• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel lateral insulated gate bipolar transistor on SOI substrate for optimizing hot-carrier degradation

    2014-09-06 10:49:41HuangTingtingLiuSiyangSunWeifengZhangChunwei
    關(guān)鍵詞:絕緣體雙極晶體管

    Huang Tingting Liu Siyang Sun Weifeng Zhang Chunwei

    (National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China)

    ?

    Novel lateral insulated gate bipolar transistor on SOI substrate for optimizing hot-carrier degradation

    Huang Tingting Liu Siyang Sun Weifeng Zhang Chunwei

    (National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China)

    A novel lateral insulated gate bipolar transistor on a silicon-on-insulator substrate (SOI-LIGBT) with a special low-doped P-well structure is proposed. The P-well structure is added to attach the P-body under the channel, so as to reduce the linear anode current degradation without additional process. The influence of the length and depth of the P-well on the hot-carrier (HC) reliability of the SOI-LIGBT is studied. With the increase in the length of the P-well, the perpendicular electric field peak and the impact ionization peak diminish, resulting in the reduction of the hot-carrier degradation. In addition, the impact ionization will be weakened with the increase in the depth of the P-well, which also makes the hot-carrier degradation decrease. Considering the effect of the low-doped P-well and the process windows, the length and depth of the P-well are both chosen as 2 μm.

    lateral insulated gate bipolar transistor(LIGBT); silicon-on-insulator (SOI); hot-carrier effect (HCE); optimization

    The lateral insulated gate bipolar transistor (LIGBT) is the suitable device for the power integrated circuits (ICs) due to its capability of handling high voltage and heavy current and its compatibility with the standard CMOS process. The silicon on insulator (SOI) substrate can offer true dielectric isolation for power devices, which eases the integration of power devices and low voltage logic devices in power ICs. As a result, the SOI-LIGBT begins to be a promising device for power applications.

    One typical application of the SOI-LIGBT (M1) is used as the high-voltage output stage in the plasma display panels (PDP) scan driver ICs[1-5]. During the working conditions, M1 will suffer from high voltage at “off-state” and heavy current at “on-state”. Therefore, the hot-carrier effect (HCE) becomes serious. So, the hot-carrier degradation of the SOI-LIGBT devices is one of the most important reliability issues in ICs.

    The HC reliability of the SOI-LIGBT devices is becoming more and more important, but the in-depth study on the hot-carrier degradation mechanism of the SOI-LIGBT devices is less documented due to the complexity of its two kinds of carriers. Recently, to our knowledge, no studies have been focused on the structure optimization of these devices to decrease the hot-carrier degradation[6-8].

    In this paper, to reduce the electric field and the degradation of the electrical parameters, a novel SOI-LIGBT is proposed with a low-doped p-type well (P-well) attached to the P-body under the channel region. It can be compatible with low-voltage CMOS processes completely without any additional mask. The length and depth of the P-well are varied and their effects on the degradation are investigated by using the T-CAD simulator and the charge pumping (CP) technique, which well support the experimental findings.

    1 Device Structure and Experiment

    The schematic cross section of the investigated SOI-LIGBT device in this paper is shown in Fig.1(a), and the fabrication of the device is implemented in the 0.5 μm complementary MOS technology and the SOI technology. The structural parameters are given as follows: the length of the polygate is 5 μm; the accumulation region length is 2 μm; the buried oxide thickness is 1.5 μm; the thickness of the silicon film above the buried oxide is 6.5 μm. The threshold voltage and the off-state BV are 1.1 V and 230 V, respectively. The special P-well structure is added to attach the P-body under the channel so as to reduce the hot-carrier-induced degradation. Moreover, it is noted that the concentration of the proposed P-well is much lower than that of the P-body. The concentration of the proposed P-well is 3×1012cm-2. The SEM image of the cathode region in the improved SOI-LIGBT can also be seen in Fig.1(b). The lengthLand depthDof the low-doped P-well are varied to obtain their effects on the hot-carrier degradation.

