• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation for solid-liquid phase change of metal sodium in combined wick

    2014-09-06 10:49:51YuPingZhangHongXuHuiShenYan
    關(guān)鍵詞:金屬纖維金屬鈉吸液

    Yu Ping Zhang Hong,2 Xu Hui Shen Yan

    (1College of Energy, Nanjing University of Technology, Nanjing 211816, China)(2Changzhou Institute of Technology, Changzhou 213002, China)

    ?

    Numerical simulation for solid-liquid phase change of metal sodium in combined wick

    Yu Ping1Zhang Hong1,2Xu Hui1Shen Yan1

    (1College of Energy, Nanjing University of Technology, Nanjing 211816, China)(2Changzhou Institute of Technology, Changzhou 213002, China)

    Based on the finite volume method and the enthalpy-porous model, the solid-liquid phase change of sodium in the combined wick is numerically studied. The one-temperature model is used since the thermal conductivity of sodium is close to that of the combined wick materials. The non-Darcy law and natural convection in the melting process are taken into account. The results show that a thin metal fiber felt in the combined wick can result in a faster melting rate of the sodium and a shorter time for the molten sodium to reach the maximum velocity, which can shorten the time for the high-temperature heat pipe startup. A thick metal fiber felt in the combined wick can result in a uniform temperature distribution in the vertical heating wall and a small wall temperature difference, which can reduce the possibility of an overheat spot.

    solid-liquid phase change; combined wick; sodium; porous media

    Metal sodium embedded in the porous media of a heat pipe wick is initially in a solid state before the high-temperature heat pipe startup[1]. When power is applied to the evaporator section of the heat pipe, metal sodium in the porous media begins to melt, and natural convection takes place in the molten region because of the density difference of the molten sodium under the gravitational field. The natural convection heat transfer has important effects on the motion speed and shape of the solid/liquid phase change interface, and then further influences the high-temperature heat pipe startup process. Thus, the study on the solid-liquid phase change in porous media has attracted considerable attention[2-6].

    Beckermann et al.[7]conducted experimental and numerical investigations on the metal gallium phase change in porous media of glass beads. Natural convection was taken into account, and the heat transfer was ignored between the porous media and the phase change materials on account of the thermal diffusivity being in the same order of magnitude. The numerical results of the solid-liquid phase change interface shape and temperature distribution with a one-temperature model agreed reasonably well with the experimental results. However, if the thermal diffusivity of the porous media exceeds significantly that of the phase change materials, the heat transfer between them should not be ignored. Yang et al.[8]used a two-temperature model to simulate numerically solid-liquid phase change in the porous media, accounting for the thermal non-equilibrium between the phase change materials and the metal foam. They found that interstitial heat transfer can enhance the melting process significantly and improve the overall heat transfer rate. Volume expansion of the phase change materials during melting caused an extra flow that suppressed the propagation of the melting front, and consequently decreased the melting rate. Li et al.[9]developed a two-equation physical and mathematical model to describe the solid-liquid phase change process in the porous metallic foam. The natural convection of molten paraffin and the local thermal non-equilibrium between the porous metallic foam and the paraffin were taken into account. The study found that under the same pore density of the metallic foam, a smaller porosity, which had a greater effective thermal conductivity, can result in a higher melting rate.

    This paper mainly studies the solid-liquid phase change of metal sodium in the porous media of the combined wick of the high-temperature heat pipe[10-11]. The combined wick porous media is initially filled with solid sodium, and it melts gradually in the startup process from its frozen state. The melting time of solid sodium and the temperature distribution both have an effect on the high-temperature heat pipe startup process. Therefore, it is necessary to investigate the solid-liquid sodium phase change process in porous media of the combined wick. The solid-liquid sodium phase change process in the combined wick is numerically studied using the finite volume method and enthalpy-porous model. Since the thermal conductivity of the sodium and that of the combined wick (314L stainless steel) are in the same order of magnitudes, one-temperature model is applied[7,9]to the current model. The non-Darcy law and the natural convection of liquid sodium are also taken into account. Issues investigated and discussed in this paper include the velocity field, the temperature profiles, and the motion rate of the phase change interface.

    1 Mathematical Formulation and Physical Model

    1.1 Physical model

    In this paper, the combined wick[11]is defined as a whole porous media, in which the phase change process of sodium is discussed. The metal fiber felt thicknessδin the combined wick has three sizes: 2, 3 and 4 mm. The permeabilities of the combined wick withδof 2, 3 and 4 mm are about 3.37×10-10, 2.46×10-10, and 1.05×10-10m2, respectively[11].

    The physical model used is shown in Fig.1. The computational domain taken randomly from the combined wick is 100 mm×100 mm, which is filled uniformly with the rigid, porous media saturated with the solid sodium. We only simulate the initial state of the high-temperature heat pipe startup from the frozen state, namely the process of the solid sodium melting. In order to simulate the operating conditions of the high-temperature heat pipe, the heat flux boundary condition is used. The heat flux on the wall W1is 63 kW/m2.The other three faces are adiabatic. Initially, the model was at a uniform temperature of 30℃.

