区二区三区| 久久99热这里只频精品6学生| 搡老岳熟女国产| 日本av免费视频播放| 久久精品亚洲熟妇少妇任你| 国产免费现黄频在线看| 青青草视频在线视频观看| 亚洲成人免费av在线播放| 青草久久国产| a 毛片基地| 色94色欧美一区二区| 久久久精品94久久精品| 日韩欧美国产一区二区入口| 欧美日韩视频精品一区| 热99国产精品久久久久久7| 99re6热这里在线精品视频| 美女主播在线视频| 天堂8中文在线网| 岛国毛片在线播放| 欧美黄色淫秽网站| 一二三四在线观看免费中文在| 日韩视频在线欧美| 久久精品国产亚洲av高清一级| av一本久久久久| 不卡一级毛片| 欧美激情高清一区二区三区| 2018国产大陆天天弄谢| 黄网站色视频无遮挡免费观看| 欧美激情极品国产一区二区三区| 大码成人一级视频| 黑人巨大精品欧美一区二区mp4| 亚洲,欧美精品.| a级毛片在线看网站| svipshipincom国产片| 不卡av一区二区三区| 精品亚洲成国产av| 精品国产乱码久久久久久男人| 中文字幕色久视频| 97人妻天天添夜夜摸| 午夜免费观看性视频| 久久精品成人免费网站| 中文字幕最新亚洲高清| 一边摸一边做爽爽视频免费| 亚洲男人天堂网一区| 成人黄色视频免费在线看| 亚洲精品av麻豆狂野| 99国产极品粉嫩在线观看| 丝袜美腿诱惑在线| 老司机福利观看| 免费日韩欧美在线观看| 久久毛片免费看一区二区三区| 欧美日韩视频精品一区| 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 一本综合久久免费| 日韩视频一区二区在线观看| 精品高清国产在线一区| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| 欧美激情 高清一区二区三区| 婷婷丁香在线五月| 国产成人系列免费观看| 国产欧美日韩综合在线一区二区| 国产亚洲一区二区精品| 免费高清在线观看视频在线观看| 欧美日韩精品网址| 狠狠婷婷综合久久久久久88av| av国产精品久久久久影院| 国产不卡av网站在线观看| 精品久久蜜臀av无| 国产一区有黄有色的免费视频| 亚洲人成电影免费在线| 成人av一区二区三区在线看 | 无限看片的www在线观看| 女人久久www免费人成看片| 两个人看的免费小视频| 宅男免费午夜| 搡老乐熟女国产| 青春草视频在线免费观看| 日韩制服骚丝袜av| 日韩制服丝袜自拍偷拍| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| av网站免费在线观看视频| 美国免费a级毛片| 女性生殖器流出的白浆| 亚洲精品久久午夜乱码| 老汉色av国产亚洲站长工具| 天堂8中文在线网| 他把我摸到了高潮在线观看 | 亚洲va日本ⅴa欧美va伊人久久 | 一区二区三区四区激情视频| 天天操日日干夜夜撸| 免费观看a级毛片全部| 国产成人精品久久二区二区免费| 日韩欧美一区视频在线观看| 超色免费av| 男男h啪啪无遮挡| 久久精品熟女亚洲av麻豆精品| cao死你这个sao货| 大码成人一级视频| 精品福利观看| 欧美老熟妇乱子伦牲交| 99精品久久久久人妻精品| 少妇猛男粗大的猛烈进出视频| 日本五十路高清| 久久人妻熟女aⅴ| 正在播放国产对白刺激| 久热爱精品视频在线9| 午夜福利乱码中文字幕| 午夜福利在线观看吧| xxxhd国产人妻xxx| 无遮挡黄片免费观看| 亚洲精华国产精华精| 亚洲色图综合在线观看| 欧美在线黄色| 女警被强在线播放| 伊人久久大香线蕉亚洲五| 制服诱惑二区| 飞空精品影院首页| 久久精品久久久久久噜噜老黄| 国产成人欧美| 国产熟女午夜一区二区三区| 成人av一区二区三区在线看 | 午夜激情av网站| 久久国产精品大桥未久av| 国产av国产精品国产| 十八禁网站免费在线| 亚洲情色 制服丝袜| 久久精品aⅴ一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| av线在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产一级毛片在线| 