    2 Discussions and Optimization

    2.1 Experiment

    The current in the SOI-LIGBT is composed of the electron current along the surface of the device and the hole current in the body of the silicon film above the buried oxide. The hole current is collected by the P+of the cathode, so the hole carriers generated from the impact ionization will be submerged into the large operation current of the SOI-LIGBT. Hence, the hole carriers cannot be detected. Therefore, the maximum substrate current cannot reflect the degradation level of the SOI-LIGBT device[9]. In this paper, the hot-carrier stress condition ofVgc=2.5 V andVac=165 V is selected at the maximum substrate current of the SOI-LDMOS device, which fully owns the same structures except for the doping type in the anode area compared with the novel SOI-LIGBT. During the experiments,Ialin(measured atVgc=5 V andVac=1 V) is monitored continuously to analyze the physical degradation. All the measurements in our experiments are performed at room temperature.

    Fig.1 Schematic diagram of the proposed SOI-LIGBT device. (a) Schematic cross section; (b) SEM image of the cathode region in the proposed device

    Before the hot-carrier degradation of the novel SOI-LIGBT is discussed, the influence of the added P-well on the electrical parameters of the SOI-LIGBT, such as the on-resistance, must be considered carefully. Actually, when the high gate operation voltage (7.8 V) is applied, the resistance of the P-well region will be much smaller than that of the added P-body region due to much more induced electron. Furthermore, it is the resistance of the HVN-well that will dominate the whole resistance of the device due to the long distance and the low doping. Therefore, the resistance of the added P-well region can be ignored compared with that of the P-body region and the HVN-well region. That is to say, the added P-well will not obviously impact the whole resistance of the device. The measuredI-Vcharacteristics of the novel SOI-LIGBT and the conventional one underVgc=7.8 V are shown in Fig.2. There is a little difference between them. And the key parameters of the two devices are shown in Tab.1.

    Fig.2 I-Vcharacteristics of novel SOI-LIGBT and conventional one

    DeviceIdsat/mARon/ΩVth/VVb/VDegradationafter1000s/%ConventionalSOI-LIGBT45.712951.12154.55NovelSOI-LIGBT44.312971.12301.66

    Fig.3 shows the parameter variations of the SOI-LIGBT devices under the stress ofVgc=2.5 V andVac=165 V. It is noted that there is almost noVthshift, implying that no hot carriers inject into the channel region. TheIalinincreases with the increase in the stress time, which reveals that there are many hot holes injecting into the bird’s beak[10]and the degradation is serious. It can also be found that the low-doped P-well can relax the increasing tendency of theIalinand the hot carrier degradation. The longer and deeper the low doped P-well, the smaller theIalindegradation will be.

    Fig.3 IalinandVthdegradation of the SOI-LIGBT devices with differentLandD

    2.2 Influence ofL

    In order to understand the above experimental results, The T-CAD simulations about the perpendicular electric field and the impact ionization are performed. Fig.4 and Fig.5 show the perpendicular electric field and the impact ionization along the Si/SiO2interface for the SOI-LIGBT with differentLandD=1 μm atVgc=2.5 V andVac=165 V. The first perpendicular electric field peak in the bird’s beak is negative (pointing to the oxide), which is helpful for the hot-hole injection, and the second perpendicular electric field peak in the channel region is positive, which is beneficial for the hot-electron injection. However, the impact ionization is mainly located in the bird’s beak and no obvious impact ionization can be observed in the channel region. As a result, a great amount of hot holes will be injected and trapped into the bird’s beak, resulting in the increase ofIalindue to the mirror induced negative charges. LessVthshift can be discovered due to no hot-electron injection in the channel region. In addition, according to Figs.4 and 5, it is observed that the increase of the length of the low-doped P-well will decrease the perpendicular electric field and the impact ionization in the bird’s beak. As a result, the hot-hole injection into the bird’s beak is diminished, and theIalindegradation turns much smaller.

    Fig.4 Surface perpendicular fields with differentLandD=1 μm atVgc=2.5 V andVac=165 V

    According to the influence ofLon the electric field and the impact ionization, one can know that the hot-hole injection and trapping into the bird’s beak can be reduced effectively by adjusting the dimension ofL. Although it is useful to increaseLfor hot carrier reliability, the dimension ofLcannot be greater than 2 μm in this case. Otherwise, it will exceed the accumulation region and lead to the abnormal threshold voltage, making the operation of the SOI-LIGBT abnormal. Considering the effect of the low-doped P-well and the process windows, we chooseLas 2 μm here. In this way, the hot carrier degradation of the SOI-LIGBT can be relaxed and its reliability can be optimized.