    Fig.1 Schematic illustration of the physical model

    1.2 Mathematical Model

    1.2.1 Assumptions

    The following simplifying assumptions are made to obtain the volume averaged conservation equations:

    1) The flow and heat transfer are two-dimensional and laminar.

    2) The porous media and fluid are incompressible and the Boussinesq approximation can be invoked.

    3) The porous media and the sodium (solid or liquid) are at a local thermal equilibrium.

    1.2.2 Governing equation

    Porous media is modeled by adding a momentum source term to the standard fluid flow equations. The source term is composed of two parts: a viscous loss term and an inertial loss term:

    (1)

    According to the above assumptions, the volume averaged conservation equations are

    (2)

    (3)

    (4)

    (5)

    whereUis the velocity vector;pis the pressure;βis the coefficient of thermal expansion; andTmeltis the melting temperature of the sodium;εis the fraction fluid in the volume element (that is, porosity),ε=Vf/V;γis the fraction liquid in fluid,γ(t)=Vl(t)/Vf;δis the fraction liquid in the volume element,δ(t)=Vl(t)/V=εγ(t).

    2 Results and Discussion

    2.1 Model validation

    Figs.2 and 3 show the comparisons of the evolution of the melting front and temperature profiles between the present model and the experimental results in Ref.[7]. From Fig.2 (t=1 to 5 min) and Fig.3(a), the deviation between the numerical simulation results and experimental ones in the early melting process is due to the uneven packing of the glass beads at the top of the computational domain. The loose packing causes the local volume fraction of gallium to be larger near the top than in the lower layers, which requires a larger amount of heat to melt them and can explain the slower advance of the melting front. Later in the process (t=20 min), the melting rate of gallium is greatly reduced due to the lower temperature gradients. As the melting rate decreases, the heat transfer is dominated by conduction and convection, and the effect of the uneven packing of glass beads (volume fraction of gallium) on the temperature profile and melting front is greatly diminished. Under these conditions, a good agreement is observed between the measured and predicted melting front locations and temperature profiles, as shown in Fig.2 (t=20 min) and Fig.3(b).

    Fig.2 Comparison of the evolution of the melting front

    From the above analysis, the current model is valid and can be applied to study a sodium melting process in the porous media of the combined wick.

    2.2 Relationship between the structure and the mot-ion speed of the melting front

    Fig.4 illustrates the evolution of the melting front in the combined wick with differentδ. In the initial stage of melting, the melting front of sodium moves from the left wall to the right wall gradually. It can be seen that a thinnerδresults in a higher melting rate in the combined wick. The reason is, on the one hand, that the flow resistance becomes less in the combined wick when a thinnerδresults in a larger permeability. On the other hand, the porosity of the combined wick is less whenδis thinner. Less porosity means less solid sodium embedded in the combined wick; thus the absorbed heat is less under the melting process of sodium. The motion speed of the melting front is faster.

    (a)

    (b)

    Fig.4 Comparison of the evolution of the melting front in the combined wick with different δ

    Due to the above reasons, the sodium will have a higher melting rate in the combined wick with a thinnerδ, and the heat transfer rate is also higher and then the time for the high-temperature heat pipe startup becomes shorter. It is very important when requiring a fast startup.

    2.3 Distribution of temperature and velocity

    In the process of the sodium melting, the temperature profiles and the distribution of fluid flow in the combined wick withδof 2, 3 or 4 mm are similar, and thus we only discuss the phase change process in the combined wick withδof 2 mm in this paper.

    Fig.5 shows the temperature profiles of three different vertical sections in the combined wick withδof 2 mm of 180 and 220 s, respectively. The melting point of sodium is about 370.97 K. The corresponding predicted streamlines are shown in Fig.6.

    (a)

    (b)

    From Figs.5(a) and (b), it can be seen that the temperature difference between the top of the model (y=0.099 m) and the bottom of the model (y=0.001 m) becomes larger and larger with the melting process. The reason is that the sodium close to the heating wall melts first in the initial period; the melting front is almost parallel to the heating wall indicating a conduction dominated melting process; thus the temperature difference at the heating wall is very small, as shown in Fig.6(a). After the initial period, with the amount of molten sodium increasing continuously, buoyancy induced convection heat transfer in the melting becomes increasingly significant, and the melting front gradually becomes the typical shape of convection dominated melting, as shown in Fig.6(b). The melting front moves faster near the top where the liquid, heated by the hot wall, flows in constantly. However, the melting rate decreases toward the bottom, because the liquid cools as it descends along the interface.

