• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Load-balancing data distribution in publish/subscribe mode

    2014-09-06 10:49:51LiKaiWangYunYinYiYuanFeifei
    關鍵詞:出度接收數據東南大學

    Li Kai Wang Yun Yin Yi,3 Yuan Feifei

    (1School of Computer Science and Engineering, Southeast University, Nanjing 211189, China)(2Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing 211189, China)(3School of Computer Science and Engineering, Nanjing Normal University, Nanjing 210046, China)

    ?

    Load-balancing data distribution in publish/subscribe mode

    Li Kai1,2Wang Yun1,2Yin Yi1,2,3Yuan Feifei1,2

    (1School of Computer Science and Engineering, Southeast University, Nanjing 211189, China)(2Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing 211189, China)(3School of Computer Science and Engineering, Nanjing Normal University, Nanjing 210046, China)

    To improve data distribution efficiency, a load-balancing data distribution (LBDD) method is proposed in publish/subscribe mode. In the LBDD method, subscribers are involved in distribution tasks and data transfers while receiving data themselves. A dissemination tree is constructed among the subscribers based on MD5, where the publisher acts as the root. The proposed method provides bucket construction, target selection, and path updates; furthermore, the property of one-way dissemination is proven. That the average out-going degree of a node is 2 is guaranteed with the proposed LBDD. The experiments on data distribution delay, data distribution rate and load distribution are conducted. Experimental results show that the LBDD method aids in shaping the task load between the publisher and subscribers and outperforms the point-to-point approach.

    data distribution; publish/subscribe mode; load balance; dissemination tree

    In the publish/subscribe mode, subscribers subscribe to the topics they are interested in and publishers publish relevant data to those subscribers. When publishers have new information, a data distribution procedure is launched to distribute that information to all interested subscribers. The publish/subscribe mode relieves the tight coupling of publishers and their subscribers. With the data distribution service, neither the publisher nor the subscribers need to know the exact locations of the other, which enhances the service’s flexibility in adapting to dynamic applications.

    To promote transparency between publishers and subscribers, agents are used. These agents play dual roles: on the one hand, they store the global information of both the publishers and subscribers; on the other hand, they actively engage in topic matching and data transfer. Very often, publishers will often need to distribute information to many subscribers. Thus, the multicast technique is suitable for fulfilling this task but, unfortunately, applications are not able to use IP multicast in routers provided by most Internet service suppliers. Furthermore, a publish/subscribe system based on the topics must be in charge of multicast group management. Therefore, the data distribution service adopts a point-to-point approach in order to reliably disseminate data to subscribers.

    Due to its simplicity, point-to-point dissemination works relatively well when small amounts of data and few nodes are involved. However, as applications scale up, such processing becomes problematic. With the increase in the number of subscribers and amounts of data, the publisher becomes a bottleneck due to the heavy load and it must send data to subscribers one by one. In addition, most subscribers are in the waiting state (or even starvation) because the publisher sends data sequentially. Taken as a whole, all of this contributes to poor data distribution efficiency.

    To solve this problem, this paper proposes a load-balancing data distribution (LBDD) method to disseminate data in parallel by asking subscribers to undertake a part in data transfers. Without extra data transfer costs, all the subscribers receive the topic data and the publisher only needs to send data directly to a small number of the subscribers, thus clearly reducing the sending load.

    How to shape the load between publishers and subscribers is the main challenge and will be examined later in this paper. The main contributions of this paper are summarized as follows.

    The LBDD method is proposed to support the load balance in a publish/subscribe system. A dissemination tree is organized to guarantee that all the subscribers receive the topic data once and only once. Furthermore, the LBDD is proven to have some important properties, including one-way dissemination and depth control.

    Both the empirical and simulation results show that the LBDD method is able to take advantage of the bandwidth among subscribers and to achieve a load balance.

    1 Related Work

    In a state-of-the-art publish/subscribe system, the overlay network is composed of many specific routers. These routers play the role of node agents; they save subscription information, provide network communication among publishing and subscribing nodes, and conduct reasonable data transfers in order. To locate specific nodes, traversal algorithms (such as the flooding algorithm, the matching algorithm, or the gossip and infection algorithm) are usually used[1]. These algorithms apply broadcast, which is a heavy burden when nodes scale up. Passing messages by application multicasts has also been introduced to publish/subscribe systems[2-3]. JEDI[4]constructs an application multicast tree in which each node agent stores only local topological information; a complete multicast tree is built by all the agents and reduces extra broadcasting costs by choosing the proper path within the tree. During tree construction, many messages are required as agents exchange information. This may make the implementation more complex and necessitate high tree-maintenance costs.

    Publiy[5]takes advantage of both P2P content dissemination and the publish/subscribe mode that are based on node agents. With Publiy, a block data dissemination strategy is proposed to improve the efficiency of large data block distribution due to node collaboration. In Publiy, publishing nodes obtain some subscribing node lists from agents in several domains. These subscribing nodes behave as seed nodes to generate copies of the transferring data. Thus, multiple source dissemination is set up. However, it is relatively complicated during agent traversal when determining seed nodes.

    In P2P-based publish/subscribe systems, each node is both an agent and a client. Generally, these systems construct structured, logical topologies based on a distributed hash table. SCRIBE[6]sets up relationships among nodes and resources to locate resources efficiently. Nodes are categorized by clusters according to their physical distances. Those in a cluster are organized as a chord[7]ring. The most powerful node in a cluster is selected as that cluster’s representative. All these representatives form a super cube. High performance issues in publish/subscribe systems are also addressed[8-11].