    Fig.5 Surface impact ionization with differentLandD=1 μm atVgc=2.5 V andVac=165 V

    2.3 Influence ofD

    The influence of the depth of the low doped P-well on the impact ionization, which reveals the hot carrier degradation, is also simulated and compared in this paper. Fig.6 shows the 2D impact ionization of the proposed SOI-LIGBT with differentDand anLof 2 μm atVgc=2.5 V andVac=165 V. It is clear that the increase of the depth of the low doped P-well will decrease the impact ionization of the device, leading to the reduction of the hot carrier degradation. However, for the sameL, the value ofDcannot be too large. The reason is that during the production processes, the longtime annealing is used to obtain deepD, but at the same time it affects the value ofL. The longer the annealing time, the largerLandDwill be. The value ofLcannot be too large since the depth of the low doped P-well is limited. In this paper, the value ofDis chosen as 2 μm.

    Fig.6 2D impact ionization of the proposed SOI-LIGBT with differentDatVgc=2.5 V andVac=165 V.(a)D=1μm andL=2μm;(b)D=1.5μm andL=2μm;(c)D=2μm andL=2μm

    2.4 Charge pumping

    In order to have a further understanding of the hot-carrier degradation of the SOI-LIGBT, the charge pumping (CP) technique is performed. The CP measurements are performed with the constant gate voltage pulse, whose amplitude and frequency are 10 V and 1 MHz, respectively. The base voltageVbaseof the pulse is varied from -15 to 5V. The rising and falling time of the pulse are both 100 ns. The anode and cathode are grounded. The CP currentIcpis measured from the substrate to reveal the hot-carrier trapping and the interface state generation. At the same time, theVgeandVgh(defined as the gate voltage to induce 1×1014cm-3electrons and holes, respectively) profiles of the SOI-LIGBT are shown in Fig.7 by using the T-CAD simulations. According to Fig.7,Icpcan be divided into three regions: the channel region (correspondingVbasefrom -5.5 (Vge-Vamplitude) to 0 V (Vgh) for the unstressed device), the accumulation region (correspondingVbasefrom -7.5 to -5 V for the unstressed device) and the field oxide region (correspondingVbasefrom -10 to -7.5 V for the unstressed device)[11-12]. TheIcpcurves of the conventional and proposed SOI-LIGBT (L=2 μm andD=2 μm) are measured and shown in Fig.8. The stress condition isVgc=2.5 V andVac=165 V for 2000 s. Comparing theIcpbefore and after the stress of the conventional device, it is clear that theIcpcurves shift left (change A), reflecting the hot hole injection into the bird’s beak. And the change of the value ofIcp(change B) indicates the interface state generation in the channel region, the accumulation region and the field oxide region. Moreover, it is also noted that the change A and change B of the proposed device are smaller than those of the conventional device after stress. That is to say, the hot-hole injection is restrained and the interface state generation is decreased in the proposed device. So the hot-carrier degradation for the SOI-LIGBT with the low-doped P-well is reduced.

    Fig.7 VgeandVghprofiles of the SOI-LIGBT

    Fig.8 CP curves of the conventional and proposed devices before and after stress

    3 Conclusion

    A special P-well structure is added to attach the P-body under the channel in the SOI-LIGBT devices to reduce theIalindegradation without any additional mask. The special P-well is shown completely compatible with the low-voltage CMOS processes and does not impact the key parameters of the device. The influence of the length and depth of low doped P-well is studied in detail for the high-voltage SOI-LIGBT. With the increase ofL, the perpendicular electric field peak and the impact ionization peak diminish, resulting in the reduction of the hot carrier degradation. In addition, the impact ionization will be weakened with the increase in the depth of the low-doped P-well, which also makes the hot-carrier degradation decrease. Therefore, considering the effect of the low-doped P-well and the process windows, 2 μm is chosen for the length and depth of the P-well.

    [1]Chen W S, Xie G, Zhang B, et al. New lateral IGBT with controlled anode on SOI substrate for PDP scan driver IC [C]//InternationalConferenceonCommunications,CircuitsandSystems. Milpitas, CA, USA, 2009: 628-630.

    [2]Sumida H, Hirabayashi A, Kobayashi H. A high-voltage lateral IGBT with significantly improved ON-state characteristics on SOI for an advanced PDP scan driver IC [C]//IEEEInternationalSOIConferenceProceedings. Williamsburg, VA, USA, 2002: 64-65.

    [3]Qiao M, Zhang B, Xiao Z Q, et al. High-voltage technology based on thin layer SOI for driving plasma display panels [C]//InternationalSymposiumonPowerSemiconductorDevicesandICs. Orlando, FL, USA, 2008: 52-55.