    (a)

    (b) Fig.6 Velocity fields in the combined wick with δof 2mm.(a) t=180 s;(b) t=220 s

    2.4 Effect of the wick structure on the temperaturedistribution

    Fig.7 shows the temperature distribution of the heating wall with differenty-coordinates in the combined wick with differentδin the sodium melting period. It can be seen that with the melting process, the heating wall temperature difference becomes larger and larger. In the initial period, the temperature distribution on the heating wall is uniform, thus the temperatures at differenty-coordinates are almost the same, as shown in Fig.7 (t=0 to 180 s). With the amount of molten sodium increasing, the convection induced by the density difference becomes more and more significant. The hot upward flow of liquid sodium results in a higher melting rate in the upper region, so the non-uniform temperature distribution on the heating wall appears. As shown in Fig.7, the temperature differences betweeny=0.001m andy=0.099 m in the heating wall of the combined wick are about 14.10, 8.83 and 6.07 K corresponding toδof 2,3 and 4 mm, respectively, fort=280 s. It is observed that a thickerδin the combined wick can lead to a more uniform temperature distribution in the vertical heating wall, and a smaller temperature difference. In most cases, when the temperature distribution in the heating wall is uneven, the overheat spot will likely appear and the process of the high-temperature heat pipe startup may fail. Therefore, a thickerδis beneficial.

    Fig.7 The variation of the temperature distribution in the heating wall W1

    2.5 Relationship between structure of the combinedwick and melting rate

    Fig.8 shows the variation of the maximum velocity of molten sodium in the process of sodium melting in the combined wick with differentδ. It can be seen that in the process of sodium melting there are three obvious stages for the maximum velocity variation, namely, appearance, increasing and decreasing. The maximum velocity of molten sodium increases first, reaches the peak value and then decreases. The peak values in the combined wick withδof 2, 3 and 4 mm are about 0.00255, 0.00168 and 0.00126 m/s, respectively, and the corresponding times are 320, 340 and 350 s, respectively. The reason is, first, that a thickerδin the combined wick will result in a higher flow resistance, and thus the maximum velocity in the melting process of sodium is smaller. Secondly, the porosity of the combined wick is larger whenδis thicker,and the amount of solid sodium embedded in the combined wick is larger, and thus the amount of absorbed heat is larger under the melting process of sodium.

    Fig.8 Variation of the maximum velocity of molten sodium in the process of sodium melting in the combined wick with different δ

    From the above, the heat transfer capability of the combined wick will weaken with thickening the metal fiber felt, and the maximum velocity of molten sodium will take more time to reach its peak value.

    3 Conclusions

    1) With a thinnerδ, the melting rate is higher, and it will take less time for the molten sodium to reach the maximum velocity.

    2) Due to the natural convection, the hot upward flow of the liquid sodium results in a higher melting rate and temperature in the upper region of the combined wick than those of the bottom.

    3) The temperature distribution in the vertical heating wall W1is more uniform in the thicker metal fiber felt of the combined wick.

    In conclusion, if the melting rate of sodium in the combined wick with a thinnerδis high, then the time of the high-temperature heat pipe startup can be shortened. However, a thinnerδwill result in a more nonuniform temperature distribution of the heating wall, which increases the possibility of an overheat spot and influences the property of the high-temperature heat pipe. As a result, in the design process of high-temperature heat pipes, the above factors need to be considered fully.

    [1]Zhuang Jun, Zhang Hong.Heatpipetechnologyandengineeringapplication[M]. Beijing: Chemical Industry Press, 2000: 66-67. (in Chinese)

    [2]Jones B J, Sun D, Krishnan S, et al. Experimental and numerical study of melting in a cylinder[J].InternationalJournalofHeatandMassTransfer, 2006, 49(15/16): 2724-2738.

    [3]Zhang Yanchen, Gao Dongyan, Chen Zhenqian. Influence of porosity on melting of phase change materials in metal foams with lattice Boltzmann method[J].JournalofSoutheastUniversity:NaturalScienceEdition, 2013, 43(1): 94-98. (in Chinese)

    [4]Jany P, Bejan A. Scaling theory of melting with natural convection in an enclosure[J].InternationalJournalofHeatandMassTransfer, 1988, 31(6): 1221-1235.

    [5]Sun D, Garimella S V, Singh S, et al. Numerical and experimental investigation of the melt casting of explosives[J].Propellants,Explosives,Pyrotechnics, 2005, 30(5): 369-380.

    [6]Krishnan S, Murthy J Y, Garimella S V. A two-temperature model for solid-liquid phase change in metal foams[J].JournalofHeatTransfer, 2005, 127(9): 995-1004.

    [7]Beckermann C, Viskanta R. Natural convection solid/liquid phase change in porous media[J].InternationalJournalofHeatandMassTransfer, 1988, 31(1): 35-46.

    [8]Yang Z, Garimella S V. Melting of phase change materials with volume change in metal foams[J].JournalofHeatTransfer, 2010, 132(6): 062301-1-062301-11.