    2 Model

    2.1 System model

    In the proposed method, the participants of a publish/subscribe system are categorized into two types: users (including publishers and subscribers) and agents. Users either publish or subscribe to data. Agents are in charge of subscription information maintenance and data transfer. Each node is equipped with an agent and may have several users. Thus, a node behaves as both a user and an agent and a user on a node connects to the local agent. All the users on a node are managed by the same local agent.

    A publish/subscribe system hasnnodes, denoted by PS={N1,N2,…,Nn}.Nimaintains all the publishing and subscription information in the system, which is denoted byPi={p1,…,pi-1,pi+1,…,pn}, in whichpj(j≠i) represents a triple (sij,pubj,subj). The parameterssij,pubj,subjstand for the link betweenNiandNj, the publishing topic set ofNj, and the subscription topic set ofNj, respectively.

    All the agents are fully connected. When a userNisubscribes to a topict, it sends the subscription message to its local agent. The agent then informs all other agents in a flooding way. All the agents save all the subscription information and maintain links among themselves. An agent determines whether other agents are alive or not depending on periodic heartbeat messages to maintain data consistency. When a userNipublishes the data of topict, it also sends that data to its local agent. Upon the determination of the subscriber destination set, the topic data is transferred among the related agents until all the subscribers of that topic receive the data.

    2.2 Problem statement

    For a given set of one publisher and multiple subscribers, the publisher needs to disseminate data to the subscribers. Therefore, find a solution to effectively alleviate the publisher’s task load and to guarantee that all subscribers receive the required data.

    3 Load-Balancing Data Distribution

    3.1 Overview

    To send data to a given set of subscribers with the LBDD, all the subscribers are first mapped to logical buckets. A topic datatflows in terms of the order of these buckets. Therefore, a unidirectional property holds, which guarantees that all the subscribers will receive the data. Globally, a tree is constructed to disseminatet. Therefore, the LBDD is composed of three parts: 1) Bucket construction, which sets up buckets based on a logical distance; 2) Target selection, which provides a way for an agent to locally select its destination; and 3) Path update, which allows an agent to re-compute a path in case of node failure, joining, or leaving.

    3.2 Bucket construction

    For any nodeNi, its IP address is hashed to a 128-bit sequence with MD5. For simplicity, the highest 32 bits are selected as the sequence ID Digesti forNi. Due to MD5’s features, the sequence IDs maintain their randomness. Thus, all nodes are mapped to a new 32-bit address spaceS. The distance between any two nodesNiandNjis calculated as distance(Ni,Nj)=digesti⊕digestj.

    Considering all the nodes publishing and subscribing to topict, we assume that the source node is in bucket 0. Any nodeNiis in bucketmif and only if the distance betweenNiand the source node is in the intersection of [2m-1, 2m).Nilocally puts all the nodes subscribing totinto buckets.Niconstructs an ordered sequence of buckets, i.e., Bucket={bucket1, bucket2,…,bucketx}, with the distance between them monotonically increasing.Niitself is in the bucket SelfNo (0≤SelfNo≤log2n). A nodeNjwill be inserted into the local bucket sequence inNiif and only if bucketNo (the bucket rank ofNj)>SelfNo holds. According to the proposed method, only nodes with a longer distance to the source node can be potential candidates forNi’s next hop; this is reflected in the above-mentioned rules regarding which nodes are inserted into the local bucket sequence inNi. The processing procedure inNiis listed in Algorithm 1.

    Algorithm 1 BucketConstruction(Pi,t)

    Input:Pi; topict.

    Output: The bucket rank ofNi.

    SelfNo=ComputeBucketNo(s_Digest, SelfDigest);//computing bucket rank for itself

    for (peer∈Pi){

    if peer.TestSubscribe(t)==true{

    BucketNo=ComputeBucketNo(s_Digest, peer.Digest)//filter the nodes not subscribing tot

    if BucketNo==SelfNo{ //in the same bucket asNi

    if peer.digest< SelfDigest //update the bucket rank ofNi

    rank++; }

    else if BucketNo>SelfNo //insert the new node into a bucket with larger rank

    InsertPeerToBucket(peer, BucketNo);}

    }

    return rank;

    3.3 Target selection

    Using local information,Niindependently computes and puts subscribers for topictinto corresponding buckets. In this section, we set up some rules forNi’s selection of nodes to go into the next bucket as its Destifor the next hop.Niis in the bucket SelfNo.

    Algorithm 2 SelectTargets (SelfBucket)

    Input: The specific bucket.

    Output: The arranged intersection of nodes as the destination nodes schedule.

    TargetBucket.sort(); //nodes in the bucket are ordered in increasing order

    Schedule=nil; //initiate the arrangement

    ratio=TargetBucket.size()/SelfBucket.size();

    for rank=1 to SelfBucket.size()

    {LowBound=ratio×(rank-1)+1;

    UpBound=ratio×rank; //determine the boundary of an intersection

    Add the intersection to the schedule;}

    End for

    return schedule;

    More often than not, more than one node is in the bucket SelfNo. Nodes in the bucket SelfNo are responsible for transferring data to a subset of Desti. Therefore, a mapping relationshipfis formed between the nodes in the buckets SelfNo and Desti. That is,f∶rank→Desti. Usually, nodes evenly allocate Desti. The processing procedure for this is described in Algorithm 2.

