• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shape retrieval using multi-level included anglefunctions-based Fourier descriptor

    2014-09-06 10:49:27XuGuoqingMuZhichunXuYe
    關(guān)鍵詞:查全率查準(zhǔn)率北京科技大學(xué)

    Xu Guoqing Mu Zhichun Xu Ye

    (School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

    ?

    Shape retrieval using multi-level included anglefunctions-based Fourier descriptor

    Xu Guoqing Mu Zhichun Xu Ye

    (School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

    An effective shape signature, namely multi-level included angle functions (MIAFs), is proposed to describe the hierarchy information ranging from global information to local variations of shape. Invariance to rotation, translation and scaling are the intrinsic properties of the MIAFs. For each contour point, the multi-level included angles are obtained based on the paired line segments derived from unequal-arc-length partitions of contour. And a Fourier descriptor derived from multi-level included angle functions (MIAFD) is presented for efficient shape retrieval. The proposed descriptor is evaluated with the standard performance evaluation method on three shape image databases, the MPEG-7 database, the Kimia-99 database and the Swedish leaf database. The experimental results of shape retrieval indicate that the MIAFD outperforms the existing Fourier descriptors, and has low computational complexity. And the comparison of the MIAFD with other shape description methods also shows that the proposed descriptor has the highest precision at the same recall value, which verifies its effectiveness.

    shape description; image retrieval; multi-level included angle function; Fourier descriptor

    As one of the primary visual contents of images used in CBIR, shape is clearly an important cue for representing and indexing images. However, shape description is a difficult task[1], as shape instances from the same category are often very different due to various transformations, such as translation, rotation, scaling, noise and occlusion, etc.[2]. In the last decade, significant progress has been made in the development of shape description and matching, and many shape description methods have been proposed[3]. Among many existing shape descriptors, the Fourier descriptor (FD) is a classical method and it is very popular due to its low computational complexity, clarity and coarse-to-fine description[3-4]. FD methods use a 1-D feature function called shape signature, to represent a 2-D shape contour. Different feature functions have different capabilities of describing contour, and, hence, FDs derived from different feature functions have significantly different retrieval performance[5]. In recent years, several new signatures have been developed, such as the perimeter area function (PAF)[6], the farthest point distance (FPD)[5], and the arc-height radius complex function (AHRC)[7].

    The FPD is expected to increase the capability of the FD to capture local corner information. For a given point on the shape contour, the FPD value is calculated by adding the distance between the given point and the centroid to that between the centroid and the point farthest from the given point. Therefore, the FPD is still affected by the centroid in essence, and it cannot describe the local detail information very well.

    The PAF places all the vertices of the triangle on the shape contour and can well capture local contour information. And the Fourier features derived from the PAF are combined with the ones derived from the centroid distance (CD) for shape retrieval. The experimental results show that this method outperforms commonly used FDs and the wavelet Fourier descriptor[6]. Much similar to the PAF, the AHRC also uses contour points to produce the signed arc-height features[7]. The AHRC is a complex-valued signature formed by combining the centroid distance and the signed arc-height, and it is analogous to the angular radius function[8]. The FDs derived from the AHRC function can be regarded as the arc-height radius Fourier descriptor (AHRFD).

    However, the combination of local and global features, such as PAF+CD, fails to reflect the hierarchy of the diversity between local and global information very well. Another way to capture both local and global information can be achieved by using the multi-scale methods[6,9-10]. In Ref.[9], the beam angle statistics (BAS) descriptor was proposed. Beams are defined as vectors connecting a contour point with the remaining points on the contour, and the slopes of the beams are used to calculate the angle between each pair of beams. However, the usage of the statistics of the beam angles at all scales and the optimal correspondence algorithm increases the computational complexity. In Ref.[10], the angle scale descriptor (ASD) was introduced to eliminate the noise influence in the angle calculation. In the ASD, the angle at a point is formed by two successive vectors. However, the usage of consecutive angle’s scaling makes the information in feature vectors redundant. And the amount of computation increases accordingly. It is clear that both of the two descriptors do not rationally exploit the information provided by the angles. The proposed MIAFs with only a few levels can represent both local and global shape features very well, and describe the contour hierarchically and reliably. Then MIAFs are used to derive the effective FD for shape retrieval. The Fourier descriptor based on MIAFs is very compact, and presents good and stable retrieval performance. In this paper, a multi-scale shape signature, namely multi-level included angle functions (MIAFs), is presented to further promote the shape retrieval performance of the FD.

    1 Multi-Level Included Angle Functions

    In this section, we propose the MIAFs. A shape contour after sampling can be expressed by an ordered set of pointsC={pi=(xi,yi)}, fori=1,2,…,M, wherexiandyirepresent the coordinates of the pointpi, andMis the number of contour points. The length of the contour is denoted byL, which is defined as the number of the contour points in this paper.