    [9]Li Wenqiang, Qu Zhiguo, Tao Wenquan. Numerical study of solid-liquid phase change in metallic foam[J].JournalofEngineeringThermophysics, 2013, 34(1): 141-144. (in Chinese)

    [10]Bai Tong, Zhang Hong, Xu Hui, et al. Performance study on a novel combined wick of heat pipe[J].ProceedingsoftheCSEE, 2011, 31(23): 79-85. (in Chinese)

    [11]Bai Tong, Zhang Hong, Xu Hui, et al. Investigations of flow resistance through combined heat pipe wick[J].JournalofNanjingUniversityoftechnology:NaturalScienceEdition, 2012, 34(1): 56-60. (in Chinese)

    [12]Gray W G, O’neill K. On the general equations for flow in porous media and their reduction to Darcy’s law[J].WaterResourcesResearch, 1976, 12(2): 148-154.

    [13]Vafai K, Tien C L. Boundary and inertia effects on flow and heat transfer in porous media[J].InternationalJournalofHeatandMassTransfer, 1981, 24(2): 195-203.

    [14]Liu J F, Wu W T, Chiu W C, et al. Measurement and correlation of friction characteristic of flow through foam matrixes[J].ExperimentalThermalandFluidScience, 2006, 30(4): 329-336.

    [15]Wu W T, Liu J F, Li W J, et al. Measurement and correlation of hydraulic resistance of flow through woven metal screens[J].InternationalJournalofHeatandMassTransfer, 2005, 48(14): 3008-3017.

    [16]Beavers G S, Sparrow E M, Rodenz D E. Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres[J].JournalofAppliedMechanics, 1973, 40(3): 655-660.

    組合式吸液芯內(nèi)金屬鈉固-液相變的數(shù)值模擬

    于 萍1張 紅1,2許 輝1沈 妍1

    (1南京工業(yè)大學(xué)能源學(xué)院, 南京 211816)(2常州工學(xué)院, 常州 213002)

    采用有限容積法和焓-多孔介質(zhì)模型數(shù)值模擬了組合式吸液芯內(nèi)金屬鈉熔化的固-液相變過(guò)程.由于液態(tài)金屬鈉和組合式吸液芯的導(dǎo)熱系數(shù)在同一數(shù)量級(jí),因而采用單溫度模型,模擬過(guò)程中考慮了非達(dá)西效應(yīng)影響和液態(tài)金屬鈉的自然對(duì)流現(xiàn)象.研究結(jié)果發(fā)現(xiàn),組合式吸液芯中金屬纖維氈厚度越小,金屬鈉受熱熔化的速度越快,且熔化后的液態(tài)鈉流速達(dá)到最大值所用的時(shí)間越短,進(jìn)而可以縮短熱管啟動(dòng)時(shí)間;組合式吸液芯中金屬纖維氈厚度越大,豎直加熱壁面的溫度分布越均勻、壁面溫差越小,進(jìn)而減少了加熱壁面產(chǎn)生過(guò)熱點(diǎn)的可能.

    固-液相變;組合式吸液芯;金屬鈉;多孔介質(zhì)

    TK172.4

    Received 2014-05-06.

    Biographies:Yu Ping (1985—), female, graduate; Zhang Hong (corresponding author), female, doctor, professor, hzhang@njut.edu.cn.

    s:The National Natural Science Foundation of China (No.51076062), the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ12_0421).

    :Yu Ping, Zhang Hong, Xu Hui, et al.Numerical simulation for solid-liquid phase change of metal sodium in combined wick[J].Journal of Southeast University (English Edition),2014,30(4):456-461.