    3.4 Path update

    Usually, a node may join or leave the subscription set for topict. Any such change leads to path updates. Each node periodically sends its heartbeat message to the others. IfNichecks a heartbeat message timeout, it then updates its localPiand deletes the registration and subscription information of the failed node. A node failure is equal to that node unsubscribing from all topics. Therefore, a failed node is removed from all paths and all paths have to be restructured to maintain connectivity.

    If a new user wants to join, his/her agent broadcasts its information to all other agents. Each agent executes Algorithm 3 to update its own path.

    Algorithm 3 PathUpdate(Peerfail)

    Input: The failed peer.

    BucketNo=ComputeBucketNo(source_Digest, peerfail.Digest);

    If BucketNo>SelfNo

    {Delete peerfailin BucketNo;

    SelectTargets(BucketNo);

    return;

    3.5 Load-balancing property

    In the LBDD method, the subscribers also participate in data transfers as intermediate nodes. Each node is able to find a path from the source node. Clearly, path depth and node degrees of intermediate nodes affect data dissemination efficiency.

    3.5.1 One-way dissemination

    Theorem 1 All paths form a tree with the root node of a publisher.

    Proof 1) There is a path between the publisher and any nodeNiin bucketm.

    This is true because there are finite bucketsx(0≤x

    2) There is no loop in any path.

    With Algorithm 1,Nionly concerns nodes with larger bucket ranks. Such nodes are potential destination nodes forNi. This requires the LBDD method to maintain a unidirectional property, i.e., from a smaller bucket rank to a larger bucket rank.

    All nodes except the publisher have only one father node.

    According to Algorithm 2, Destiis cut into several disjoint subsets. Each node in the bucket SelfNo is mapped to only one subset. Therefore, a node in Destihas only one father node.

    In summary, all paths share the publisher as the source node, and all paths form a tree.

    Corollary 1 The data dissemination is one-way because all the nodes form a dissemination tree.

    3.5.2 Depth control

    Theorem 2 With the LBDD method, the average out-going degree of a node is 2.

    Proof The IP address of a node is hashed to a 32-bit new address space by MD5. Thus, the distance fromNito the source node, denoted by distance (source,Ni) is also a 32-bit random number. Without the loss of generality, we assume that distance (source,Ni)=a31a30…a0, in whichak=0 or 1 and 0≤k≤31. Sincea31a30…a0is a random number, for ?k∈[0,31], there isP(ak=1)=0.5.

    According to the relationship between distance (source,Ni) and bucket rank,Niis in the bucket with a rank ofn(0≤n≤32) if and only if the highest non-zero bit isan-1ina31a30…a0.

    Therefore, the probability ofNibeing in the bucketnis as follows:

    (1)

    The mathematical expectation of the number of nodes in bucketnis as follows:

    (2)

    For the same reason, the mathematical expectation of the number of nodes in bucket (n+1) is as follows:

    (3)

    En+1/En=2 holds, which means that, theoretically, the number of nodes in bucket (n+1) is two times that in bucketn. Thus, the average out-going degree of a node in bucketnis 2.

    4 Experiments and Analysis

    4.1 Experimental settings

    The experimental environment is composed of twelve PCs and two routers. Each PC is a Lenovo Yangtian T2900d, equipped with Pentium(R) Dual-Core E6700 @3.20 GHz and Marvell Yukon 88E8057 PCI-E Gigabit Ethernet controller. Each router is a D-Link DES1008A with 24-Port Gigabit Ethernet Switch. Furthermore, each PC is equipped with an agent. Applications connect to their local agents. For simplicity, there is one PC acting as publisher in the environment. Other PCs work as subscribers. Therefore, a one-to-many data distribution structure is set up.

    Two methods are explored in the experiment. One is LBDD. The other is point-to-point. The data amount for both is 8 GB. The data is sent in slices with a slice size of 64 KB. Data distribution rate, delay, and load distribution are investigated.

    4.2 Experimental results and analysis

    1) Data distribution delay

    Twelve PCs are involved in the experiment. Their IP addresses are*.74,*.97,*.234,*.90,*.98,*.64,*.61,*.184,*.72,*.88,*.44 and*.68, respectively, where * stands for the common IP prefix 10.3.17.

    All nodes are fully connected. In the point-to-point approach, the network topology is shown in Fig.1(a). In the LBDD method, after operating Algorithms 1 and 2, the network topology is set up as shown in Fig.1(b).

    (a)

    (b)

    In the point-to-point approach, the data distribution delay from the publisher to all subscribers lasts 7 810 s; in the LBDD method, the delay is 3 020 s. Since more subscribers are involved in coordinating data dissemination and improving parallelism in the LBDD method, the delay is significantly reduced.

    2) Data distribution rate

    The data distribution rate is evaluated by the average amount of data sent in one second. As the number of subscribers increases in the point-to-point approach, the data distribution rate decreases because messages are sequentially sent by the publisher to one subscriber at a time. With the LBDD method, the data distribution rate remains around 24 Mbit/s, as shown in Fig.2.

    3) Load distribution

    In the point-to-point approach, it is the publisher’s task to send the data to all subscribers. Therefore, the distribution load is on the publisher. As shown in Fig.3, when there are six subscribers, the network load for the publisher reaches 100%.