    The MIAFs can be obtained through the following steps. For each pointpion the shape contour, we can locateK(Kis a positive integer) points orderly by tracing the contour in the forward direction, which satisfy that the arc length betweenpiand thek-th point is equal to (2k+1-2k-1)L/2K+2, fork=1,2,…,K. Then in the reverse direction, otherKpoints can be located on the contour, satisfying the similar constraint. 2Kneighbor points are located totally in such a way. And a pair of line segments can be obtained by connecting pointpiand two neighbor points which have equal arc length from pointpito them, respectively. There areKpairs of line segments in total. Fig.1(a) indicates that six pairs of line segments are formed whenKis set to be six, and Fig.1(b) shows one of the included angles in Fig.1(a).

    Fig.1 Contour partitions and included angle. (a) Illustration of paired line segments based on unequal-arc-length partitions of the contour; (b) Illustration of included angle

    The included angleθikbetween thek-th pair of line segments can be calculated according to the law of cosines. With a specific starting pointp1of the shape contour, the arc length betweenp1and each pointpiis unique, and the correspondingKincluded angles,θik(k=1,2,…,K), change according topi. Therefore,θikcan be viewed as a function of the arc length. Then for contourC, a set of included angle functions can be expressed asΨ={θ1,θ2,…,θK}, whereθk={θ1k,θ2k,…,θMk}, and denoted as MIAFs.

    The MIAFs are clearly invariant under translation and rotation, because the MIAFs are defined directly on contour points and for each point on the shape contour the included angles do not change while rotating or translating the contour. And the MIAFs are also scale invariant. For a given scaling factor denoted as Sf, the lengths of all the line segments change in the same proportion when the contour is scaled. And the proportion Sf is removed during the calculation of included angles, so the MIAFs remain unchanged.

    But for different starting points, MIAFs will change subsequently, and the matching process in shape retrieval will become complicated in this case. To eliminate the impact caused by different starting points, the Fourier transform is applied on MIAFs.

    2 MIAFs-Based Flourier Descriptor (MIAFD)

    The Fourier transform is applied after the MIAFs are extracted to make them independent from the starting point. We resample each original shape contour with equivalent intervals before the implementation of the fast Fourier transform (FFT) in order that the points numberM=2n, wherenis a positive integer. For an included angle functionθkinΨ, whereθk={θ1k,θ2k,…,θMk} andk=1, 2,…,K, the FFT for the function is given as

    The similarity between two shapes can be determined by the Manhattan distance (MD) metric.

    3 Experimental Testing and Results Comparison

    To evaluate the effectiveness of the proposed MIAFD, the retrieval tests are conducted on three databases, the MPEG-7 Set B database, the Kimia-99 database, and the Swedish leaf database. Details about these databases can be seen in Refs.[11-13]. And the retrieval results are measured using precision and recall curve. The following experiments are implemented using one computer with a Pentium 3.07 GHz CPU, and Matlab (version 7.9) is used as programming tool.

    In our retrieval experiments, the number of the sampling points for each shape contour is 256, and the value of parameterKis set to be 6. In each level, seven low-frequency Fourier features are used for retrieval. This indicates that the total number of coefficients used for the MIAFD is 42.

    3.1 Comparisons of MIAFD and other FDs

    The proposed method is compared with other four typical Fourier descriptors, including widely used FDs derived from angular radius function (ARF)[8], PAF[6], FPD[5], and AHRC[7]. For all the four Fourier descriptors, the total number of features used is set to be 42 in our experiment, which is a suitable value according to Refs.[4,6-7].

    Fig.2 shows the average precision-recall plots using the MPEG-7 Set B database, the Kimia-99 database and the Swedish leaf database.

    Fig.2(a) shows that among the competing FDs, the highest precision is reached at each recall level by our method on the MPEG-7 Set B database. For example, when the recall value is 50%, the precision of the MIAFD is higher than that of PAF+CD, the second top descriptor, by 9% and the AHRFD by nearly 17%. The MIAFD also achieves better retrieval result than the other four FDs on the Kimia-99 database and the Swedish leaf database. From Figs.2(b) and (c), we can see that the proposed method achieves much higher precision at each level of the recall value than the other four functions.

    To compare the computational complexity of the MIAFD with other FDs, the time required for feature extraction and shape matching is reported for each FD on the MPEG-7 database. In our experiments, feature extraction was implemented for all 1 400 images, and then each shape in the database was taken as a query for each FD. The experiment was repeated 20 times for each FD. The average time required for the feature extraction of one shape and the matching time of one query is shown in Tab.1.

    As can be seen from Tab.1, the time that one query shape requires to complete the matching stage for each FD is almost the same. For the feature extraction stage, 18.036 ms is taken for one shape on average using the MIAFD, which is less than that using the FPD and a little more than those using the AHRFD and the PAF+CD. These results show that the MIAFD is competitive in complexity compared with these methods.