亚洲天堂av无毛| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩精品久久久久久密| 久久午夜综合久久蜜桃| 国产xxxxx性猛交| 国产极品粉嫩免费观看在线| 精品少妇一区二区三区视频日本电影| 性高湖久久久久久久久免费观看| 亚洲avbb在线观看| 亚洲专区中文字幕在线| 天堂中文最新版在线下载| 一区二区三区四区激情视频| 美女中出高潮动态图| 国产精品秋霞免费鲁丝片| 水蜜桃什么品种好| 19禁男女啪啪无遮挡网站| 爱豆传媒免费全集在线观看| 亚洲成人免费电影在线观看| 美女高潮喷水抽搐中文字幕| 精品国产乱码久久久久久小说| 色婷婷久久久亚洲欧美| 免费在线观看完整版高清| 成人影院久久| 91精品三级在线观看| 精品第一国产精品| 日本黄色日本黄色录像| 亚洲中文日韩欧美视频| 19禁男女啪啪无遮挡网站| 免费在线观看日本一区| 90打野战视频偷拍视频| 一本大道久久a久久精品| 美女脱内裤让男人舔精品视频| 免费在线观看日本一区| 国产三级黄色录像| 精品第一国产精品| 精品亚洲成国产av| www.av在线官网国产| 国产淫语在线视频| 亚洲精品日韩在线中文字幕| 亚洲精品av麻豆狂野| 午夜福利视频在线观看免费| 黄片大片在线免费观看| 大片免费播放器 马上看| 久久天堂一区二区三区四区| 色婷婷av一区二区三区视频| 成年人午夜在线观看视频| 亚洲国产日韩一区二区| 国产成人啪精品午夜网站| www.自偷自拍.com| 亚洲人成电影观看| www日本在线高清视频| 亚洲av日韩精品久久久久久密| 欧美另类一区| videos熟女内射| 男人操女人黄网站| 777久久人妻少妇嫩草av网站| 老司机影院毛片| av在线播放精品| 欧美激情 高清一区二区三区| av一本久久久久| 亚洲国产精品999| 丰满迷人的少妇在线观看| 国产精品二区激情视频| 日日摸夜夜添夜夜添小说| 女性生殖器流出的白浆| 老司机深夜福利视频在线观看 | 午夜福利影视在线免费观看| 交换朋友夫妻互换小说| 久久人人爽人人片av| 制服诱惑二区| 人人妻,人人澡人人爽秒播| 成人国语在线视频| 一区二区日韩欧美中文字幕| 色视频在线一区二区三区| 亚洲精品粉嫩美女一区| 一本久久精品| a级毛片在线看网站| 国产亚洲一区二区精品| 三级毛片av免费| 一个人免费看片子| 欧美另类一区| 日韩三级视频一区二区三区| 在线观看舔阴道视频| 欧美xxⅹ黑人| 亚洲成人免费电影在线观看| 18禁黄网站禁片午夜丰满| 极品少妇高潮喷水抽搐| 欧美中文综合在线视频| 亚洲精品美女久久久久99蜜臀| 男男h啪啪无遮挡| 免费观看av网站的网址| 久久国产精品影院| 亚洲人成电影免费在线| 国产野战对白在线观看| 国产激情久久老熟女| 国产免费av片在线观看野外av| 国产成人av激情在线播放| 久久精品人人爽人人爽视色| 看免费av毛片| 中文字幕另类日韩欧美亚洲嫩草| 一二三四在线观看免费中文在| 国产黄色免费在线视频| 国产成人欧美| 国产成人欧美在线观看 | 涩涩av久久男人的天堂| 一级片'在线观看视频| 亚洲视频免费观看视频| 国产成人免费无遮挡视频| 国产精品自产拍在线观看55亚洲 | 国产日韩一区二区三区精品不卡| 国产三级黄色录像| 高清欧美精品videossex| 大型av网站在线播放| 777久久人妻少妇嫩草av网站| 桃红色精品国产亚洲av| av线在线观看网站| 国产成人啪精品午夜网站| 亚洲,欧美精品.