    Fig.2 Data distribution rate

    Fig.3 Publisher’s load distribution

    With the LBDD method, the network load of the publisher increases still as the number of subscribers increases. However, the network load is always under 70%, which shows that the network load is effectively controlled, thus lightening the publisher’s load.

    4.3 Simulation test

    To investigate LBDD on a large scale, a simulation test is conducted. Several hundred IP addresses are randomly generated. The publisher sends 8 GB of data to the subscribers.

    Whennis 500, the subscribers are mapped to the buckets indexed from 24 to 32; this reflects the depth of the paths. Based on simulation results whennis from 100 to 500, as shown in Tab.1, the depth of a data distribution tree is at the intersection of [5, 9], which is a reasonable depth value.

    Tab.1 Path depth and number of subscribers

    Asnsubscribers need to receive specific topic data, the minimumncopies of the data have to be sent. With the constructed dissemination tree, exactlyncopies are sent. According to the copies a node sends, the contribution ofNican be easily calculated as follows: Contribution ratei=1/n×the number of copies sent byNi.

    Fig.4 shows the contribution rates of the publisher and subscribers. As the number of subscribers increases, the load of data distribution undertaken by the publisher almost stays the same and, thus, occupies a lower percentage of the contribution. At the same time, the subscribers collaborate and complete the data distribution. The task load is decomposed by the subscribers, which prevents the publisher from becoming a bottleneck during processing.

    Fig.4 Contributions by publishers and subscribers

    We should point out that, if the number of subscribers is less than six, the point-to-point approach is able to maintain reasonable good data distribution efficiency. However, its efficiency decreases rapidly as the number of subscribers increases.

    5 Conclusion

    Data distribution services are widely applied in publish/subscribe systems. Regarding service efficiency, the point-to-point approach is not acceptable if there are many subscribers for a specific topic. The main reason for this is that the publisher has to send data to subscribers sequentially, which requires that a portion of the subscribers wait until they are able to contribute. Thus, a method allowing subscribers to be involved in distribution is proposed and the LBDD is explored. The experimental results show that the LBDD aids in shaping the task load between the publisher and subscribers. In future work, we will explore a load-balancing strategy, in which node load is dynamically and dramatically changed.

    [1]Boyd S, Ghosh A, Prabhakar B, et al. Gossip algorithms: design, analysis and applications[C]//ProcofINFOCOM. Miami, USA, 2005: 1653-1664.

    [2]Fateri S, Ni Q, Taylor G A, et al. Design and analysis of multicast-based publisher/subscriber models over wireless platforms for smart grid communications[C]//ProcofIEEE11thInternationalConferenceonTrust,SecurityandPrivacyinComputingandCommunications(TrustCom). Liverpool, UK, 2012:1617-1623.

    [3]Cui J, Xiong N, Park J H, et al. A novel and efficient source-path discovery and maintenance method for application layer multicast[J].Computers&ElectricalEngineering, 2013,39(1):67-75.

    [4]Cugola G, Nitto E D, Fuggetta A. The JEDI event-based infrastructure and its application to the development of the OPSS WFMS[J].IEEETransactionsonSoftwareEngineering, 2001, 27(9): 827-850.

    [5]Kazemzadeh R S, Jacobsen H. Publiy+: a peer-assisted publish/subscribe service for timely dissemination of bulk content[C]//ProcofIEEE32ndInternationalConferenceonDistributedComputingSystems. Macau, China, 2012: 345-354.

    [6]Rowstron A, Kermarrec A M, Castro M, et al. SCRIBE: the design of a large-scale event notification infrastructure[C]//ProcoftheThirdInternationalCOST264Workshop,NGC2001. London, UK, 2001:30-43.

    [7]Stoica I, Morris R, Karger D, et al. Chord: a scalable peer-to-peer lookup service for internet applications[C]//ProcofACMSIGCOMM. San Diego, CA, USA, 2001:149-160.

    [8]Esposito C, Cotroneo D, Russo S. On reliability in publish/subscribe services[J].ComputerNetworks, 2013, 57(5):1318-1343.

    [9]Zhao Y, Wu J. Building a reliable and high performance publish/subscribe system[J].JournalofParallelandDistributedComputing, 2013,73(4):371-382.

    [10]Diallo M, Sourlas V, Flegkas P, et al. A content-based publish/subscribe framework for large-scale content delivery[J].ComputerNetworks, 2013, 57(4):924-943.

    [11]Shen L, Shen H, Sapra K. RIAL: resource intensity aware load balancing in clouds[C]//ProcofIEEEINFOCOM. Toronto, Canada, 2014:1294-1302.

    發(fā)布/訂閱模式下面向負載均衡的數據分發(fā)

    李 凱1,2汪 蕓1,2殷 奕1,2,3袁飛飛1,2

    (1東南大學計算機科學與工程學院,南京211189)(2東南大學教育部計算機網絡與信息集成重點實驗室,南京211189)(3南京師范大學計算機與技術學院,南京210046)

    為了提高數據分發(fā)效率,在發(fā)布/訂閱模式下提出了一個面向負載均衡的數據分發(fā)方法LBDD.在LBDD方法中,訂閱方既接收數據,又承擔數據轉發(fā)工作.采用MD5算法,在發(fā)布方和訂閱方間建立一棵分發(fā)樹,其中發(fā)布方是根節(jié)點.給出了桶建立、目標選擇以及路徑修正方法,并進一步證明了數據單向分發(fā)性質.LBDD方法可保證分發(fā)樹中任意一個節(jié)點的平均出度為2.針對數據分發(fā)延遲、數據分發(fā)速率和負載分布進行了實驗.實驗數據表明,LBDD方法能夠有效地均衡發(fā)布方和訂閱方的負載,分發(fā)效率高于點到點分發(fā)方式.