    3.2 Result comparisons of MIAFD with other shape descriptors

    To obtain a comprehensive comparison, the proposed descriptor is also compared with six other notable commonly used or recently proposed descriptors. These shape descriptors are the tensor scale descriptor with influence zones (TSDIZ)[14], the angle scale descriptor (ASD)[10], the SCHT-based shape descriptors (SCHDs)[15], the contour points distribution histogram descriptor (CPDH)[1], the generic Fourier descriptor (GFD)[16],and the curvature-based Fourier descriptor (CBFD)[17]. These descriptors are adopted for the comparison because it has recently been shown that they are efficient and effective techniques for shape retrieval on the standard shape dataset[1,10,14-17].

    (a)

    (b)

    (c)Fig.2 Precision-recall curves of different FD methods. (a) On MPEG database; (b) On Kimia-99 database; (c) On Swedish leaf database

    Tab.1 Processing time required for feature extraction and matching stage using FDs ms

    In comparison with these notable approaches, the MIAFD achieves excellent performance. Fig.3 shows the precision-recall plots of the MIAFD, GFD, CPDH, ASD, CBFD, TSDIZ and SCHDs on the standard MPEG-7 database. The precision and recall data of the CPDH, GFD, CBFD, ASD, TSDIZ and SCHDs come from Refs.[1,10,14-17], respectively. It is noted that these results were obtained with optimal parameters. From Fig.3 it is clear that the precision of the CPDH, GFD, CBFD, ASD, TSDIZ and SCHDs at each level of recall is much lower than that of the proposed technique. It is obvious that the performance of the MIAFD is very promising.

    Fig.3 Precision-recall curves of the MIAFD, CPDH, GFD, ASD, CBFD, TSDIZ and SCHDs

    We also compare the computational complexity of the MIAFD with that of the ASD. We re-implemented the ASD method on the MPEG-7 database according to Ref.[10]. Feature extraction is implemented for all 1 400 images and the first 400 shapes in the MPEG-7database are taken as queries. The average time required for the feature extraction of one shape and the matching time of one query is given in Tab.2. As seen in Tab.2, the MIAFD has a great advantage over the ASD in the computational complexity.

    Tab.2 Processing time required for feature extraction and matching stage using MIAFD and ASD ms

    4 Conclusion

    We propose the MIAFs to describe shape contour hierarchically and reliably. The MIAFs are based on the unequal-arc-length partitions of the contour and can describe shape contour from coarse to fine at different levels. The MIAFs are inherently invariant under translation, rotation and scaling. The MIAFs-based Fourier descriptor (MIAFD) is tested on the MPEG-7 Set B database, the Kimia-99 database and the Swedish leaf database. The experimental results demonstrate that the proposed method can be very compact and present better retrieval performance than other FDs. The reason for the superior retrieval performance is that the proposed MIAFD method can well capture the hierarchy information ranging from global to local variations of shape. Moreover, the comparisons with the other six notable shape descriptors indicate that our method has remarkable retrieval performance.

    [1]Shu X, Wu X J. A novel contour descriptor for 2D shape matching and its application to image retrieval [J].ImageandVisionComputing, 2011, 29(4): 286-294.

    [2]Wang M, Li F, Wang M. Collaborative visual modeling for automatic image annotation via sparse model coding [J].Neurocomputing, 2012, 95(1): 22-28.

    [3]Zhang D S, Lu G J. Review of shape representation and description techniques [J].PatternRecognition, 2004, 37(1): 1-19.

    [4]Zhang D S, Lu G J. Study and evaluation of different Fourier methods for image retrieval [J].ImageandVisionComputing, 2005, 23(1): 33-49.

    [5]El-ghazal A, Basir O, Belkasim S. Farthest point distance: a new shape signature for Fourier descriptors [J].SignalProcessing:ImageCommunication, 2009, 24(7): 572-586.

    [6]Wang B. Shape retrieval using combined Fourier features [J].OpticsCommunications, 2011, 284(14): 3504-3508.

    [7]Wang B. Shape description using arc-height radius complex function [J].ActaElectronicaSinica, 2011, 39(4): 831-836. (in Chinese)

    [8]Kunttu I, Lepist? L. Shape-based retrieval of industrial surface defects using angular radius Fourier descriptor [J].IETImageProcessing, 2007, 1(2): 231-236.

    [9]Arica N, Yarman V F T. Bas: a perceptual shape descriptor based on the beam angle statistics [J].PatternRecognitionLetters, 2003, 24(9/10): 1627-1639.

    [10]Fotopoulou F, Economou G. Multivariate angle scale descriptor for shape retrieval[C]//SignalProcessingandAppliedMathematicsforElectronicsandCommunicationsWorkshop. Cluj-Napoca Romania, 2011: 26-28.

