• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical properties of disc-spring vibration isolatorsbased on boundary friction

    2014-09-06 10:49:37JiaFangZhangFancheng
    關(guān)鍵詞:碟簧阻尼力學(xué)性能

    Jia Fang Zhang Fancheng

    (School of Mechanical Engineering, Southeast University, Nanjing 210096, China)

    ?

    Mechanical properties of disc-spring vibration isolatorsbased on boundary friction

    Jia Fang Zhang Fancheng

    (School of Mechanical Engineering, Southeast University, Nanjing 210096, China)

    To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators, a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law, as well as considering the effect of the boundary friction. The formula is validated through the finite element analysis and static load tests. On this basis, the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests. The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators. Compared with the loading frequency, the loading amplitude has a greater impact on the energy consumption, dynamic stiffness and damping of vibration isolators. This research can provide valuable information for the design of disc-spring vibration isolators.

    disc-spring vibration isolator; boundary friction; hysteresis curve; dynamic stiffness; damping; finite element analysis (FEA)

    The disc-spring vibration isolator features its small volume, large bearing capacity, variable stiffness and capability of providing friction damping by itself, thus winning a wide application in the field of nonlinear vibration isolation. Due to the existence of boundary friction, the loading/unloading curves of the vibration isolator do not overlap, which can bear much load on its mechanical properties.

    Up to now, various researches have been focused on disc-springs and vibration isolators. Saini et al.[1]investigated the bearing capacity and deformation of disc springs with parabolically varying thickness by theoretical analysis. Fawazi et al.[2]studied the load displacement prediction for a bended slotted disc using the energy method. Curti et al.[3]studied the effect of friction on disc-spring calculation accuracy by the finite element method and experiments. Ozaki et al.[4]analyzed the performance of disc springs with different friction boundaries based on the energy method and the Coulomb friction theory. Xiong et al.[5]proposed a new type of vibration isolator composed of steel wire rope and disc springs and studied the dynamic response of the isolation system. Du et al.[6]explored the dynamic characteristics of a disc-spring shock absorber, pointing out that the shock absorber damping shows some of the nonlinear characteristics. Gong et al.[7]presented a new method for dynamic modelling of the vibration isolator addressing its hysteresis nonlinearity and better damping performance. Peng et al.[8]discussed the effects of cubic nonlinear damping on vibration isolations using the harmonic balance method. However, to the best of our knowledge, no attempt has ever been made to gain insights into the impact of boundary friction on the mechanical properties of disc-spring vibration isolators.

    In the present study, a load-displacement hysteresis curve formula of disc-spring vibration isolators is developed, based on the theories or principles of energy conservation and boundary friction. Simulation based on finite element analysis (FEA) and static load tests are conducted for its verification. Dynamic performance of the disc-spring vibration isolator is studied through dynamic load tests. The findings are supposed to be of benefit to the desirable design of disc-spring vibration isolators.

    1 Theoretical and Finite Element Analysis of Disc Springs

    1.1 Theoretical analysis

    The Almen-Laszlo equation[9]is currently a commonly-used formula for the disc spring design. However, it tends to generate conspicuous errors in solution as it ignores the boundary friction and the radial stress. In practice, the friction between stacked springs at the edges or on the surfaces will affect the stiffness estimation of the device due to large friction damping. The disc-spring structure of the vibration isolator is shown in Fig.1. Ignoring the boundary friction, the relationship between the loadP′ and deformationfcan be written as[10]

    (1)

    Fig.1 Structure diagram of disc spring

    ParameterValueElasticmodulusE/Pa2.06×1011Poissonratioν0.3OuterradiusR/mm225Innerradiusr/mm112Thicknesst/mm6.5Freeheighth0/mm7.1

    To ascertain the relationship of the frictional dissipation and the deformation, a free body diagram of the disc spring with friction force is presented in Fig.2. In terms of the Almen-Laszlo assumptions, the cross section of the disc spring does not distort, and it merely rotates about a neutral point; thus the sliding displacement in the radial direction and the rotation angleαof the cross section can be expressed by[4]

    (2)

    wherelis the diagonal length of the cross section;βis the angle between the diagonal and vertical planes. As it is difficult to obtain the actual force acting on the boundary, the friction pressure is replaced by loadp′ in our finite element analysis. When the deformation of the disc spring rises to df, an extra loadp*is required to over-come the frictional energy dissipation. By the law of energy conservation, the frictional energy dissipation should be equal to the work done by the extra load; that is

    Fig.2 Force sketch of single disc spring

    W=Ef, dW=dEf

    (3)

    dW=p*df

    (4)

    dEf=2Fedse=2p′μdse

    (5)

    whereWis the extra work;Efis the frictional energy dissipation; dW, dEfrepresents the infinitesimal increment;Feis the frictional force; andμis the friction coefficient. As the rotation angleαis very small, Eq.(2) can be simplified into

    (6)

    And the relationship between the frictional displacement and the deformation is

    (7)

    Based on Eqs.(3), (4), (5) and (7), the width of the load-displacement hysteresis curve can be calculated by

    (8)

    Thus, we obtain the load-displacement hysteresis curve formula of the single disc spring as follows:

    (9)

    where “+” is for loading and “-” for unloading.