    10.3969/j.issn.1003-7985.2014.04.010

    10.3969/j.issn.1003-7985.2014.04.010

    猜你喜歡
    金屬纖維金屬鈉吸液
    不銹鋼金屬纖維在服裝上的應(yīng)用及其表面處理實(shí)驗(yàn)研究
    透析濃縮液吸管蓋聯(lián)合清洗槽改良在血透機(jī)吸液棒中的應(yīng)用
    天然氣金屬纖維燃燒器燃燒特性實(shí)驗(yàn)研究
    PBL教學(xué)法在高中化學(xué)教學(xué)中的應(yīng)用*——以金屬鈉及其化合物為例
    云南化工(2021年8期)2021-12-21 06:38:02
    BinNova: 具有獨(dú)特材料性能的超細(xì)金屬纖維
    金屬鈉的性質(zhì)與考查方式賞析
    淀粉接枝丙烯酸高吸水樹(shù)脂制備及性能
    鋰在熱管反應(yīng)器吸液芯上毛細(xì)作用的理論分析
    從水說(shuō)起學(xué)化學(xué)之鹽
    316金屬纖維在鹽酸環(huán)境下的腐蝕試驗(yàn)研究
    香蕉丝袜av| 日本熟妇午夜| 久久九九热精品免费| 亚洲熟妇中文字幕五十中出| 麻豆国产97在线/欧美 | 啦啦啦韩国在线观看视频| 给我免费播放毛片高清在线观看| 两性夫妻黄色片| 久久午夜亚洲精品久久| 香蕉国产在线看| 国产精品美女特级片免费视频播放器 | 久久久久久九九精品二区国产 | 久久久久九九精品影院| 高清毛片免费观看视频网站| 中国美女看黄片| 色精品久久人妻99蜜桃| 欧美成狂野欧美在线观看| 精品无人区乱码1区二区| 久久久国产成人精品二区| 欧美日韩福利视频一区二区| 久久久精品大字幕| 精品少妇一区二区三区视频日本电影| 国产精品久久久人人做人人爽| 最近视频中文字幕2019在线8| 亚洲精华国产精华精| 亚洲成a人片在线一区二区| 亚洲人成网站高清观看| 一边摸一边做爽爽视频免费| 91麻豆精品激情在线观看国产| 亚洲七黄色美女视频| 午夜精品在线福利| 淫妇啪啪啪对白视频| 精品高清国产在线一区| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 久久精品成人免费网站| 国产视频内射| 女人被狂操c到高潮| 亚洲五月婷婷丁香| 久久九九热精品免费| 狂野欧美白嫩少妇大欣赏| 久久久国产成人精品二区| 99久久综合精品五月天人人| 99精品久久久久人妻精品| 夜夜爽天天搞| 亚洲五月婷婷丁香| 美女 人体艺术 gogo| 国产精品亚洲av一区麻豆| 天堂影院成人在线观看| 精品高清国产在线一区| 成年版毛片免费区| 在线观看www视频免费| www.自偷自拍.com| av欧美777| 亚洲精品国产精品久久久不卡| 国产精品自产拍在线观看55亚洲| 狠狠狠狠99中文字幕| 欧美在线一区亚洲| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av| 亚洲国产精品sss在线观看| 琪琪午夜伦伦电影理论片6080| 制服诱惑二区| 高清在线国产一区| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美精品v在线| 欧美日韩中文字幕国产精品一区二区三区| 日韩大码丰满熟妇| 国内精品久久久久精免费| 国产精品99久久99久久久不卡| 亚洲精品久久成人aⅴ小说| 国产高清有码在线观看视频 | 最新在线观看一区二区三区| 黄色视频不卡| 国产精品日韩av在线免费观看| 性色av乱码一区二区三区2| 欧美zozozo另类| 国产精品 国内视频| 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 熟女少妇亚洲综合色aaa.| 级片在线观看| 中文字幕高清在线视频| 777久久人妻少妇嫩草av网站| 少妇粗大呻吟视频| 一区福利在线观看| 国产欧美日韩精品亚洲av| 亚洲人成77777在线视频| 香蕉久久夜色| 老司机在亚洲福利影院| 日韩免费av在线播放| 国产主播在线观看一区二区| 草草在线视频免费看| 十八禁网站免费在线| 日本免费a在线| 午夜亚洲福利在线播放| 18禁美女被吸乳视频| 亚洲国产欧美一区二区综合| 欧美一区二区精品小视频在线| 午夜两性在线视频| 三级国产精品欧美在线观看 | 亚洲人成网站在线播放欧美日韩| 国产一区二区三区视频了| 久久国产乱子伦精品免费另类| 亚洲精品色激情综合| 精品久久久久久久毛片微露脸| 99热只有精品国产| 欧美日韩中文字幕国产精品一区二区三区| 黄频高清免费视频| 久久久国产成人免费| 欧美乱妇无乱码| 成人手机av| 精品欧美一区二区三区在线| 久久久精品大字幕| 好看av亚洲va欧美ⅴa在| 国产高清视频在线播放一区| 五月伊人婷婷丁香| 老汉色av国产亚洲站长工具| 嫩草影院精品99| 中亚洲国语对白在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲天堂国产精品一区在线| 天天一区二区日本电影三级| 精品人妻1区二区| www.999成人在线观看| 国产成人精品无人区| 桃色一区二区三区在线观看| 看免费av毛片| 亚洲电影在线观看av| 亚洲乱码一区二区免费版| 国产一区二区在线av高清观看| 可以在线观看的亚洲视频| 成人精品一区二区免费| 国产成人系列免费观看| 国产高清有码在线观看视频 | 亚洲成人久久性| 女生性感内裤真人,穿戴方法视频| 麻豆国产av国片精品| 精品久久久久久久久久免费视频| 身体一侧抽搐| 最近视频中文字幕2019在线8| 性欧美人与动物交配| 欧美激情久久久久久爽电影| 亚洲,欧美精品.