    [11]Latecki L J, Lakamper R, Eckhardt T. Shape descriptors for non-rigid shapes with a single closed contour[C]//IEEEConferenceonComputerVisionandPatternRecognition. Hilton Head Island, SC, USA, 2000: 424-429.

    [12]Sebastian T B, Klein P N, Kimia B B. Recognition of shapes by editing their shock graphs [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2004, 26(5): 550-571.

    [13]Xu G Q, Mu Z C, Nan B F. Shape retrieval using improved arc-height function[C]//2012InternationalConferenceonWaveletAnalysisandPatternRecognition. Xi’an, China, 2012: 73-77.

    [14]Andaló F A, Miranda P A V, Torres R S, et al. Shape feature extraction and description based on tensor scale [J].PatternRecognition, 2010, 43(1): 26-36.

    [15]Wang B, Wu J S, Shu H Z, et al. Shape description using sequency-ordered complex Hadamard transform [J].OpticsCommunications, 2011, 284(12): 2726-2729.

    [16]Zhang D S, Lu G J. Shape-based image retrieval using generic Fourier descriptor [J].SignalProcessing:ImageCommunication, 2002, 17(10): 825-848.

    [17]El-ghazal A, Basir O, Belkasim S. Invariant curvature-based Fourier shape descriptors [J].JournalofVisualCommunicationandImageRepresentation, 2012, 23(4): 622-633.

    基于多級(jí)夾角函數(shù)的傅里葉形狀描述子

    徐國(guó)清 穆志純 徐 燁

    (北京科技大學(xué)自動(dòng)化學(xué)院, 北京 100083)

    為了描述形狀由全局信息到局部變化的層次信息,提出一種有效的形狀簽名,即多級(jí)夾角函數(shù).多級(jí)夾角函數(shù)具有內(nèi)在的旋轉(zhuǎn)、平移和縮放不變性.對(duì)輪廓上每一點(diǎn),其多級(jí)夾角函數(shù)通過(guò)輪廓的非等弧長(zhǎng)分割所得的成對(duì)線段計(jì)算得到.然后利用多級(jí)夾角函數(shù)推導(dǎo)出傅里葉描述子,以進(jìn)行高效的形狀檢索.使用標(biāo)準(zhǔn)的性能評(píng)價(jià)方法對(duì)所提出的描述子在3個(gè)形狀圖像庫(kù)上進(jìn)行了測(cè)試,包括MPEG-7圖像庫(kù)、Kimia-99圖像庫(kù)和Swedish樹(shù)葉圖像庫(kù).形狀檢索實(shí)驗(yàn)結(jié)果表明,基于多級(jí)夾角函數(shù)的傅里葉描述子優(yōu)于已有的傅里葉描述子,且具有較低的計(jì)算復(fù)雜度.與其他類型的形狀描述方法相比,所提出的描述子在相同查全率時(shí)具有最高的查準(zhǔn)率,證明了該描述子的有效性.

    形狀描述;圖像檢索;多級(jí)夾角函數(shù);傅里葉描述子

    TP391

    The National Natural Science Foundation of China (No.61170116, 61375010, 60973064).

    :Xu Guoqing, Mu Zhichun, Xu Ye. Shape retrieval using multi-level included angle functions-based Fourier descriptor[J].Journal of Southeast University (English Edition),2014,30(1):22-26.

    10.3969/j.issn.1003-7985.2014.01.005

    10.3969/j.issn.1003-7985.2014.01.005

    Received 2013-05-28.

    Biographies:Xu Guoqing (1986—), male, doctor; Mu Zhichun(corresponding author), male, professor, mu@ies.ustb.edu.cn.