    1.2 Frictional analysis of disc-spring vibration isolators

    The disc-spring vibration isolator can be designed by arranging disc-springs in series or in parallel for different loads. And there must exist friction at the edges and on the surfaces between parallel springs. The structure of the vibration isolator is shown in Fig.3, whereJrepresents the number of disc springs in parallel andIdenotes the number of series of disc springs. A steel plate is used to connect disc-springs in series. Ignoring the friction, the load of the isolator isJp′ when the deformation isIf. In addition, the surface friction displacementsscan also be evaluated as a function of the deformationf. As illustrated in Fig.3, the surface friction displacement is given as

    (10)

    whereA(x1,y1) andB(x1,y2) are the coordinates at the contact points of disc springs stacked in parallel, which vary with the deformation of the springs. Known from the

    Fig.3 Structure of disc-spring vibration isolator (I=2,J=2,O1(xo1,yo1) andO2(xo2,yo2))

    researches on the single disc spring, the contact points rotate about the neutral pointO. So based on the coordinate transformation matrix, the rotation matrix of pointsAandBcan be written as

    wherexo2=xo1;yo2=yo1+t/sinφ, andφis the angle between the spring and the vertical plane. During the deformation, the location vectors {x1,y1,1} and {x2,y2,1} change with the rotating neutral pointsO1andO2. According to Eqs.(10), (11) and (12), the surface friction displacement can be calculated by

    When the deformation of the vibration isolator grows to df, the friction energy dissipation and the extra force overcoming the surface friction can be denoted as

    (14)

    (15)

    And the extra force overcoming the edge friction is

    (16)

    Thus, we obtain the load-displacement hysteresis curve formula of the disc-spring vibration isolator as

    (17)

    where “+” is for loading and “-” for unloading.

    1.3 Finite element analysis

    ANSYS 12.0 is used to analyze the static-load characteristics of a single disc spring and two disc springs in parallel. The FEA models are demonstrated in Fig.4. The axial displacement load is imposed on the top of the models for transient dynamic analysis. Then the loading and unloading conditions with different friction coefficients are simulated to validate the hysteresis curve formula. The results from FEA and the hysteresis curve formula are compared in Figs.5 and 6. As illustrated in Fig.5, similar changes are observed among the results from the FEA, the hysteresis curve formula and the theoretical curve. No overlapping is observable between the loading and unloading curves due to the presence of friction. Fig.6 shows that with the surface friction added, the curves of the FEA and the hysteresis curve formula remain highly consistent. This verifies the accuracy of the formula.

    (a) (b)

    Fig.4 FEA models of disc spring. (a) Single disc spring; (b) Two disc springs in parallel

    Fig.5 Loading-displacement of the single disc spring

    Fig.6 Loading displacement of two disc springs in parallel (μ=0.3)

    2 Static Experiment and Analysis

    To evaluate the effect of boundary friction on the isolator’s static stiffness, static load deformation resistibility and dynamic features, an intelligent servo hydraulic testing machine is used to carry out the test. The test system consists of the loading test system and the data collection system, as shown in Fig.7. As the disc-spring vibration isolator is composed of two disc springs set in parallel and four groups in series, the same mechanical properties are shared by all the groups. The load-displacement curves of the experiments, the FEA and the hysteresis curve formula are compared in Fig.8, which shows that the theoretical curves differ a lot from the test curves in the initial phase of deformation. With the increase of deformation, the difference gradually narrows. This is because error exists in the assembly process of disc springs. It also shows that the area of load-deformation curves in the experiment is approximately equal to that in the formula with the friction coefficient of 0.3. Therefore, 0.3 can be taken as the boundary friction coefficient of the disc-spring vibration isolator.

    Fig.7 Mechanical test system

    Fig.8 Loading displacement of static load experiment

    The loading and unloading stiffnesses of the disc-spring vibration isolator are derived from numerical analysis. CFTOOL, a fitting tool in Matlab, is used to fit the loading/unloading stiffness curves of the experiment. Then the results from the experiment, the hysteresis formula and the theoretical analysis are compared in Fig.9. As shown in Fig.9, the loading and unloading stiffnesses given by the test and the formula are lower than that of the theoretical result which ignores the friction effect. It is a solid evidence that the boundary friction can reduce the stiffness of the disc-spring vibration isolator. The averages of the loading and unloading stiffnesses in different deformations from the theoretical calculation and test results can well reflect the static stiffness of the vibration isolator. The average values of stiffness from the hysteresis formula and the tests are compared. Results show that the maximum and minimum deviations of calculated values and test values are 7.6% and 1.2%, respectively, which proves that the hysteresis formula is of high accuracy and it is capable of reflecting the static load performance of disc-spring vibration isolators accurately.