    數據分發(fā);發(fā)布/訂閱模式;負載均衡;分發(fā)樹

    TP391

    Received 2014-07-01.

    Biography:Li Kai (1979—), male, doctor, lecturer, newlikai@seu.edu.cn.

    The National Key Basic Research Program of China (973 Program).

    :Li Kai, Wang Yun, Yin Yi, et al. Load-balancing data distribution in publish/subscribe mode[J].Journal of Southeast University (English Edition),2014,30(4):428-433.

    10.3969/j.issn.1003-7985.2014.04.005

    10.3969/j.issn.1003-7985.2014.04.005

    猜你喜歡
    出度接收數據東南大學
    《東南大學學報(醫(yī)學版)》稿約
    《東南大學學報(醫(yī)學版)》稿約
    《東南大學學報(醫(yī)學版)》稿約
    《東南大學學報(醫(yī)學版)》稿約
    沖激噪聲背景下基于幅度預處理的測向新方法*
    電訊技術(2021年10期)2021-11-02 01:25:36
    低復雜度多輸入多輸出雷達目標角度估計方法
    單片機模擬串口數據接收程序的實現及優(yōu)化
    羅通定口腔崩解片的溶出度研究
    阿莫西林克拉維酸鉀片溶出度對比研究
    鹽酸林可霉素片溶出度測定方法的研究
    機電信息(2014年20期)2014-02-27 15:53:21
    搡女人真爽免费视频火全软件| 国产成人精品一,二区| 亚洲国产最新在线播放| av国产精品久久久久影院| 美女xxoo啪啪120秒动态图| 中文字幕最新亚洲高清| 亚洲欧洲精品一区二区精品久久久 | 2018国产大陆天天弄谢| 制服人妻中文乱码| 久久久精品国产亚洲av高清涩受| 菩萨蛮人人尽说江南好唐韦庄| 久久精品亚洲av国产电影网| 久久99蜜桃精品久久| 亚洲色图 男人天堂 中文字幕| 波多野结衣一区麻豆| 亚洲av国产av综合av卡| 免费人妻精品一区二区三区视频| 视频在线观看一区二区三区| 亚洲精品视频女| 欧美日韩视频精品一区| 美女主播在线视频| 亚洲伊人久久精品综合| 十分钟在线观看高清视频www| 精品午夜福利在线看| 啦啦啦在线观看免费高清www| 国产激情久久老熟女| 精品一区在线观看国产| 亚洲av电影在线观看一区二区三区| 国产综合精华液| 亚洲色图综合在线观看| 午夜老司机福利剧场| 亚洲四区av| 九色亚洲精品在线播放| 亚洲三区欧美一区| 国产精品久久久久久久久免| 免费黄网站久久成人精品| 99久久人妻综合| 巨乳人妻的诱惑在线观看| 国产午夜精品一二区理论片| 不卡视频在线观看欧美| 欧美激情极品国产一区二区三区| 亚洲精品美女久久久久99蜜臀 | 国产综合精华液| 亚洲婷婷狠狠爱综合网| 色婷婷久久久亚洲欧美| 侵犯人妻中文字幕一二三四区| 欧美亚洲日本最大视频资源| 美女视频免费永久观看网站| 乱人伦中国视频| 国产免费又黄又爽又色| 亚洲精品视频女| 91aial.com中文字幕在线观看| 26uuu在线亚洲综合色| 欧美bdsm另类| 成年女人毛片免费观看观看9 | av天堂久久9| 日本av手机在线免费观看| 精品卡一卡二卡四卡免费| 日本欧美国产在线视频| 99热全是精品| 亚洲美女搞黄在线观看| 波多野结衣av一区二区av| 久久国产精品男人的天堂亚洲| 国产不卡av网站在线观看| 老汉色av国产亚洲站长工具| 性高湖久久久久久久久免费观看| 色网站视频免费| 午夜福利网站1000一区二区三区| 午夜日本视频在线| 欧美日韩视频精品一区| 视频区图区小说| 亚洲国产欧美在线一区| 男女国产视频网站| 综合色丁香网| 亚洲国产最新在线播放| 丝袜脚勾引网站| 建设人人有责人人尽责人人享有的| 婷婷成人精品国产| 精品人妻一区二区三区麻豆| 亚洲精品久久成人aⅴ小说| 亚洲欧美成人精品一区二区| www.av在线官网国产| 在线天堂最新版资源| 麻豆av在线久日| 成人手机av| 亚洲综合色惰| www.