    猜你喜歡
    查全率查準(zhǔn)率北京科技大學(xué)
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    《北京科技大學(xué)學(xué)報(bào)》(社會(huì)科學(xué)版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    海量圖書(shū)館檔案信息的快速檢索方法
    基于數(shù)據(jù)挖掘技術(shù)的網(wǎng)絡(luò)信息過(guò)濾系統(tǒng)設(shè)計(jì)
    基于詞嵌入語(yǔ)義的精準(zhǔn)檢索式構(gòu)建方法
    大數(shù)據(jù)環(huán)境下的文本信息挖掘方法
    基于深度特征分析的雙線性圖像相似度匹配算法
    田永訴北京科技大學(xué)拒絕頒發(fā)畢業(yè)證、學(xué)位證案
    中文分詞技術(shù)對(duì)中文搜索引擎的查準(zhǔn)率及查全率的影響
    一本大道久久a久久精品| 老女人水多毛片| 国产熟女午夜一区二区三区 | 不卡视频在线观看欧美| 国产黄色视频一区二区在线观看| xxx大片免费视频| 中文欧美无线码| 日本免费在线观看一区| 80岁老熟妇乱子伦牲交| 久久久久久人妻| 亚洲av免费高清在线观看| 欧美性感艳星| 日日撸夜夜添| 日韩一本色道免费dvd| 看十八女毛片水多多多| 亚洲av综合色区一区| 亚洲成人av在线免费| 久久狼人影院| 人妻系列 视频| 中文字幕av电影在线播放| 一级片'在线观看视频| 中文欧美无线码| av.在线天堂| 赤兔流量卡办理| 国产深夜福利视频在线观看| 精品一品国产午夜福利视频| 国产成人精品福利久久| 秋霞在线观看毛片| 国产黄色视频一区二区在线观看| a 毛片基地| 高清欧美精品videossex| 91精品伊人久久大香线蕉| 国精品久久久久久国模美| 久久久久久久精品精品| 天美传媒精品一区二区| 中文字幕av电影在线播放| 成人无遮挡网站| 夜夜骑夜夜射夜夜干| 日韩免费高清中文字幕av| 国产成人精品婷婷| 大码成人一级视频| 亚洲欧洲日产国产| 亚洲av中文av极速乱| 精品熟女少妇av免费看| 考比视频在线观看| 91精品三级在线观看| 成人免费观看视频高清| 国产一区二区三区综合在线观看 | 久久久久久人妻| tube8黄色片| 在线观看一区二区三区激情| 午夜影院在线不卡| 秋霞伦理黄片| 久久久欧美国产精品| 熟女av电影| .国产精品久久| 全区人妻精品视频| 亚洲精品aⅴ在线观看| 久久免费观看电影| 汤姆久久久久久久影院中文字幕| 只有这里有精品99| 最新中文字幕久久久久| 如日韩欧美国产精品一区二区三区 | 亚洲无线观看免费| 久久鲁丝午夜福利片| 精品国产露脸久久av麻豆| 国产免费一级a男人的天堂| 日韩人妻高清精品专区| 婷婷色麻豆天堂久久| 日韩精品有码人妻一区| 日韩大片免费观看网站| 国产男人的电影天堂91| 欧美少妇被猛烈插入视频| 亚洲情色 制服丝袜| 黄色毛片三级朝国网站| 王馨瑶露胸无遮挡在线观看| 日韩亚洲欧美综合| 久久久久国产精品人妻一区二区| 成年人午夜在线观看视频| 妹子高潮喷水视频| 精品亚洲成国产av| 美女中出高潮动态图| 日韩在线高清观看一区二区三区| 欧美人与善性xxx| 人人妻人人澡人人爽人人夜夜| 在线天堂最新版资源| 国产成人精品久久久久久| 午夜福利在线观看免费完整高清在| 人成视频在线观看免费观看| 高清黄色对白视频在线免费看| 久久精品熟女亚洲av麻豆精品| 国产乱人偷精品视频| 热re99久久国产66热| 桃花免费在线播放| 免费日韩欧美在线观看| 天堂中文最新版在线下载| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久av网站| 国内精品宾馆在线| 亚洲怡红院男人天堂| 国产爽快片一区二区三区| 狂野欧美激情性xxxx在线观看| 视频在线观看一区二区三区| 日本黄色日本黄色录像| 久久久久久久亚洲中文字幕| 日韩一区二区三区影片| 久久 成人 亚洲| 色吧在线观看| 91aial.com中文字幕在线观看| 亚洲成色77777| 青春草国产在线视频| 欧美 亚洲 国产 日韩一| 制服诱惑二区| av有码第一页| 国产色爽女视频免费观看| 丝袜在线中文字幕| 久久久久精品久久久久真实原创| 黄色一级大片看看| 久久婷婷青草| 在线观看www视频免费| 天堂8中文在线网| 18禁观看日本| a级毛片黄视频| 91在线精品国自产拍蜜月| 少妇人妻久久综合中文| 99视频精品全部免费 在线| 久热这里只有精品99| 午夜激情av网站| 一边亲一边摸免费视频| 日本色播在线视频| 