    (a)

    (b)Fig.9 Loading/unloading stiffness of disc-spring vibration isolator. (a) Loading stiffness; (b) Unloading stiffness

    3 Dynamic Experiment and Analysis

    Dynamic stiffness and damping are the key parameters to the design of vibration isolators. Dynamic stiffness reflects the device’s ability to resist deformation under dynamic load, and damping is its capability for energy dissipation. To ascertain the impact of the boundary friction on its dynamic performance, a 50 kN pre-load is slowly applied onto the vibration isolator, followed by the sinusoidal displacement control with the amplitudes of 0.5, 1 and 2 mm and the frequencies of 3, 4 and 5 Hz to obtain its force response.

    3.1 Results of dynamic experiment

    Results of the dynamic experiment are demonstrated in Figs.10 and 11. As illustrated in Fig.10, with the increasing amplitude, the areas of the hysteretic curves expand. In other words, the larger the displacement, the more the dissipated energy. As shown in Fig.11, with the change of loading frequency, the curve areas remain nearly invariable, which means that the loading frequency has little influence on the ability of energy consumption. For further study, dynamic stiffnessKeand equivalent damping coefficientξeare calculated using the following equations[11]and presented in Tab. 2.

    (18)

    (19)

    whereu+andu-denote the largest and the least vertical deformation;f+andf-represent the vertical forces corresponding tou+andu-; andSis the area of the hysteresis curve.

    Fig.10 Hysteretic curves of different amplitudes with a loading frequency of 5 Hz

    Fig.11 Hysteretic curves of different frequencies with an amplitude of 2 mm

    Amplitude/ mmVariableFrequency/Hz3450.5Ke/(kN·mm-1)15.00015.30015.714ξe0.14470.16320.16891Ke/(kN·mm-1)11.20411.86512.412ξe0.19810.20140.21452Ke/(kN·mm-1)8.578.848.96ξe0.20970.21950.2289

    3.2 Analysis of dynamic performance

    The effect of amplitude on the dynamic stiffness and the equivalent damping ratio is presented in Fig.12. As can be observed, the dynamic stiffness decreases with the increasing loading amplitude while the loading frequency remains constant, which fully reflects the nonlinearity of the disc-spring vibration isolator. In contrast, the equivalent damping ratio rises with the increasing load amplitude, but the rising trend dwindles away gradually. When the amplitude grows from 0.5 to 1 mm and from 1 to 2 mm, the damping ratio goes up by 36.9% and 5.89%, respectively. Apparently, as the damping of the vibration isolator is provided by the boundary friction that relates to the friction coefficient, force and amplitude, it is only af-fected by the amplitude when the friction coefficient and force are invariant. That is why the disc-spring vibration isolator can provide a larger friction damping of up to 0.23.

    (a)

    (b)Fig.12 Dynamic performance. (a) Dynamic stiffness; (b) Equivalent damping ratio

    Fig.12 also shows that with constant loading amplitude both the dynamic stiffness and the equivalent damping ratio feature a trend of gradual rise with the increase of loading frequency. That is to say, the loading amplitude has a greater effect on the dynamic stiffness and the equivalent damping ratio of the vibration isolator than the loading frequency. It means that the vibration amplitude is a key parameter to the properties of the disc-spring vibration isolator.

    4 Conclusion

    In the present study, a load-displacement hysteresis curve formula of the disc-spring vibration isolator which considers the boundary friction is developed based on the principles of energy conservation. The validity of the formula is verified and the influence of boundary friction on the static stiffness is also investigated via the finite element simulation and static load tests. The effect of the boundary friction on the isolator dynamic performance is also studied. As revealed by the test results, the boundary friction endows the disc-spring vibration isolator with a larger damping of nearly 0.23. The loading amplitude exerts a larger influence on the isolator’s energy dissipation, dynamic stiffness and damping coefficient than the loading frequency does. This research may provide valuable information for the design of the disc-spring vibration isolator.

    [1]Saini P K, Kumar P, Tandon P. Design and analysis of radially tapered disc springs with parabolically varying thickness[J].JournalofMechanicalEngineeringScience, 2007, 221(2): 151-158.

    [2]Fawazi N, Lee J, Oh J. A load-displacement prediction for a bended slotted disc using the energy method[J].JournalofMechanicalEngineeringScience, 2012, 226(8): 2126-2137.

    [3]Curti G, Montanini R. On the influence of friction in the calculation of conical disk springs[J].JournalofMechanicalDesign, 1999, 121(4): 622-627.

    [4]Ozaki S, Tsuda K, Tominaga J. Analyses of static and dynamic behavior of coned disk springs: effects of friction boundaries[J].Thin-WalledStructures, 2012, 59: 132-143.