精华液| 最近中文字幕高清免费大全6| 男男h啪啪无遮挡| 欧美 亚洲 国产 日韩一| 少妇熟女欧美另类| 如何舔出高潮| 国产日韩欧美亚洲二区| 精品视频人人做人人爽| 大香蕉久久网| 在线看a的网站| 91国产中文字幕| 日韩不卡一区二区三区视频在线| 美女国产视频在线观看| 亚洲精品国产色婷婷电影| 午夜日韩欧美国产| 欧美精品亚洲一区二区| 免费黄网站久久成人精品| 精品视频人人做人人爽| 精品少妇黑人巨大在线播放| 美女脱内裤让男人舔精品视频| 老鸭窝网址在线观看| 日本午夜av视频| 免费不卡的大黄色大毛片视频在线观看| 国产片内射在线| 亚洲精品av麻豆狂野| 黄片播放在线免费| 咕卡用的链子| 97精品久久久久久久久久精品| 18禁动态无遮挡网站| 国产日韩欧美在线精品| 赤兔流量卡办理| 国产成人精品在线电影| 在线看a的网站| 国产熟女午夜一区二区三区| av又黄又爽大尺度在线免费看| √禁漫天堂资源中文www| av在线播放精品| 久久久久精品性色| 久久人人97超碰香蕉20202| 午夜免费观看性视频| 欧美激情极品国产一区二区三区| 满18在线观看网站| 日本午夜av视频| 各种免费的搞黄视频| 中国国产av一级| 国产成人a∨麻豆精品| 亚洲欧美中文字幕日韩二区| 久久久精品区二区三区| 新久久久久国产一级毛片| 亚洲人成网站在线观看播放| 夫妻性生交免费视频一级片| 国产成人精品久久二区二区91 | 美女高潮到喷水免费观看| 人成视频在线观看免费观看| 亚洲天堂av无毛| 欧美日韩亚洲国产一区二区在线观看 | 久久人妻熟女aⅴ| 亚洲一区二区三区欧美精品| 国产成人免费观看mmmm| 成人影院久久| 欧美人与性动交α欧美软件| 妹子高潮喷水视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本黄色日本黄色录像| 国产女主播在线喷水免费视频网站| 美女主播在线视频| 成人国产麻豆网| 欧美中文综合在线视频| 亚洲成人手机| 精品国产超薄肉色丝袜足j| 国产淫语在线视频| 国产成人精品福利久久| 母亲3免费完整高清在线观看 | 午夜免费鲁丝| a 毛片基地| tube8黄色片| 女人久久www免费人成看片| 母亲3免费完整高清在线观看 | 亚洲国产欧美网| 亚洲三区欧美一区| 久久国产精品男人的天堂亚洲| 黄色一级大片看看| freevideosex欧美| 色吧在线观看| 亚洲 欧美一区二区三区| 久久久久国产精品人妻一区二区| 日日啪夜夜爽| 欧美激情极品国产一区二区三区| 欧美精品一区二区大全| 色婷婷av一区二区三区视频| 色视频在线一区二区三区| a 毛片基地| 99久久人妻综合| 尾随美女入室| 久久精品国产亚洲av高清一级| 一区在线观看完整版| 久久久久国产一级毛片高清牌| 久久 成人 亚洲| 在线免费观看不下载黄p国产| 国产xxxxx性猛交| 人人妻人人澡人人爽人人夜夜| av在线观看视频网站免费| av网站在线播放免费| 美国免费a级毛片| 18禁动态无遮挡网站| 日韩一区二区视频免费看| 人体艺术视频欧美日本| 精品国产一区二区久久| 在线观看美女被高潮喷水网站| a级毛片黄视频| 精品99又大又爽又粗少妇毛片| kizo精华| 精品福利永久在线观看| 一级毛片 在线播放| 黄片播放在线免费| 少妇 在线观看| 国产日韩欧美在线精品| 90打野战视频偷拍视频| 中文欧美无线码| 丰满乱子伦码专区| 日本欧美国产在线视频| 女人高潮潮喷娇喘18禁视频| 岛国毛片在线播放| 亚洲av中文av极速乱| 在线观看三级黄色| 高清欧美精品videossex| 乱人伦中国视频| 国产在线免费精品| 国产精品一国产av| 日韩成人av中文字幕在线观看| 97精品久久久久久久久久精品| 午夜福利视频在线观看免费| 国产精品.久久久| 亚洲精品,欧美精品| 国产高清国产精品国产三级| 九色亚洲精品在线播放| 亚洲国产欧美日韩在线播放| 国产精品久久久av美女十八| 欧美最新免费一区二区三区| 久久精品久久久久久噜噜老黄| 久久午夜综合久久蜜桃| 久久久久精品性色| 精品亚洲成国产av| 国产成人精品在线电影| 中文字幕人妻熟女乱码| 人人澡人人妻人| 另类精品久久| 国产av一区二区精品久久| 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 国产高清国产精品国产三级| 欧美日韩av久久| 国产xxxxx性猛交| 久久国产精品大桥未久av| 欧美日韩视频精品一区| 又粗又硬又长又爽又黄的视频| 毛片一级片免费看久久久久| 热re99久久精品国产66热6| 午夜免费观看性视频| 午夜福利网站1000一区二区三区| 女人精品久久久久毛片| 中文字幕av电影在线播放| 韩国高清视频一区二区三区| 18+在线观看网站| 国产黄色免费在线视频| 免费不卡的大黄色大毛片视频在线观看| 精品国产国语对白av| 精品亚洲乱码少妇综合久久| 色94色欧美一区二区| 亚洲国产av影院在线观看| 91在线精品国自产拍蜜月| 三级国产精品片| 午夜福利,免费看| 如日韩欧美国产精品一区二区三区| 亚洲情色 制服丝袜| 少妇熟女欧美另类| 国产精品香港三级国产av潘金莲 | 91精品国产国语对白视频| 老司机影院成人| 日本91视频免费播放| 精品国产露脸久久av麻豆| 久久这里只有精品19| 99久久综合免费| 韩国精品一区二区三区| 久久久久国产网址| 18在线观看网站| freevideosex欧美| 中国三级夫妇交换| 国产免费一区二区三区四区乱码| 三上悠亚av全集在线观看| 久久久久国产网址| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 黄色 视频免费看| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| av国产精品久久久久影院| 