| 可以在线观看的亚洲视频| 在线观看舔阴道视频| 村上凉子中文字幕在线| 久久精品91无色码中文字幕| 99精品在免费线老司机午夜| av国产免费在线观看| 国产成人精品无人区| 级片在线观看| 神马国产精品三级电影在线观看 | 成人高潮视频无遮挡免费网站| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| 久久亚洲真实| 俺也久久电影网| 特大巨黑吊av在线直播| 亚洲av中文字字幕乱码综合| 亚洲最大成人中文| 好男人电影高清在线观看| 精品国产美女av久久久久小说| 极品教师在线免费播放| av福利片在线| 黄色丝袜av网址大全| 一区二区三区国产精品乱码| 中文亚洲av片在线观看爽| 神马国产精品三级电影在线观看 | 中文在线观看免费www的网站 | 国产成人影院久久av| 免费在线观看日本一区| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| 高清在线国产一区| 男女午夜视频在线观看| 日本免费a在线| 久久午夜综合久久蜜桃| 一区二区三区高清视频在线| 国产黄色小视频在线观看| 一本精品99久久精品77| 亚洲自拍偷在线| 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| 美女大奶头视频| 老鸭窝网址在线观看| 99热这里只有是精品50| 美女午夜性视频免费| 亚洲五月婷婷丁香| 成年人黄色毛片网站| 特大巨黑吊av在线直播| 久热爱精品视频在线9| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 精品一区二区三区av网在线观看| 久久精品国产综合久久久| 国产三级黄色录像| 中亚洲国语对白在线视频| 午夜福利成人在线免费观看| 免费在线观看视频国产中文字幕亚洲| 亚洲成人精品中文字幕电影| 哪里可以看免费的av片| 欧美乱妇无乱码| 91大片在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲片人在线观看| 亚洲国产欧美一区二区综合| 欧洲精品卡2卡3卡4卡5卡区| 曰老女人黄片| 欧美一区二区精品小视频在线| 久久精品夜夜夜夜夜久久蜜豆 | cao死你这个sao货| 亚洲国产看品久久| 免费看美女性在线毛片视频| 久久久久久久精品吃奶| 女警被强在线播放| 中文字幕最新亚洲高清| 999精品在线视频| 长腿黑丝高跟| 高清毛片免费观看视频网站| 国产又黄又爽又无遮挡在线| 欧美绝顶高潮抽搐喷水| 中文字幕人成人乱码亚洲影| 男女视频在线观看网站免费 | 国产一级毛片七仙女欲春2| 欧美午夜高清在线| 搡老妇女老女人老熟妇| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看 | 亚洲,欧美精品.| 两性夫妻黄色片| 最新美女视频免费是黄的| 国语自产精品视频在线第100页| 美女午夜性视频免费| 免费搜索国产男女视频| 中出人妻视频一区二区| 久久久久国产精品人妻aⅴ院| 午夜a级毛片| 啪啪无遮挡十八禁网站| 最新在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 国产亚洲精品第一综合不卡| 国产精品九九99| bbb黄色大片| 亚洲一区二区三区不卡视频| 午夜福利18| 两个人视频免费观看高清| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人| 黑人巨大精品欧美一区二区mp4| 在线永久观看黄色视频| 亚洲精华国产精华精| 久久国产精品人妻蜜桃| 午夜两性在线视频| 国产欧美日韩精品亚洲av| 一级作爱视频免费观看| 国产1区2区3区精品| 日本五十路高清| 香蕉丝袜av| 校园春色视频在线观看| 欧美激情久久久久久爽电影| av国产免费在线观看| 18禁美女被吸乳视频| 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 免费在线观看完整版高清| 久久性视频一级片| 观看免费一级毛片| 国内少妇人妻偷人精品xxx网站 | 深夜精品福利| 桃红色精品国产亚洲av| 国产精品一区二区免费欧美| 国产午夜福利久久久久久| 婷婷六月久久综合丁香| av超薄肉色丝袜交足视频| 天堂影院成人在线观看| 一边摸一边做爽爽视频免费| 波多野结衣高清作品| 久久性视频一级片| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 国产精品精品国产色婷婷| 少妇的丰满在线观看| 91老司机精品| 99国产极品粉嫩在线观看| 久久久国产精品麻豆| 99精品久久久久人妻精品| 