    [5]Xiong Shishu, Li Huisheng, Huang Liting, et al. Design and application of base isolation system for explosive laboratory[J].ExplosionandShockWaves, 2006, 26(2): 145-149. (in Chinese)

    [6]Du Junmin, Dai Shuangxian. Research on dynamic characteristics of saucer dampers[J].ConstructionMachineryandEquipment, 2009, 40(11): 15-18. (in Chinese)

    [7]Gong Xiansheng, Xie Zhijiang, Luo Zhenhuang, et al. The characteristics of a nonlinear damper for vibration isolation[J].JournalofVibrationEngineering, 2001, 14(3): 90-94. (in Chinese)

    [8]Peng Z K, Meng G, Lang Z Q, et al. Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method[J].InternationalJournalofNon-LinearMechanics, 2012, 47(10): 1073-1080.

    [9]Almen J O, Laszlo A. The uniform-section belleville spring[J].TransASME, 1936, 58(5): 387-392.

    [10]Yi Xianzhong. Analysis of basic characteristic parameters of disk springs [J].ChinaPetroleumMachinery, 1995, 23(3): 10-17. (in Chinese)

    [11]Chen Heshi. Experimental study of nonlinear assembled isolator for high speed press[D]. Nanjing: School of Mechanical Engineering of Southeast University, 2011. (in Chinese)

    基于邊界摩擦的碟簧隔振器力學(xué)性能

    賈 方 張凡成

    (東南大學(xué)機(jī)械工程學(xué)院,南京 210096)

    為研究邊界摩擦對(duì)碟簧隔振器力學(xué)性能的影響,基于能量守恒定律推導(dǎo)了在考慮邊界摩擦?xí)r碟簧隔振器的載荷位移遲滯曲線公式.通過(guò)有限元分析與靜載試驗(yàn)驗(yàn)證了該公式的正確性.在此基礎(chǔ)上研究了邊界摩擦對(duì)碟簧隔振器承載能力的影響,并通過(guò)動(dòng)載試驗(yàn)研究了邊界摩擦對(duì)碟簧隔振器的動(dòng)態(tài)性能的影響.試驗(yàn)結(jié)果表明:邊界摩擦可提供較大的阻尼,使得碟簧隔振器具有良好的阻尼特性,其阻尼比可達(dá)0.23;隔振器的耗能、動(dòng)剛度和阻尼特性對(duì)加載幅值更為敏感,而對(duì)加載頻率敏感度較小.該研究成果對(duì)碟簧隔振器設(shè)計(jì)具有重要的指導(dǎo)意義.

    碟簧隔振器;邊界摩擦;遲滯曲線;動(dòng)剛度;阻尼;有限元分析

    TP391

    Transformation Program of Science and Technology Achievements of Jiangsu Province (No.BA2008030).

    :Jia Fang, Zhang Fancheng. Mechanical properties of disc-spring vibration isolators based on boundary friction[J].Journal of Southeast University (English Edition),2014,30(1):39-44.

    10.3969/j.issn.1003-7985.2014.01.008

    10.3969/j.issn.1003-7985.2014.01.008

    Received 2013-08-07.

    Biography:Jia Fang (1968—), female, doctor, associate professor, 13851896116@139.com.