    [4]Sun W F, Shi L X, Sun Z L, et al. High-voltage power IC technology with nVDMOS, RESURF pLDMOS, and novel level-shift circuit for PDP scan-driver IC [J].IEEETransactionsonElectronDevices, 2006, 53(4): 891-896.

    [5]Tokumitsu S, Nitta T, Shiromoto T, et al. Enhancement of current drivability in field PMOS by optimized field plate [C]//InternationalSymposiumonPowerSemiconductorDevicesandICs. Hiroshima, Japan, 2010: 253-256.

    [6]Wu H, Sun W F, Yi Y B, et al. Study and optimization of hot-carrier degradation in high voltage pledmos transistor with thick gate oxide [C]//InternationalSymposiumonthePhysicalandFailureAnalysisofIntegratedCircuits. Suzhou, China, 2009: 83-86.

    [7]Bakeroot B, Doutreloigne J, Moens P. A new substrate current free nLIGBT for junction isolated technologies [C]//EuropeanSolid-StateDeviceResearchConference. Leuven, Belgium, 2004: 461-464.

    [8]Lu D H, Mizushima T, Kitamura A, et al. Retrograded channel SOI LIGBTs with enhanced safe operating area[C]//InternationalSymposiumonPowerSemiconductorDevicesandICs. Orlando, FL, USA, 2008:32-35.

    [9]Liu Siyang, Sun Weifeng, Qian Qinsong, et al. Comparisons of hot-carrier degradation behavior in SOI-LIGBT and SOI-LDMOS with different stress conditions [J].Solid-StateElectronics, 2010, 54(12): 1598-1601.

    [10]Qian Q S, Sun W F, Liu S Y, et al. Novel hot-carrier degradation mechanisms in the lateral insulated-gate bipolar transistor on SOI substrate [J].IEEETransactionsonElectronDevices, 2011, 58(4):1158-1163.

    [11]Moens P, Van Den Bosch G, Wojciechowski D, et al. Charge trapping effects and interface state generation in a 40 V lateral resurf pDMOS transistor [C]//EuropeanSolid-StateDeviceResearchConference. Grenoble, France, 2005:407-410.

    [12]Heremans P, Witters J, Groeseneken G, et al. Analysis of the charge pumping technique and its applications for the evaluation of MOSFET degradation [J].IEEETransactionsonElectronDevices, 1989, 36(7): 1318-1335.

    一種新型優(yōu)化熱載流子退化效應(yīng)的SOI-LIGBT

    黃婷婷 劉斯揚(yáng) 孫偉鋒 張春偉

    (東南大學(xué)國(guó)家ASIC系統(tǒng)工程技術(shù)研究中心, 南京 210096)

    提出了一種新型絕緣體上硅橫向絕緣柵雙極型晶體管(SOI-LIGBT),該晶體管在溝道下方的P型體區(qū)旁增加了一個(gè)特殊的低摻雜P型阱區(qū),在不增加額外工藝的基礎(chǔ)上減小了器件線性區(qū)電流的退化.分析了低摻雜P阱的寬度和深度對(duì)SOI-LIGBT器件熱載流子可靠性的影響.通過(guò)增加低摻雜P型阱區(qū)的寬度,可以減小器件的縱向電場(chǎng)峰值和碰撞電離峰值,從而優(yōu)化器件的熱載流子效應(yīng).另外,增加低摻雜P型阱區(qū)的深度,也會(huì)減小器件內(nèi)部的碰撞電離率,從而減弱器件的熱載流子退化.結(jié)合低摻雜P型阱區(qū)的作用和工藝窗口大小的影響,確定低摻雜P型阱區(qū)的寬度和深度都為2 μm.

    絕緣柵雙極型晶體管;絕緣體上硅;熱載流子效應(yīng);優(yōu)化

    TN432

    s:The National Natural Science Foundation of China (No.61204083), the Natural Science Foundation of Jiangsu Province (No.BK2011059), the Program for New Century Excellent Talents in University (No.NCET-10-0331).

    :Huang Tingting, Liu Siyang, Sun Weifeng, et al.Novel lateral insulated gate bipolar transistor on SOI substrate for optimizing hot-carrier degradation[J].Journal of Southeast University (English Edition),2014,30(1):17-21.