| 窝窝影院91人妻| 精品国产一区二区三区久久久樱花| 手机成人av网站| 亚洲精品日韩在线中文字幕| 亚洲专区中文字幕在线| 日本撒尿小便嘘嘘汇集6| 日本91视频免费播放| 欧美另类一区| 国产亚洲欧美在线一区二区| 欧美激情久久久久久爽电影 | 精品国产一区二区久久| 黑人操中国人逼视频| 国产免费现黄频在线看| 99久久99久久久精品蜜桃| 国产精品自产拍在线观看55亚洲 | 国产精品成人在线| 五月天丁香电影| 狠狠婷婷综合久久久久久88av| 真人做人爱边吃奶动态| 美女高潮喷水抽搐中文字幕| 久久ye,这里只有精品| 两个人免费观看高清视频| 日本猛色少妇xxxxx猛交久久| 久久国产精品男人的天堂亚洲| 亚洲av男天堂| 丁香六月天网| 成人国语在线视频| tube8黄色片| 狂野欧美激情性xxxx| 精品人妻一区二区三区麻豆| 99久久国产精品久久久| 欧美+亚洲+日韩+国产| av福利片在线| 91字幕亚洲| 久久精品久久久久久噜噜老黄| 三上悠亚av全集在线观看| 免费在线观看黄色视频的| 国产高清视频在线播放一区 | 国产无遮挡羞羞视频在线观看| 久久九九热精品免费| 12—13女人毛片做爰片一| 中文字幕色久视频| 亚洲成av片中文字幕在线观看| 搡老熟女国产l中国老女人| 亚洲一区二区三区欧美精品| 日韩欧美国产一区二区入口| 久久久精品94久久精品| 一个人免费在线观看的高清视频 | 精品免费久久久久久久清纯 | 丝袜脚勾引网站| 69精品国产乱码久久久| 亚洲第一av免费看| 精品国内亚洲2022精品成人 | 国产av一区二区精品久久| 久久国产亚洲av麻豆专区| 天天操日日干夜夜撸| 老熟妇仑乱视频hdxx| 大片电影免费在线观看免费| 亚洲精品粉嫩美女一区| 老司机在亚洲福利影院| 人人妻人人澡人人看| 国产主播在线观看一区二区| av国产精品久久久久影院| 高清黄色对白视频在线免费看| 免费在线观看影片大全网站| 欧美日韩亚洲国产一区二区在线观看 | 飞空精品影院首页| 国产男人的电影天堂91| 一二三四社区在线视频社区8| 亚洲va日本ⅴa欧美va伊人久久 | 欧美成人午夜精品| 国产区一区二久久| 欧美黄色片欧美黄色片| 欧美性长视频在线观看| 最黄视频免费看| h视频一区二区三区| 真人做人爱边吃奶动态| 亚洲一区二区三区欧美精品| 精品亚洲成a人片在线观看| 久久国产精品人妻蜜桃| 性色av乱码一区二区三区2| 在线观看www视频免费| 老司机午夜福利在线观看视频 | 51午夜福利影视在线观看| 老汉色∧v一级毛片| 婷婷丁香在线五月| 国产三级黄色录像| 97精品久久久久久久久久精品| 亚洲欧美成人综合另类久久久| 日韩欧美一区二区三区在线观看 | 少妇的丰满在线观看| 国产欧美日韩精品亚洲av| 亚洲午夜精品一区,二区,三区| 99香蕉大伊视频| 日韩欧美一区视频在线观看| 黑人操中国人逼视频| 91国产中文字幕| 国产精品麻豆人妻色哟哟久久| 久久青草综合色| 欧美精品人与动牲交sv欧美| 国产深夜福利视频在线观看| 亚洲精品国产色婷婷电影| 国产精品.久久久| 亚洲欧美日韩另类电影网站| 国产精品亚洲av一区麻豆| 亚洲精品美女久久久久99蜜臀| 一边摸一边抽搐一进一出视频| 午夜老司机福利片| 亚洲,欧美精品.| 欧美精品啪啪一区二区三区 | 激情视频va一区二区三区| 777米奇影视久久| 欧美激情极品国产一区二区三区| 国产精品免费视频内射| 久久久久久亚洲精品国产蜜桃av| 十八禁网站网址无遮挡| 欧美精品亚洲一区二区| 桃花免费在线播放| 国产在线视频一区二区| 亚洲欧美精品综合一区二区三区| 桃花免费在线播放| 亚洲国产日韩一区二区| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久小说| 丝袜喷水一区| 国产人伦9x9x在线观看| 欧美激情高清一区二区三区| 国产高清视频在线播放一区 | 日韩 欧美 亚洲 中文字幕| 久久国产精品人妻蜜桃| 亚洲一码二码三码区别大吗| 老熟女久久久| 黄色a级毛片大全视频| 电影成人av| 波多野结衣av一区二区av| 中文字幕av电影在线播放| 国产成人影院久久av| 天天影视国产精品| 91精品伊人久久大香线蕉| 久久精品亚洲av国产电影网| 国产淫语在线视频| 女人爽到高潮嗷嗷叫在线视频| 99精品久久久久人妻精品| 1024香蕉在线观看| 男人爽女人下面视频在线观看|