亚洲av综合色区一区| 黄片小视频在线播放| 国产精品偷伦视频观看了| 美女xxoo啪啪120秒动态图| 性色av一级| 亚洲精品美女久久av网站| 69精品国产乱码久久久| 人人妻人人添人人爽欧美一区卜| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 久久精品久久久久久噜噜老黄| 午夜日韩欧美国产| 日日啪夜夜爽| 肉色欧美久久久久久久蜜桃| 免费不卡的大黄色大毛片视频在线观看| 国产在视频线精品| 欧美精品高潮呻吟av久久| av网站免费在线观看视频| 久久久国产一区二区| 亚洲精品成人av观看孕妇| 深夜精品福利| 久久精品国产自在天天线| 王馨瑶露胸无遮挡在线观看| av在线老鸭窝| 男女下面插进去视频免费观看| 欧美中文综合在线视频| 人妻系列 视频| 亚洲精品美女久久久久99蜜臀 | 老熟女久久久| 免费观看av网站的网址| 欧美中文综合在线视频| 国产精品一二三区在线看| 亚洲精品美女久久av网站| 亚洲av成人精品一二三区| 日韩欧美精品免费久久| 一区福利在线观看| 午夜福利网站1000一区二区三区| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影| 中文字幕另类日韩欧美亚洲嫩草| xxx大片免费视频| 国产精品免费视频内射| 亚洲久久久国产精品| 日韩制服骚丝袜av| 又黄又粗又硬又大视频| 久热这里只有精品99| 欧美日韩成人在线一区二区| 在线观看免费高清a一片| 国产野战对白在线观看| 久久99一区二区三区| 亚洲精品国产一区二区精华液| 国产 精品1| 成年人免费黄色播放视频| 国产成人免费观看mmmm| 亚洲欧美一区二区三区国产| 亚洲精品美女久久久久99蜜臀 | 日韩电影二区| 久久99精品国语久久久| 国产免费视频播放在线视频| 一个人免费看片子| 免费高清在线观看视频在线观看| av在线播放精品| 天天影视国产精品| 国产精品国产三级专区第一集| av卡一久久| 美女午夜性视频免费| 免费人妻精品一区二区三区视频| 天天躁日日躁夜夜躁夜夜| 在线观看人妻少妇| 男的添女的下面高潮视频| 久久久久久久精品精品| 免费看av在线观看网站| 夫妻性生交免费视频一级片| 国产片内射在线| 丝瓜视频免费看黄片| 电影成人av| 91精品国产国语对白视频| 亚洲三级黄色毛片| 亚洲人成电影观看| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 青草久久国产| 我要看黄色一级片免费的| 亚洲精华国产精华液的使用体验| 国产麻豆69| 亚洲欧美一区二区三区国产| 看十八女毛片水多多多| 在线观看三级黄色| 久久久精品区二区三区| 人体艺术视频欧美日本| 久久久精品94久久精品| 三上悠亚av全集在线观看| 国产成人精品无人区| 国产成人av激情在线播放| 国产亚洲av片在线观看秒播厂| 国产精品国产三级专区第一集| 色播在线永久视频| 精品人妻在线不人妻| 欧美人与性动交α欧美精品济南到 | 国产人伦9x9x在线观看 | 免费观看a级毛片全部| 在现免费观看毛片| 亚洲精品美女久久av网站| 大片电影免费在线观看免费| 国产无遮挡羞羞视频在线观看| 丝袜美腿诱惑在线| 丰满乱子伦码专区| 日韩制服丝袜自拍偷拍| 边亲边吃奶的免费视频| 亚洲 欧美一区二区三区| 久久精品熟女亚洲av麻豆精品| 观看av在线不卡| 国产片特级美女逼逼视频| 国产毛片在线视频| 精品一区二区免费观看| 久久精品夜色国产| 黑丝袜美女国产一区| 9色porny在线观看| 国产一区有黄有色的免费视频| 欧美日韩成人在线一区二区| av国产久精品久网站免费入址| 国产av一区二区精品久久| 少妇人妻久久综合中文| 一区二区三区激情视频| 欧美日韩一区二区视频在线观看视频在线| 久久午夜综合久久蜜桃| 在线观看人妻少妇| 欧美日韩视频精品一区| av女优亚洲男人天堂| 国产精品.久久久| 免费观看性生交大片5| 中文字幕亚洲精品专区| 亚洲av欧美aⅴ国产| 国产1区2区3区精品| 亚洲人成网站在线观看播放| 精品久久久久久电影网| 亚洲精品在线美女| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品| 久久久精品国产亚洲av高清涩受| 麻豆精品久久久久久蜜桃| 狠狠婷婷综合久久久久久88av| 观看美女的网站| 欧美在线黄色| 少妇被粗大猛烈的视频| 水蜜桃什么品种好| 成人亚洲精品一区在线观看| 一级毛片电影观看| 一个人免费看片子| 看非洲黑人一级黄片| 少妇人妻精品综合一区二区| 国产一区二区激情短视频 | 国产av国产精品国产| 人妻 亚洲 视频| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 大话2 男鬼变身卡| 热re99久久国产66热| 午夜福利,免费看| 久久久国产一区二区| 亚洲av在线观看美女高潮| 国产精品成人在线| 激情视频va一区二区三区| 国产午夜精品一二区理论片| 亚洲国产av新网站| 亚洲三区欧美一区| 99国产综合亚洲精品| 