    猜你喜歡
    碟簧阻尼力學(xué)性能
    Pr對(duì)20MnSi力學(xué)性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    碟簧裝置恢復(fù)力模型及其在自復(fù)位RC剪力墻中的應(yīng)用
    N維不可壓無(wú)阻尼Oldroyd-B模型的最優(yōu)衰減
    關(guān)于具有阻尼項(xiàng)的擴(kuò)散方程
    具有非線性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
    基于ANSYS對(duì)液壓-卡扎里密封頂緊器碟簧組設(shè)計(jì)及有限元分析
    Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    用于鎖緊液壓缸的錐面-碟簧載荷-變形特性分析
    碟形彈簧彈塑性有限元分析研究
    具阻尼項(xiàng)的Boussinesq型方程的長(zhǎng)時(shí)間行為
    最新的欧美精品一区二区| 丝袜在线中文字幕| 国产乱人偷精品视频| 亚洲,欧美精品.| 欧美 亚洲 国产 日韩一| 大陆偷拍与自拍| 国产一区二区在线观看av| 精品人妻一区二区三区麻豆| xxx大片免费视频| 欧美黄色片欧美黄色片| 欧美国产精品一级二级三级| 超碰97精品在线观看| 免费女性裸体啪啪无遮挡网站| 五月天丁香电影| 国产精品不卡视频一区二区| 最新中文字幕久久久久| 亚洲综合精品二区| 性高湖久久久久久久久免费观看| 在线观看免费高清a一片| 久久国产精品大桥未久av| av网站在线播放免费| 国产不卡av网站在线观看| 亚洲国产色片| 成人午夜精彩视频在线观看| 免费在线观看黄色视频的| 秋霞伦理黄片| 日本av手机在线免费观看| 日本免费在线观看一区| 亚洲伊人色综图| 两个人看的免费小视频| 精品一品国产午夜福利视频| 中文字幕av电影在线播放| 中文精品一卡2卡3卡4更新| 国产免费福利视频在线观看| 性色av一级| 七月丁香在线播放| 叶爱在线成人免费视频播放| 久久国内精品自在自线图片| 日本色播在线视频| 另类亚洲欧美激情| 精品99又大又爽又粗少妇毛片| 午夜91福利影院| 国产片内射在线| 中文天堂在线官网| 另类亚洲欧美激情| 国产爽快片一区二区三区| 性色avwww在线观看| 黄片播放在线免费| 免费大片黄手机在线观看| 人妻人人澡人人爽人人| 色网站视频免费| 精品少妇一区二区三区视频日本电影 | 一本久久精品| 中文字幕人妻丝袜一区二区 | 夫妻午夜视频| 中文欧美无线码| 国产免费福利视频在线观看| 精品一区二区三卡| 超碰成人久久| 男女边吃奶边做爰视频| 亚洲第一区二区三区不卡| 日韩一区二区视频免费看| 久久人人爽人人片av| 国产一区亚洲一区在线观看| a级毛片在线看网站| 看免费成人av毛片| 日韩制服丝袜自拍偷拍| 卡戴珊不雅视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲激情五月婷婷啪啪| 人妻一区二区av| 在线观看www视频免费| 各种免费的搞黄视频| 男女午夜视频在线观看| 国产成人av激情在线播放| 一级毛片黄色毛片免费观看视频| av电影中文网址| 国产一区二区三区av在线| 欧美激情 高清一区二区三区| 国产精品欧美亚洲77777| 国产黄色免费在线视频| 1024香蕉在线观看| 国产成人免费无遮挡视频| 免费看不卡的av| 国产精品女同一区二区软件| 最近最新中文字幕大全免费视频 | 欧美精品高潮呻吟av久久| 97精品久久久久久久久久精品| 国产精品久久久久久av不卡| 成人国产麻豆网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 另类精品久久| 色播在线永久视频| 永久免费av网站大全| 国产毛片在线视频| 欧美日韩精品网址| 午夜激情久久久久久久| 最近最新中文字幕大全免费视频 | 午夜福利在线观看免费完整高清在| 亚洲欧美日韩另类电影网站| videossex国产| 男女高潮啪啪啪动态图| 777米奇影视久久| 国产成人精品久久久久久| 亚洲第一av免费看| 久久人人爽人人片av| 免费av中文字幕在线| 国产成人精品在线电影| 巨乳人妻的诱惑在线观看| 国产成人欧美| 成年人午夜在线观看视频| 综合色丁香网| 国产亚洲午夜精品一区二区久久| 久久精品国产自在天天线| a级毛片在线看网站| 看免费成人av毛片| 国产精品香港三级国产av潘金莲 | 少妇 在线观看| 亚洲欧洲日产国产| 日韩av不卡免费在线播放| 国产成人精品在线电影| 国产精品不卡视频一区二区| 少妇精品久久久久久久| 色婷婷久久久亚洲欧美| av免费在线看不卡| 五月伊人婷婷丁香| 亚洲精品aⅴ在线观看| 