    10.3969/j.issn.1003-7985.2014.01.004

    10.3969/j.issn.1003-7985.2014.01.004

    Received 2013-08-06.

    Biographies:Huang Tingting (1988—), female, graduate; Sun Weifeng (corresponding author), male, doctor, professor, swffrog@seu.edu.cn.

    猜你喜歡
    絕緣體雙極晶體管
    基于雙極化解耦超表面的線轉(zhuǎn)圓極化反射陣列天線設(shè)計(jì)
    雙極直覺(jué)模糊超圖*
    多孔位插頭絕緣體注塑模具設(shè)計(jì)分析
    玩具世界(2022年1期)2022-06-05 07:42:20
    2.6萬(wàn)億個(gè)晶體管
    大自然探索(2021年7期)2021-09-26 01:28:42
    發(fā)電廠直流系統(tǒng)接地故障分析與處理策略解析
    鼻內(nèi)鏡下雙極電凝治療嚴(yán)重鼻出血的療效
    一種新型的耐高溫碳化硅超結(jié)晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    碳納米管晶體管邁出商用關(guān)鍵一步
    強(qiáng)生ENSEAL? G2 高級(jí)雙極電刀
    意法半導(dǎo)體(ST)新款100V晶體管提高汽車應(yīng)用能
    成人亚洲精品一区在线观看 | 色哟哟·www| 成人毛片60女人毛片免费| 天天躁夜夜躁狠狠久久av| 高清午夜精品一区二区三区| 日本免费a在线| 国产高清不卡午夜福利| 秋霞伦理黄片| 99久久人妻综合| 亚洲天堂国产精品一区在线| 十八禁国产超污无遮挡网站| 晚上一个人看的免费电影| 久久久久性生活片| 啦啦啦啦在线视频资源| 欧美成人精品欧美一级黄| 日本三级黄在线观看| 精品亚洲乱码少妇综合久久| 在线观看人妻少妇| 蜜桃久久精品国产亚洲av| 99久久人妻综合| 久久这里有精品视频免费| 看黄色毛片网站| 不卡视频在线观看欧美| .国产精品久久| 少妇熟女aⅴ在线视频| 欧美日韩视频高清一区二区三区二| 日本wwww免费看| 热99在线观看视频| 在线免费观看的www视频| 黑人高潮一二区| 嘟嘟电影网在线观看| 国产单亲对白刺激| 日韩 亚洲 欧美在线| 国产乱来视频区| 久久久久久久大尺度免费视频| 色尼玛亚洲综合影院| 国产色婷婷99| 人妻一区二区av| 少妇高潮的动态图| 国产女主播在线喷水免费视频网站 | 麻豆av噜噜一区二区三区| 建设人人有责人人尽责人人享有的 | 人人妻人人看人人澡| 日韩,欧美,国产一区二区三区| 亚洲性久久影院| 欧美不卡视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 韩国高清视频一区二区三区| 欧美日韩亚洲高清精品| 亚洲av在线观看美女高潮| 国产免费又黄又爽又色| 欧美日本视频| 网址你懂的国产日韩在线| 亚洲电影在线观看av| 亚洲av中文av极速乱| 少妇被粗大猛烈的视频| 国产av国产精品国产| 久久草成人影院| 伦精品一区二区三区| 日韩av在线免费看完整版不卡| 一级a做视频免费观看| 国产片特级美女逼逼视频| 国产精品麻豆人妻色哟哟久久 | 午夜激情福利司机影院| 伦精品一区二区三区| 97人妻精品一区二区三区麻豆| 91在线精品国自产拍蜜月| 欧美极品一区二区三区四区| 免费大片黄手机在线观看| 日本色播在线视频| 欧美成人a在线观看| av线在线观看网站| 国产免费福利视频在线观看| or卡值多少钱| 国产精品蜜桃在线观看| 日韩国内少妇激情av| 亚洲精品日韩av片在线观看| 亚洲高清免费不卡视频| 亚洲人成网站高清观看| 日日啪夜夜撸| 一级片'在线观看视频| 婷婷色综合www| 日本一本二区三区精品| 日韩欧美 国产精品| 美女国产视频在线观看| 简卡轻食公司| 国产伦在线观看视频一区| 久久国产乱子免费精品| 国产在视频线精品| 欧美日韩亚洲高清精品| 亚洲成色77777| 亚洲国产精品sss在线观看| 国产精品爽爽va在线观看网站| 