亚洲成人av在线免费| 大又大粗又爽又黄少妇毛片口| 人妻系列 视频| 日本av手机在线免费观看| av免费观看日本| 久久精品人人爽人人爽视色| 成人午夜精彩视频在线观看| 亚洲av综合色区一区| 男男h啪啪无遮挡| 少妇人妻久久综合中文| av网站免费在线观看视频| 特大巨黑吊av在线直播| 搡老乐熟女国产| 久久久久国产网址| 热99国产精品久久久久久7| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久av不卡| 熟女电影av网| 亚洲精品成人av观看孕妇| 一区二区av电影网| 少妇精品久久久久久久| 黑人猛操日本美女一级片| 久久国产精品大桥未久av| 老司机亚洲免费影院| 精品久久久久久久久亚洲| 免费观看的影片在线观看| 国产精品一区二区在线观看99| 国产av国产精品国产| 亚洲av成人精品一二三区| 男女啪啪激烈高潮av片| 精品国产露脸久久av麻豆| 国产免费一级a男人的天堂| 三级国产精品欧美在线观看| 永久免费av网站大全| 亚洲欧美一区二区三区黑人 | 久久青草综合色| 毛片一级片免费看久久久久| 卡戴珊不雅视频在线播放| 亚洲精品久久午夜乱码| 99九九线精品视频在线观看视频| 日韩强制内射视频| 51国产日韩欧美| 老司机亚洲免费影院| 国产日韩欧美在线精品| 蜜桃在线观看..| 欧美+日韩+精品| 亚洲,欧美,日韩| 夫妻性生交免费视频一级片| 中文字幕人妻丝袜制服| 最近中文字幕2019免费版| 亚洲精品美女久久av网站| 国产欧美亚洲国产| 国产一区二区三区综合在线观看 | av黄色大香蕉| 两个人免费观看高清视频| 午夜视频国产福利| 国产成人一区二区在线| 成年人免费黄色播放视频| 中国美白少妇内射xxxbb| 色网站视频免费| 日本免费在线观看一区| 国产精品国产三级专区第一集| 边亲边吃奶的免费视频| 亚洲精品,欧美精品| 国产精品成人在线| 色吧在线观看| 成人漫画全彩无遮挡| 黄片播放在线免费| 久久精品久久精品一区二区三区| 99九九线精品视频在线观看视频| 久久久久久久精品精品| 一二三四中文在线观看免费高清| 亚洲成人手机| 久久午夜福利片| 女性被躁到高潮视频| 人妻系列 视频| 亚洲图色成人| 久久精品国产鲁丝片午夜精品| 老女人水多毛片| 一级毛片aaaaaa免费看小| 亚洲在久久综合| 久久国产精品大桥未久av| 亚洲av欧美aⅴ国产| 一区二区三区精品91| 精品久久久久久电影网| 日韩三级伦理在线观看| 男女国产视频网站| av在线播放精品| 久久影院123| 黄色毛片三级朝国网站| 亚洲av免费高清在线观看| 在线免费观看不下载黄p国产| 国产无遮挡羞羞视频在线观看| 狠狠精品人妻久久久久久综合| 乱码一卡2卡4卡精品| 两个人免费观看高清视频| 国产在线免费精品| 亚洲欧美精品自产自拍| 国产永久视频网站| 国产国语露脸激情在线看| 国产成人免费无遮挡视频| 纵有疾风起免费观看全集完整版| 久久亚洲国产成人精品v| 国产白丝娇喘喷水9色精品| 最近中文字幕2019免费版| 亚洲av中文av极速乱| 搡女人真爽免费视频火全软件| 亚洲情色 制服丝袜| 久久久久国产精品人妻一区二区| 国产精品国产三级国产专区5o| 性色av一级| 成年av动漫网址| 精品视频人人做人人爽| 午夜福利,免费看| 人体艺术视频欧美日本| 边亲边吃奶的免费视频| 观看av在线不卡| 亚洲精品乱久久久久久| 高清av免费在线| 国产综合精华液| av国产久精品久网站免费入址| 热99国产精品久久久久久7| 国产老妇伦熟女老妇高清| 国产永久视频网站| 久久久久精品久久久久真实原创| 青青草视频在线视频观看| 热99国产精品久久久久久7| 日韩亚洲欧美综合| 如何舔出高潮| 日韩电影二区| 日本黄色日本黄色录像| 亚洲av欧美aⅴ国产| av免费观看日本| 大片电影免费在线观看免费| 久久精品久久精品一区二区三区| 99久久精品国产国产毛片| 最近的中文字幕免费完整| 国产在线一区二区三区精| 精品视频人人做人人爽| .国产精品久久| 亚洲激情五月婷婷啪啪| 日韩大片免费观看网站| 国精品久久久久久国模美| 国产精品99久久99久久久不卡 | 激情五月婷婷亚洲| 欧美性感艳星| 韩国av在线不卡| 精品人妻一区二区三区麻豆| 大香蕉久久网| 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| 国产爽快片一区二区三区| 久久久久久久久久久免费av| 国产成人免费观看mmmm| 亚洲婷婷狠狠爱综合网| 免费人成在线观看视频色| 大香蕉久久成人网| 嫩草影院入口| 免费人成在线观看视频色| 在线观看免费日韩欧美大片 | 人人妻人人澡人人爽人人夜夜| 久久久久久伊人网av| 简卡轻食公司| 欧美激情 高清一区二区三区| 最黄视频免费看| 日韩免费高清中文字幕av| 久久久久久久亚洲中文字幕| 插逼视频在线观看| 美女主播在线视频| 久久韩国三级中文字幕| 日日啪夜夜爽| 久久久久久久久久成人| 永久免费av网站大全| 97在线视频观看| 亚洲色图综合在线观看| 亚洲成人一二三区av| 两个人免费观看高清视频| 91国产中文字幕| 91精品国产国语对白视频| 国产亚洲av片在线观看秒播厂| 欧美激情国产日韩精品一区| 欧美bdsm另类| 亚洲成人手机| 欧美精品高潮呻吟av久久| av.