中文字幕精品免费在线观看视频| freevideosex欧美| 亚洲国产日韩一区二区| 老汉色∧v一级毛片| 久久ye,这里只有精品| av又黄又爽大尺度在线免费看| 欧美bdsm另类| 亚洲,欧美,日韩| 免费黄频网站在线观看国产| 国产成人免费无遮挡视频| 两个人看的免费小视频| 亚洲国产av新网站| 大香蕉久久成人网| 黄片小视频在线播放| 亚洲精品国产av蜜桃| 一级黄片播放器| 亚洲成人手机| videossex国产| 各种免费的搞黄视频| 99香蕉大伊视频| 尾随美女入室| 久久久a久久爽久久v久久| 精品国产超薄肉色丝袜足j| √禁漫天堂资源中文www| 国产熟女欧美一区二区| 老熟女久久久| 国产精品久久久久成人av| 国产成人av激情在线播放| 亚洲美女黄色视频免费看| 国产淫语在线视频| 免费黄色在线免费观看| 久久午夜综合久久蜜桃| 成人免费观看视频高清| 熟妇人妻不卡中文字幕| 久久久久久久国产电影| 韩国av在线不卡| 亚洲av电影在线观看一区二区三区| 国产黄色免费在线视频| 80岁老熟妇乱子伦牲交| 午夜福利视频在线观看免费| 在线观看美女被高潮喷水网站| 一本—道久久a久久精品蜜桃钙片| 国产黄频视频在线观看| 亚洲一码二码三码区别大吗| xxxhd国产人妻xxx| 欧美精品国产亚洲| 久久ye,这里只有精品| 搡女人真爽免费视频火全软件| freevideosex欧美| 另类亚洲欧美激情| 伊人久久大香线蕉亚洲五| 水蜜桃什么品种好| 午夜91福利影院| 亚洲婷婷狠狠爱综合网| www.熟女人妻精品国产| 免费久久久久久久精品成人欧美视频| 少妇人妻 视频| 极品人妻少妇av视频| 久久久国产一区二区| 成人毛片a级毛片在线播放| videosex国产| 国产白丝娇喘喷水9色精品| 看免费成人av毛片| 成人免费观看视频高清| 老汉色av国产亚洲站长工具| 久久久久久久亚洲中文字幕| 99久久人妻综合| 中文乱码字字幕精品一区二区三区| 国产片内射在线| 国产精品亚洲av一区麻豆 | 亚洲欧美中文字幕日韩二区| 国产视频首页在线观看| 亚洲欧洲国产日韩| 超色免费av| 国产精品成人在线| 大香蕉久久成人网| 午夜av观看不卡| 国产精品成人在线| 永久免费av网站大全| 亚洲av日韩在线播放| 免费观看av网站的网址| 人人妻人人澡人人爽人人夜夜| 亚洲国产日韩一区二区| 免费在线观看完整版高清| 欧美激情 高清一区二区三区| 考比视频在线观看| 91精品三级在线观看| 国产一区二区激情短视频 | 免费黄网站久久成人精品| 国产乱人偷精品视频| 巨乳人妻的诱惑在线观看| 1024香蕉在线观看| 久久精品国产亚洲av涩爱| 午夜福利,免费看| 国产欧美亚洲国产| 成人亚洲欧美一区二区av| 国产精品av久久久久免费| 久久国产精品大桥未久av| 精品酒店卫生间| 国产精品av久久久久免费| 亚洲一区二区三区欧美精品| 亚洲美女黄色视频免费看| 婷婷色综合大香蕉| 搡女人真爽免费视频火全软件| 男女啪啪激烈高潮av片| 免费女性裸体啪啪无遮挡网站| 少妇的逼水好多| 新久久久久国产一级毛片| 午夜免费观看性视频| 免费黄网站久久成人精品| 老熟女久久久| 人妻系列 视频| 美国免费a级毛片| 大片免费播放器 马上看| 日本av手机在线免费观看| 国产一区二区 视频在线| 亚洲精品国产色婷婷电影| 久久97久久精品| 久久 成人 亚洲| 精品国产国语对白av| 777久久人妻少妇嫩草av网站| 精品少妇一区二区三区视频日本电影 | 人妻系列 视频| 免费黄网站久久成人精品| 国产成人精品一,二区| 欧美97在线视频| 亚洲第一青青草原| 亚洲精品美女久久av网站| 亚洲国产精品999| 精品国产一区二区三区四区第35| 晚上一个人看的免费电影| 亚洲精品第二区| 国产一级毛片在线| 国产爽快片一区二区三区| 丝袜脚勾引网站| 亚洲三区欧美一区| 我要看黄色一级片免费的| 人妻少妇偷人精品九色| 美女视频免费永久观看网站| 亚洲国产毛片av蜜桃av| 熟女av电影| 午夜福利网站1000一区二区三区| 精品国产露脸久久av麻豆| 美女大奶头黄色视频| 欧美人与性动交α欧美精品济南到 | 在线观看一区二区三区激情| 亚洲欧美成人精品一区二区| 国产高清不卡午夜福利| 久久久久久久久久久久大奶| 国产欧美日韩综合在线一区二区| 亚洲精品国产一区二区精华液| 久久久久久久精品精品| 99久久精品国产国产毛片| 亚洲成人一二三区av| 欧美在线黄色| 国产在线免费精品| 国产男女超爽视频在线观看| 国产免费福利视频在线观看| 男女下面插进去视频免费观看| 免费在线观看黄色视频的| 少妇人妻 视频| www.