亚洲精品av麻豆狂野| 亚洲精品在线美女| 天堂√8在线中文| 久久香蕉激情| 可以在线观看毛片的网站| 精品国产亚洲在线| 国产精品,欧美在线| 后天国语完整版免费观看| 欧美一级a爱片免费观看看 | 在线观看午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 757午夜福利合集在线观看| av国产免费在线观看| cao死你这个sao货| 日韩欧美在线二视频| 一级毛片精品| 国产精品久久久久久久电影 | 日韩高清综合在线| 成人国语在线视频| 婷婷亚洲欧美| 国产私拍福利视频在线观看| 欧美zozozo另类| 亚洲国产精品久久男人天堂| 日韩欧美一区二区三区在线观看| 99riav亚洲国产免费| 夜夜躁狠狠躁天天躁| 欧美又色又爽又黄视频| 久久人妻福利社区极品人妻图片| 国产日本99.免费观看| 不卡av一区二区三区| 久久99热这里只有精品18| 色精品久久人妻99蜜桃| 日韩欧美在线二视频| 亚洲精品一卡2卡三卡4卡5卡| 婷婷精品国产亚洲av在线| 两个人免费观看高清视频| 国产高清有码在线观看视频 | 精品久久久久久成人av| 久久久久久免费高清国产稀缺| 亚洲人成77777在线视频| 亚洲男人的天堂狠狠| 一区二区三区高清视频在线| 亚洲无线在线观看| 欧美另类亚洲清纯唯美| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文字幕一区二区三区有码在线看 | 久久欧美精品欧美久久欧美| 久久久国产精品麻豆| 精品欧美一区二区三区在线| 麻豆成人av在线观看| 国产高清视频在线观看网站| 午夜福利视频1000在线观看| 国产1区2区3区精品| 久久久国产欧美日韩av| 亚洲aⅴ乱码一区二区在线播放 | 在线观看一区二区三区| 亚洲成av人片免费观看| 亚洲国产欧美网| 一区福利在线观看| 国产真实乱freesex| 在线国产一区二区在线| 美女免费视频网站| 18禁裸乳无遮挡免费网站照片| 99国产精品99久久久久| 亚洲自拍偷在线| 日韩大码丰满熟妇| 日本一本二区三区精品| 亚洲精品一区av在线观看| 国模一区二区三区四区视频 | 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久精品电影| 午夜激情福利司机影院| 国内精品一区二区在线观看| 午夜a级毛片| 亚洲成人久久爱视频| 老熟妇乱子伦视频在线观看| 国产亚洲欧美在线一区二区| 久久久国产成人精品二区| 欧美成人午夜精品| 女生性感内裤真人,穿戴方法视频| 欧美成人免费av一区二区三区| 三级国产精品欧美在线观看 | 亚洲五月天丁香| 淫妇啪啪啪对白视频| 亚洲国产看品久久| 麻豆国产av国片精品| 激情在线观看视频在线高清| 亚洲国产欧洲综合997久久,| 女人被狂操c到高潮| 中文亚洲av片在线观看爽| 天天添夜夜摸| 久久午夜综合久久蜜桃| 亚洲自拍偷在线| 亚洲五月婷婷丁香| 搡老熟女国产l中国老女人| 免费电影在线观看免费观看| 日韩有码中文字幕| 日本成人三级电影网站| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区色噜噜| 国产午夜精品久久久久久| 日本在线视频免费播放| 亚洲中文字幕一区二区三区有码在线看 | 国内少妇人妻偷人精品xxx网站 | 男插女下体视频免费在线播放| 久久精品国产综合久久久| av在线播放免费不卡| 一本一本综合久久| 又黄又爽又免费观看的视频| 美女黄网站色视频| 国产日本99.免费观看| 看免费av毛片| 人人妻人人澡欧美一区二区| 18禁美女被吸乳视频| 一个人免费在线观看的高清视频| 久久性视频一级片| 国产aⅴ精品一区二区三区波| 日本五十路高清| 亚洲国产欧洲综合997久久,| e午夜精品久久久久久久| 欧美成人午夜精品| 在线观看美女被高潮喷水网站 | 国产视频一区二区在线看| 久久香蕉国产精品| 很黄的视频免费| 国产亚洲av高清不卡| 国产精品久久久人人做人人爽| 国产精品av久久久久免费| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 国产伦人伦偷精品视频| 国产单亲对白刺激| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇中文字幕五十中出| 日韩有码中文字幕| 岛国在线观看网站| 久久精品夜夜夜夜夜久久蜜豆 | 成人午夜高清在线视频| 精品午夜福利视频在线观看一区| 精品第一国产精品| 亚洲国产精品sss在线观看| 国产成人精品久久二区二区91| 很黄的视频免费| 久久久久免费精品人妻一区二区| 亚洲精品一区av在线观看| 免费搜索国产男女视频| 制服人妻中文乱码| 麻豆久久精品国产亚洲av| 狠狠狠狠99中文字幕| 最近在线观看免费完整版| 久久九九热精品免费| 女人爽到高潮嗷嗷叫在线视频| 免费看a级黄色片| 免费在线观看完整版高清| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 国产精品亚洲美女久久久| 亚洲国产精品999在线| 精品久久久久久久末码| 啦啦啦观看免费观看视频高清| 日本五十路高清| 