日韩成人av中文字幕在线观看| 一区福利在线观看| 一级毛片 在线播放| 中文字幕亚洲精品专区| 日产精品乱码卡一卡2卡三| 高清欧美精品videossex| 久久久久久久久久久免费av| 在线观看美女被高潮喷水网站| 一区福利在线观看| 成人国语在线视频| 18禁观看日本| 免费高清在线观看视频在线观看| 久久久久网色| 国产av码专区亚洲av| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 亚洲av福利一区| 久久精品国产a三级三级三级| 香蕉国产在线看| 久久人人爽人人片av| 中文字幕另类日韩欧美亚洲嫩草| 国产1区2区3区精品| 午夜福利,免费看| 色哟哟·www| 亚洲欧美色中文字幕在线| 日韩一卡2卡3卡4卡2021年| 如何舔出高潮| av在线观看视频网站免费| a 毛片基地| 制服丝袜香蕉在线| 日韩免费高清中文字幕av| 免费高清在线观看日韩| 91精品国产国语对白视频| 尾随美女入室| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 免费播放大片免费观看视频在线观看| 亚洲精品成人av观看孕妇| 午夜福利网站1000一区二区三区| 美国免费a级毛片| 免费大片黄手机在线观看| 国产精品女同一区二区软件| 国产成人午夜福利电影在线观看| 国产激情久久老熟女| 精品亚洲乱码少妇综合久久| 国产精品无大码| 亚洲欧美日韩另类电影网站| 交换朋友夫妻互换小说| 日本欧美国产在线视频| 叶爱在线成人免费视频播放| 美女福利国产在线| 国产精品二区激情视频| 欧美另类一区| 一区福利在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 91成人精品电影| 亚洲综合色惰| 亚洲精品一区蜜桃| 亚洲欧洲国产日韩| 国产精品久久久久久久久免| 在线观看免费日韩欧美大片| 欧美日韩精品网址| 男女下面插进去视频免费观看| 中文字幕精品免费在线观看视频| av有码第一页| 久久久久久久精品精品| 高清视频免费观看一区二区| 中国国产av一级| a级片在线免费高清观看视频| 男女高潮啪啪啪动态图| 成年女人在线观看亚洲视频| 中文精品一卡2卡3卡4更新| av在线老鸭窝| 中国三级夫妇交换| 久久久国产欧美日韩av| 一级毛片 在线播放| 丁香六月天网| 一本色道久久久久久精品综合| 午夜福利视频在线观看免费| av片东京热男人的天堂| 亚洲少妇的诱惑av| 日本wwww免费看| 国产深夜福利视频在线观看| 久久久久精品久久久久真实原创| 中文字幕制服av| 最黄视频免费看| 丰满饥渴人妻一区二区三| 免费人妻精品一区二区三区视频| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 麻豆精品久久久久久蜜桃| av在线观看视频网站免费| 亚洲av综合色区一区| 欧美人与性动交α欧美精品济南到 | 美国免费a级毛片| 亚洲成色77777| 午夜日韩欧美国产| 叶爱在线成人免费视频播放| 国产在视频线精品| 男女免费视频国产| 亚洲国产精品成人久久小说| 男的添女的下面高潮视频| 777久久人妻少妇嫩草av网站| 亚洲精品aⅴ在线观看| 在线 av 中文字幕| 亚洲国产精品一区二区三区在线| 亚洲欧美中文字幕日韩二区| 1024视频免费在线观看| 亚洲精品第二区| 亚洲人成电影观看| 黄色 视频免费看| 国产极品粉嫩免费观看在线| 丝瓜视频免费看黄片| 精品一区二区三区四区五区乱码 | 久久免费观看电影| 秋霞在线观看毛片| 91aial.com中文字幕在线观看| 香蕉精品网在线| 99热国产这里只有精品6| 欧美成人午夜免费资源| 国产97色在线日韩免费| 大香蕉久久网| 丰满少妇做爰视频| 国产熟女欧美一区二区| 一本久久精品| 黄频高清免费视频| 欧美精品亚洲一区二区| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲av天美| 国产麻豆69| 精品人妻一区二区三区麻豆| 最近最新中文字幕免费大全7| 国产又爽黄色视频| www.熟女人妻精品国产| 亚洲男人天堂网一区| 日日爽夜夜爽网站| 精品国产一区二区三区久久久樱花| 热99国产精品久久久久久7| 成人毛片a级毛片在线播放| 侵犯人妻中文字幕一二三四区| 亚洲色图 男人天堂 中文字幕| 在线亚洲精品国产二区图片欧美| 国产成人91sexporn| 波多野结衣av一区二区av| 日本猛色少妇xxxxx猛交久久| 赤兔流量卡办理| 国产综合精华液| 亚洲av电影在线进入| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 亚洲精品成人av观看孕妇| 日本午夜av视频| 高清在线视频一区二区三区| 可以免费在线观看a视频的电影网站 | 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 一二三四在线观看免费中文在| 欧美日韩视频精品一区| 99久久人妻综合| 国产亚洲欧美精品永久| 亚洲国产精品999| 午夜福利视频精品|