熟女人妻精品国产| 国产成人av激情在线播放| 一本久久精品| 晚上一个人看的免费电影| 日韩一区二区视频免费看| 女人久久www免费人成看片| 亚洲精品视频女| 99香蕉大伊视频| 亚洲情色 制服丝袜| 99久国产av精品国产电影| 一级黄片播放器| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人爽人人夜夜| 老鸭窝网址在线观看| 日本午夜av视频| 国产男人的电影天堂91| 久久99热这里只频精品6学生| 国产黄色视频一区二区在线观看| 女人被躁到高潮嗷嗷叫费观| 涩涩av久久男人的天堂| av在线app专区| 国产精品国产av在线观看| 国产精品一区二区在线观看99| 一级,二级,三级黄色视频| 亚洲美女视频黄频| 亚洲,一卡二卡三卡| 黄色视频在线播放观看不卡| 午夜福利视频在线观看免费| 欧美激情极品国产一区二区三区| 欧美精品一区二区大全| 日本午夜av视频| 看免费av毛片| 少妇 在线观看| 国产亚洲精品第一综合不卡| 亚洲av电影在线进入| 久久精品国产自在天天线| 一二三四中文在线观看免费高清| 亚洲精品在线美女| 少妇精品久久久久久久| 精品酒店卫生间| 91aial.com中文字幕在线观看| 日日撸夜夜添| 午夜日韩欧美国产| 老女人水多毛片| 国产av精品麻豆| www.精华液| 晚上一个人看的免费电影| 人人妻人人澡人人爽人人夜夜| 成年女人毛片免费观看观看9 | 免费av中文字幕在线| www日本在线高清视频| 国产乱人偷精品视频| 成人毛片a级毛片在线播放| 男女国产视频网站| 亚洲欧美精品综合一区二区三区 | 久久久久久久久久人人人人人人| 国产黄色免费在线视频| 亚洲国产精品一区三区| 王馨瑶露胸无遮挡在线观看| 三级国产精品片| 91精品三级在线观看| 汤姆久久久久久久影院中文字幕| 免费观看无遮挡的男女| 少妇精品久久久久久久| 1024视频免费在线观看| 久久热在线av| 久久久久久久国产电影| 国产成人精品福利久久| 99热网站在线观看| 性色avwww在线观看| 丝袜在线中文字幕| 国产成人午夜福利电影在线观看| 人成视频在线观看免费观看| 有码 亚洲区| 国产无遮挡羞羞视频在线观看| 美女脱内裤让男人舔精品视频| 亚洲av福利一区| 人妻系列 视频| 精品酒店卫生间| 久久久久精品久久久久真实原创| 亚洲色图综合在线观看| 黄色 视频免费看| 亚洲国产精品999| 色婷婷av一区二区三区视频| 久久久久精品性色| 国产成人一区二区在线| 免费观看a级毛片全部| 国产人伦9x9x在线观看 | 国产一区二区三区综合在线观看| 肉色欧美久久久久久久蜜桃| 熟女少妇亚洲综合色aaa.| 久久ye,这里只有精品| 久久国内精品自在自线图片| 精品99又大又爽又粗少妇毛片| 伦精品一区二区三区| 午夜日本视频在线| 亚洲欧洲精品一区二区精品久久久 | 精品国产超薄肉色丝袜足j| 成年女人在线观看亚洲视频| a级毛片在线看网站| 桃花免费在线播放| 亚洲成人手机| 热re99久久精品国产66热6| 日韩欧美一区视频在线观看| 丝袜美腿诱惑在线| 少妇被粗大猛烈的视频| 日日爽夜夜爽网站| 午夜精品国产一区二区电影| 国产欧美亚洲国产| 亚洲国产av影院在线观看| 91精品伊人久久大香线蕉| 丝袜在线中文字幕| 亚洲欧美成人精品一区二区| 狠狠婷婷综合久久久久久88av| 亚洲美女黄色视频免费看| 国产片内射在线| 日本欧美国产在线视频| 亚洲美女搞黄在线观看| 欧美日本中文国产一区发布| 国产欧美日韩综合在线一区二区| 一区二区三区四区激情视频| 免费黄网站久久成人精品| 欧美日韩综合久久久久久| 日韩制服骚丝袜av| 精品久久久精品久久久| 久久久国产欧美日韩av| 国产免费福利视频在线观看| 9色porny在线观看| 久久狼人影院| 亚洲欧美成人综合另类久久久| 国产 精品1| 日本免费在线观看一区| av国产精品久久久久影院| 国产精品香港三级国产av潘金莲 | 在线免费观看不下载黄p国产| 国产精品.久久久| 夫妻午夜视频| av线在线观看网站| 天天躁夜夜躁狠狠久久av| 欧美日韩国产mv在线观看视频| 成人午夜精彩视频在线观看| 日本vs欧美在线观看视频| 国产精品久久久久久精品古装| 男女免费视频国产| 天美传媒精品一区二区| 少妇被粗大的猛进出69影院| av免费在线看不卡| 香蕉精品网在线| 精品国产乱码久久久久久男人| 黄片播放在线免费| 18禁国产床啪视频网站| 女人精品久久久久毛片| 性色av一级| av网站免费在线观看视频| 一二三四中文在线观看免费高清| 男人添女人高潮全过程视频| 日韩一卡2卡3卡4卡2021年| 中文字幕亚洲精品专区| 观看av在线不卡| 99热全是精品| 美女大奶头黄色视频| 欧美人与性动交α欧美软件| 欧美激情极品国产一区二区三区| 有码 亚洲区| 久久久久久久国产电影| 日产精品乱码卡一卡2卡三| 中文乱码字字幕精品一区二区三区| 欧美激情 高清一区二区三区| 久久精品国产自在天天线| 色播在线永久视频| 午夜福利乱码中文字幕| 国产熟女午夜一区二区三区| a 毛片基地| av有码第一页| 丰满乱子伦码专区| 