在线天堂| 亚洲精品乱久久久久久| 人妻少妇偷人精品九色| 精品99又大又爽又粗少妇毛片| 国产免费福利视频在线观看| 大片电影免费在线观看免费| 99热全是精品| 亚洲精品美女久久av网站| 搡女人真爽免费视频火全软件| 在现免费观看毛片| 热99久久久久精品小说推荐| 汤姆久久久久久久影院中文字幕| 97在线视频观看| 婷婷色av中文字幕| 亚洲人成77777在线视频| 免费不卡的大黄色大毛片视频在线观看| 夜夜骑夜夜射夜夜干| 久久精品熟女亚洲av麻豆精品| 母亲3免费完整高清在线观看 | 热re99久久精品国产66热6| 不卡视频在线观看欧美| 欧美日韩亚洲高清精品| 熟女av电影| 美女主播在线视频| 午夜老司机福利剧场| 夜夜爽夜夜爽视频| 亚洲精品乱码久久久久久按摩| 精品少妇久久久久久888优播| 18禁观看日本| 亚洲第一区二区三区不卡| 日韩av免费高清视频| 纯流量卡能插随身wifi吗| 免费观看在线日韩| 又粗又硬又长又爽又黄的视频| 在线免费观看不下载黄p国产| 亚洲,欧美,日韩| 制服诱惑二区| 观看av在线不卡| 免费日韩欧美在线观看| 在线播放无遮挡| 亚洲国产av新网站| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 我要看黄色一级片免费的| 色5月婷婷丁香| 国产伦精品一区二区三区视频9| 国产在视频线精品| 考比视频在线观看| 亚洲熟女精品中文字幕| 精品国产国语对白av| 成年女人在线观看亚洲视频| 国产极品天堂在线| 久久综合国产亚洲精品| 久久精品国产亚洲av天美| 久久人妻熟女aⅴ| 91久久精品国产一区二区三区| 一级黄片播放器| 少妇高潮的动态图| 成人国语在线视频| 热99国产精品久久久久久7| 赤兔流量卡办理| 免费播放大片免费观看视频在线观看| 亚洲婷婷狠狠爱综合网| 男女无遮挡免费网站观看| 日韩av不卡免费在线播放| av在线播放精品| 久久精品国产鲁丝片午夜精品| 亚洲欧美一区二区三区黑人 | 啦啦啦啦在线视频资源| 欧美最新免费一区二区三区| 各种免费的搞黄视频| 人妻少妇偷人精品九色| 欧美人与善性xxx| 久久久久久伊人网av| 亚洲欧美中文字幕日韩二区| 不卡视频在线观看欧美| 中国三级夫妇交换| 水蜜桃什么品种好| 看十八女毛片水多多多| 日本wwww免费看| 女性被躁到高潮视频| 亚洲无线观看免费| 亚洲国产精品专区欧美| 老司机影院成人| 久久亚洲国产成人精品v| 精品国产一区二区久久| 亚洲国产色片| 国产精品99久久久久久久久| 一级毛片 在线播放| 国产老妇伦熟女老妇高清| 午夜精品国产一区二区电影| 成人亚洲精品一区在线观看| 亚洲欧洲日产国产| 如何舔出高潮| 三级国产精品欧美在线观看| 中文字幕最新亚洲高清| 狠狠精品人妻久久久久久综合| 成人毛片a级毛片在线播放| 91久久精品国产一区二区成人| 日韩精品免费视频一区二区三区 | kizo精华| 精品国产一区二区久久| 丝袜脚勾引网站| 欧美最新免费一区二区三区| 欧美国产精品一级二级三级| 狠狠精品人妻久久久久久综合| 制服丝袜香蕉在线| 91久久精品国产一区二区三区| 久久精品国产a三级三级三级| 在线看a的网站| 啦啦啦中文免费视频观看日本| 乱码一卡2卡4卡精品| 亚洲一区二区三区欧美精品| 国产av国产精品国产| h视频一区二区三区| 男人操女人黄网站| 日韩亚洲欧美综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一区二区三区四区免费观看| 伦理电影免费视频| 亚洲国产精品国产精品| 99国产综合亚洲精品| 国产亚洲最大av| 18禁动态无遮挡网站| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级| 乱人伦中国视频| 婷婷色综合大香蕉| 九色亚洲精品在线播放| 国产精品一区二区三区四区免费观看| 亚洲av男天堂| 婷婷成人精品国产| 我的老师免费观看完整版| av在线播放精品| 久久婷婷青草| 成人国语在线视频| 纯流量卡能插随身wifi吗| 2022亚洲国产成人精品| 亚洲高清免费不卡视频| 欧美国产精品一级二级三级| 中文字幕亚洲精品专区| 亚洲精品自拍成人| 