欧美色视频一区免费| 一级毛片精品| 精品乱码久久久久久99久播| 欧美成狂野欧美在线观看| 天堂av国产一区二区熟女人妻 | 色噜噜av男人的天堂激情| 又大又爽又粗| 国产v大片淫在线免费观看| 老汉色∧v一级毛片| АⅤ资源中文在线天堂| 国产久久久一区二区三区| 全区人妻精品视频| 亚洲精品色激情综合| 18禁美女被吸乳视频| 国内久久婷婷六月综合欲色啪| 人人妻人人看人人澡| 亚洲国产欧洲综合997久久,| 无人区码免费观看不卡| 国产成+人综合+亚洲专区| 久久久久久大精品| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 高清毛片免费观看视频网站| 日本一本二区三区精品| 亚洲 欧美 日韩 在线 免费| 母亲3免费完整高清在线观看| 99热这里只有是精品50| 国产精品久久久久久精品电影| 青草久久国产| 成人一区二区视频在线观看| 国产精品免费一区二区三区在线| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 他把我摸到了高潮在线观看| a在线观看视频网站| 女同久久另类99精品国产91| 国产午夜精品久久久久久| 国产精品久久电影中文字幕| 黄色 视频免费看| 国产黄a三级三级三级人| 校园春色视频在线观看| 色哟哟哟哟哟哟| 最近视频中文字幕2019在线8| 一级毛片精品| 18禁观看日本| 免费看美女性在线毛片视频| 中文字幕av在线有码专区| av国产免费在线观看| 免费看十八禁软件| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 国产高清videossex| 亚洲中文字幕一区二区三区有码在线看 | 欧美色视频一区免费| 老司机在亚洲福利影院| 中文字幕熟女人妻在线| 成人一区二区视频在线观看| 亚洲乱码一区二区免费版| 亚洲欧美激情综合另类| av免费在线观看网站| 长腿黑丝高跟| 一级毛片女人18水好多| 精华霜和精华液先用哪个| 99久久综合精品五月天人人| 日本成人三级电影网站| 亚洲av电影在线进入| 中文字幕高清在线视频| 无遮挡黄片免费观看| av超薄肉色丝袜交足视频| 白带黄色成豆腐渣| 十八禁网站免费在线| 成人18禁高潮啪啪吃奶动态图| 波多野结衣高清无吗| 香蕉丝袜av| 成人永久免费在线观看视频| 亚洲av美国av| 狂野欧美白嫩少妇大欣赏| 天天一区二区日本电影三级| 国产精品av视频在线免费观看| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| videosex国产| www.www免费av| 亚洲av成人一区二区三| 午夜福利欧美成人| 欧美日韩福利视频一区二区| 欧美久久黑人一区二区| 丰满人妻一区二区三区视频av | 亚洲精华国产精华精| 日本一本二区三区精品| 精品乱码久久久久久99久播| 在线看三级毛片| 亚洲av成人不卡在线观看播放网| 亚洲五月天丁香| 国产精品99久久99久久久不卡| 久久久久久国产a免费观看| 成人国语在线视频| 亚洲乱码一区二区免费版| 国产成人影院久久av| 婷婷精品国产亚洲av| 国产一区二区三区在线臀色熟女| 精品国内亚洲2022精品成人| 天天躁夜夜躁狠狠躁躁| 69av精品久久久久久| 欧美不卡视频在线免费观看 | 国产av又大| 无限看片的www在线观看| 国产爱豆传媒在线观看 | 成年女人毛片免费观看观看9| 午夜福利在线在线| 亚洲av第一区精品v没综合| 狂野欧美白嫩少妇大欣赏| 好男人电影高清在线观看| 亚洲国产欧美一区二区综合| 欧美激情久久久久久爽电影| 亚洲熟妇中文字幕五十中出| 国产aⅴ精品一区二区三区波| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 亚洲中文字幕一区二区三区有码在线看 | 日韩大码丰满熟妇| 啦啦啦观看免费观看视频高清| 国产精品99久久99久久久不卡| 1024视频免费在线观看| 久久久久免费精品人妻一区二区| 国产精品av久久久久免费| 最新在线观看一区二区三区| 久久久久久人人人人人| 亚洲精品美女久久av网站| 一区二区三区国产精品乱码| 在线永久观看黄色视频| 免费看日本二区| 国产精品1区2区在线观看.| 亚洲性夜色夜夜综合| 精品无人区乱码1区二区| 超碰成人久久| 人人妻人人澡欧美一区二区| 亚洲性夜色夜夜综合| 热99re8久久精品国产| 久久久久性生活片| 亚洲国产中文字幕在线视频| 亚洲专区字幕在线| 国产爱豆传媒在线观看 | 国内精品久久久久精免费| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| www.自偷自拍.com| 亚洲一区高清亚洲精品| 999久久久精品免费观看国产| 欧美性猛交╳xxx乱大交人| xxxwww97欧美| 欧美日韩黄片免| 国产成人精品无人区| 国产激情偷乱视频一区二区| 极品教师在线免费播放| 成人国产综合亚洲| 国产精品av久久久久免费| 色综合婷婷激情| 国产精品九九99| 91九色精品人成在线观看| 久久香蕉国产精品| 国产亚洲精品一区二区www| www.999成人在线观看| 色综合婷婷激情| 日韩三级视频一区二区三区|