午夜精品在线福利| 极品教师在线视频| 欧美一级a爱片免费观看看| 久久久久久久久久成人| 在线a可以看的网站| 大话2 男鬼变身卡| 又大又黄又爽视频免费| 久久久精品欧美日韩精品| 亚洲av电影在线观看一区二区三区 | 国产精品福利在线免费观看| 国产成人91sexporn| 国产精品爽爽va在线观看网站| 国语对白做爰xxxⅹ性视频网站| 嘟嘟电影网在线观看| 观看免费一级毛片| 日韩,欧美,国产一区二区三区| 午夜福利高清视频| 国产精品av视频在线免费观看| 一级毛片久久久久久久久女| 日韩 亚洲 欧美在线| 久久久a久久爽久久v久久| 人妻制服诱惑在线中文字幕| av网站免费在线观看视频 | 亚洲国产最新在线播放| 国产精品一二三区在线看| 久久精品熟女亚洲av麻豆精品 | 国产精品伦人一区二区| 国产精品av视频在线免费观看| 亚洲综合色惰| 国产高清有码在线观看视频| 国产精品久久久久久av不卡| 亚洲va在线va天堂va国产| 午夜福利视频1000在线观看| 国产视频内射| 内地一区二区视频在线| 乱码一卡2卡4卡精品| 亚洲人成网站在线观看播放| 免费无遮挡裸体视频| 日韩av在线免费看完整版不卡| 午夜激情久久久久久久| 久久午夜福利片| 精品人妻一区二区三区麻豆| kizo精华| 永久网站在线| 久久精品久久久久久噜噜老黄| 色哟哟·www| videossex国产| 国产老妇伦熟女老妇高清| 成人亚洲精品av一区二区| 国产又色又爽无遮挡免| 国产永久视频网站| 青春草亚洲视频在线观看| 久热久热在线精品观看| 国产免费福利视频在线观看| 91在线精品国自产拍蜜月| 乱码一卡2卡4卡精品| 男的添女的下面高潮视频| 99九九线精品视频在线观看视频| 国产亚洲av片在线观看秒播厂 | 国精品久久久久久国模美| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃 | 在线 av 中文字幕| 国产毛片a区久久久久| 久久久久久伊人网av| 国产精品久久久久久精品电影小说 | 2021少妇久久久久久久久久久| 中文字幕av在线有码专区| 美女大奶头视频| 亚洲高清免费不卡视频| 亚洲国产日韩欧美精品在线观看| 99久久中文字幕三级久久日本| 男人爽女人下面视频在线观看| 日韩成人伦理影院| 国产精品一及| 51国产日韩欧美| 不卡视频在线观看欧美| 国产黄a三级三级三级人| 女人被狂操c到高潮| 免费av不卡在线播放| 麻豆国产97在线/欧美| 日本黄色片子视频| 精品国产露脸久久av麻豆 | 国产精品麻豆人妻色哟哟久久 | 直男gayav资源| 两个人的视频大全免费| 一级毛片久久久久久久久女| 精品国内亚洲2022精品成人| 黄片无遮挡物在线观看| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 久久久久性生活片| 精品一区二区三区人妻视频| 日本爱情动作片www.在线观看| 观看免费一级毛片| 日本与韩国留学比较| 午夜福利在线观看吧| 日韩一区二区视频免费看| 欧美日韩在线观看h| 亚洲国产最新在线播放| 内射极品少妇av片p| 国产精品一及| 亚洲精品中文字幕在线视频 | 色播亚洲综合网| 联通29元200g的流量卡| 精品久久久久久久久亚洲| 亚洲欧美清纯卡通| 亚洲最大成人中文| 麻豆国产97在线/欧美| 欧美极品一区二区三区四区| ponron亚洲| 久久6这里有精品| 亚洲在线观看片| 精品人妻视频免费看| 精品久久久精品久久久| 岛国毛片在线播放| 一级二级三级毛片免费看| 亚洲国产高清在线一区二区三| av在线蜜桃| 国产乱来视频区| 免费看光身美女| 深夜a级毛片| 久久韩国三级中文字幕| 亚洲国产精品国产精品| 亚洲电影在线观看av| 久久久国产一区二区| 亚洲人与动物交配视频| 91精品一卡2卡3卡4卡| 五月伊人婷婷丁香| 一个人观看的视频www高清免费观看| 熟妇人妻不卡中文字幕| av福利片在线观看| 在线免费观看的www视频| 国产亚洲av嫩草精品影院| 可以在线观看毛片的网站| 亚洲精品日韩在线中文字幕| 国产一区二区亚洲精品在线观看| 好男人在线观看高清免费视频| www.av在线官网国产| 男女边吃奶边做爰视频| 老师上课跳d突然被开到最大视频| 亚洲精品视频女| 亚洲高清免费不卡视频| 