18禁在线无遮挡免费观看视频| 80岁老熟妇乱子伦牲交| 十分钟在线观看高清视频www| 18禁动态无遮挡网站| 纵有疾风起免费观看全集完整版| 久久人人爽av亚洲精品天堂| 免费黄频网站在线观看国产| 国产一区二区三区av在线| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花| 亚洲av不卡在线观看| 亚洲av成人精品一区久久| 制服诱惑二区| 女性被躁到高潮视频| 国产在线免费精品| 欧美国产精品一级二级三级| 丝瓜视频免费看黄片| 日韩人妻高清精品专区| 国产精品久久久久久av不卡| 18+在线观看网站| 一级片'在线观看视频| 精品99又大又爽又粗少妇毛片| 精品人妻偷拍中文字幕| 国产亚洲精品久久久com| 色网站视频免费| 天堂8中文在线网| 新久久久久国产一级毛片| 欧美日韩成人在线一区二区| 在现免费观看毛片| 精品国产露脸久久av麻豆| 午夜免费鲁丝| 亚洲av成人精品一区久久| 久久久久精品久久久久真实原创| 亚洲成人一二三区av| 亚洲精品自拍成人| 成年人午夜在线观看视频| 欧美最新免费一区二区三区| 黑人猛操日本美女一级片| 一个人免费看片子| 成人黄色视频免费在线看| 一本一本综合久久| 国产成人精品在线电影| 欧美性感艳星| 久久狼人影院| 极品人妻少妇av视频| 一级黄片播放器| 天堂中文最新版在线下载| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| 各种免费的搞黄视频| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| 一本久久精品| 波野结衣二区三区在线| 亚洲精品久久午夜乱码| 日韩成人伦理影院| 亚洲精品国产色婷婷电影| 欧美一级a爱片免费观看看| 日韩大片免费观看网站| 国产乱人偷精品视频| 精品久久久久久久久亚洲| 丰满饥渴人妻一区二区三| 久久99一区二区三区| 亚洲国产最新在线播放| 国产成人freesex在线| 成人影院久久| 成年女人在线观看亚洲视频| 女人精品久久久久毛片| 18禁动态无遮挡网站| 午夜日本视频在线| 日韩免费高清中文字幕av| 女人久久www免费人成看片| 制服人妻中文乱码| 精品一品国产午夜福利视频| 男女边吃奶边做爰视频| 在线观看一区二区三区激情| 女人精品久久久久毛片| 亚洲美女搞黄在线观看| 日本色播在线视频| 美女视频免费永久观看网站| 国产 一区精品| 久久精品国产亚洲网站| 男的添女的下面高潮视频| 春色校园在线视频观看| av有码第一页| 黄色怎么调成土黄色| 人人妻人人爽人人添夜夜欢视频| 99九九线精品视频在线观看视频| 亚洲欧美成人精品一区二区| √禁漫天堂资源中文www| 亚洲欧美色中文字幕在线| 极品人妻少妇av视频| 久热久热在线精品观看| freevideosex欧美| 日本黄色片子视频| 亚洲精品视频女| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 最后的刺客免费高清国语| 国产成人freesex在线| 久久影院123| 99久久精品一区二区三区| 国产精品秋霞免费鲁丝片| 午夜精品国产一区二区电影| 少妇被粗大猛烈的视频| 亚洲国产精品国产精品| 成人国产av品久久久| 久久久久久久久久久免费av| 人人妻人人添人人爽欧美一区卜| 色5月婷婷丁香| 丰满迷人的少妇在线观看| 少妇的逼水好多| √禁漫天堂资源中文www| 熟女av电影| 激情五月婷婷亚洲| 久久婷婷青草| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| 欧美精品国产亚洲| 中文字幕久久专区| 日韩三级伦理在线观看| 老女人水多毛片| 99热网站在线观看| 亚洲少妇的诱惑av| xxx大片免费视频| 乱码一卡2卡4卡精品| 男人操女人黄网站| 国产乱来视频区| 久久久亚洲精品成人影院| 亚洲人与动物交配视频| 国产精品偷伦视频观看了| 天堂俺去俺来也www色官网| 日产精品乱码卡一卡2卡三| 国产日韩欧美视频二区| 2022亚洲国产成人精品| 国产69精品久久久久777片| av在线观看视频网站免费| 日本欧美国产在线视频| 满18在线观看网站| 久久久久精品性色| 九色成人免费人妻av| h视频一区二区三区| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 久久ye,这里只有精品| 久久久久久久久久成人| 久久 成人 亚洲| 久久国产精品大桥未久av| 午夜91福利影院| 国产av码专区亚洲av| 日韩免费高清中文字幕av| 在线天堂最新版资源| av女优亚洲男人天堂| 大香蕉久久成人网| 晚上一个人看的免费电影| 少妇被粗大猛烈的视频|