精品亚洲乱码少妇综合久久| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 色网站视频免费| 我的亚洲天堂| 18+在线观看网站| 国产激情久久老熟女| 亚洲欧美色中文字幕在线| av免费观看日本| av女优亚洲男人天堂| 国产精品国产三级国产专区5o| 美国免费a级毛片| 午夜福利,免费看| 欧美国产精品一级二级三级| 久久久国产欧美日韩av| 国产麻豆69| 久热久热在线精品观看| 麻豆av在线久日| 老司机影院成人| 亚洲人成77777在线视频| 欧美精品av麻豆av| 天天躁狠狠躁夜夜躁狠狠躁| 久久99精品国语久久久| 色婷婷久久久亚洲欧美| 90打野战视频偷拍视频| 一二三四中文在线观看免费高清| 精品人妻熟女毛片av久久网站| 综合色丁香网| 深夜精品福利| 国产精品一区二区在线不卡| h视频一区二区三区| 日韩制服骚丝袜av| 一级黄片播放器| 成人亚洲欧美一区二区av| 中文字幕最新亚洲高清| 涩涩av久久男人的天堂| 黄片无遮挡物在线观看| 亚洲综合精品二区| 精品视频人人做人人爽| 日韩精品有码人妻一区| 欧美日韩av久久| 看免费成人av毛片| 啦啦啦在线观看免费高清www| 亚洲国产欧美日韩在线播放| 免费高清在线观看日韩| 欧美精品av麻豆av| 国产在线一区二区三区精| 成人毛片a级毛片在线播放| 精品少妇久久久久久888优播| h视频一区二区三区| 性少妇av在线| 久久人人爽人人片av| 90打野战视频偷拍视频| 精品第一国产精品| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 久久精品久久久久久久性| 日韩av不卡免费在线播放| 美女国产高潮福利片在线看| 国产高清不卡午夜福利| 热re99久久国产66热| 91精品三级在线观看| 我的亚洲天堂| 宅男免费午夜| 啦啦啦在线观看免费高清www| 国产野战对白在线观看| 少妇被粗大猛烈的视频| 人妻系列 视频| 视频在线观看一区二区三区| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 色播在线永久视频| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频| 十八禁网站网址无遮挡| 制服人妻中文乱码| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久 | av网站免费在线观看视频| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 美女国产高潮福利片在线看| 午夜福利网站1000一区二区三区| 日本欧美国产在线视频| 亚洲av日韩在线播放| 久久久久精品性色| a级毛片在线看网站| 国产精品免费视频内射| av网站免费在线观看视频| 一本大道久久a久久精品| 精品酒店卫生间| 青青草视频在线视频观看| 99国产精品免费福利视频| 高清不卡的av网站| av有码第一页| 热re99久久国产66热| 90打野战视频偷拍视频| av国产久精品久网站免费入址| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 叶爱在线成人免费视频播放| 老司机亚洲免费影院| 成人毛片60女人毛片免费| 亚洲国产色片| 亚洲一区二区三区欧美精品| 少妇熟女欧美另类| 久久99精品国语久久久| 久久久久久久大尺度免费视频| 久久精品国产自在天天线| 男人舔女人的私密视频| 亚洲伊人久久精品综合| 涩涩av久久男人的天堂| 18禁裸乳无遮挡动漫免费视频| 男人添女人高潮全过程视频| 国产亚洲午夜精品一区二区久久| 少妇的逼水好多| 久久人人爽av亚洲精品天堂| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 精品国产乱码久久久久久男人| 中文乱码字字幕精品一区二区三区| 男女啪啪激烈高潮av片| 久久久精品区二区三区| 国产 一区精品| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 成人午夜精彩视频在线观看| 久久久久久久久免费视频了| 九草在线视频观看| 王馨瑶露胸无遮挡在线观看| 国产av精品麻豆| 不卡av一区二区三区| 麻豆av在线久日| 国产精品一二三区在线看| 婷婷色综合大香蕉| 新久久久久国产一级毛片| 亚洲综合色网址| 热99久久久久精品小说推荐| 亚洲精品av麻豆狂野| 熟女电影av网| 97精品久久久久久久久久精品| 午夜av观看不卡| 天天躁夜夜躁狠狠躁躁| 亚洲一级一片aⅴ在线观看| 考比视频在线观看| 精品少妇久久久久久888优播| 国产男女超爽视频在线观看| 久久久久精品性色| 亚洲色图 男人天堂 中文字幕| 99久久人妻综合| 成年女人毛片免费观看观看9 | 中文字幕亚洲精品专区|