99re6热这里在线精品视频| 免费电影在线观看免费观看| 亚洲久久久久久中文字幕| 亚洲精品日韩在线中文字幕| 亚洲精品日本国产第一区| 精品酒店卫生间| 精品一区在线观看国产| 国产在视频线在精品| 国产亚洲5aaaaa淫片| 亚洲va在线va天堂va国产| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 真实男女啪啪啪动态图| 精品久久久久久电影网| 亚洲一区高清亚洲精品| 大香蕉久久网| 国产成人一区二区在线| 中文资源天堂在线| 天天躁夜夜躁狠狠久久av| 日韩三级伦理在线观看| 人妻系列 视频| 99久久精品一区二区三区| 欧美精品一区二区大全| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人综合色| 精品久久久久久成人av| 九九在线视频观看精品| 亚洲18禁久久av| 欧美xxxx性猛交bbbb| 国产又色又爽无遮挡免| 亚洲真实伦在线观看| 成人午夜高清在线视频| 中文资源天堂在线| 狂野欧美激情性xxxx在线观看| 中文字幕免费在线视频6| 成人毛片60女人毛片免费| 一个人观看的视频www高清免费观看| 国产在线男女| 一边亲一边摸免费视频| 亚洲国产精品国产精品| 久久精品久久久久久噜噜老黄| 三级毛片av免费| 精品国产一区二区三区久久久樱花 | 欧美97在线视频| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 男的添女的下面高潮视频| 性色avwww在线观看| 亚洲最大成人中文| 一夜夜www| 免费av观看视频| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 精品一区二区免费观看| 国产69精品久久久久777片| 成人毛片a级毛片在线播放| 18禁在线无遮挡免费观看视频| 内射极品少妇av片p| 亚洲精品国产成人久久av| 亚洲人成网站高清观看| 免费播放大片免费观看视频在线观看| 欧美 日韩 精品 国产| 日韩av在线免费看完整版不卡| 免费观看的影片在线观看| 国产亚洲5aaaaa淫片| 在线免费十八禁| 肉色欧美久久久久久久蜜桃 | 伊人久久国产一区二区| 哪个播放器可以免费观看大片| 国产麻豆成人av免费视频| 日本黄大片高清| 一区二区三区乱码不卡18| 久久鲁丝午夜福利片| 狂野欧美激情性xxxx在线观看| 联通29元200g的流量卡| 亚洲内射少妇av| 亚洲人成网站高清观看| av又黄又爽大尺度在线免费看| 日本三级黄在线观看| 亚洲精品成人久久久久久| 99热全是精品| 日韩av在线免费看完整版不卡| 亚洲精品日本国产第一区| 夜夜看夜夜爽夜夜摸| 精品久久久久久久末码| 一个人看的www免费观看视频| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 国产精品国产三级国产av玫瑰| 亚洲精品成人av观看孕妇| 国产毛片a区久久久久| 久久久国产一区二区| 在线免费十八禁| 亚洲欧美成人精品一区二区| 久久精品国产自在天天线| 亚洲精品国产av成人精品| 久久这里有精品视频免费| 日韩中字成人| 禁无遮挡网站| 久久久久免费精品人妻一区二区| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻熟女av久视频| 久久精品国产亚洲av涩爱| 日韩大片免费观看网站| 久久久久性生活片| 欧美日韩综合久久久久久| 丰满乱子伦码专区| 国产乱人偷精品视频| 免费看a级黄色片| 最近手机中文字幕大全| 国产精品不卡视频一区二区| 国产精品国产三级专区第一集| 国产黄a三级三级三级人| 国产老妇伦熟女老妇高清| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 精品人妻熟女av久视频| 国产精品一区二区三区四区免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产欧美另类精品又又久久亚洲欧美| 韩国高清视频一区二区三区| 美女脱内裤让男人舔精品视频| 最近视频中文字幕2019在线8| 日日啪夜夜爽| 久久久午夜欧美精品| videossex国产| 精品国内亚洲2022精品成人| 美女主播在线视频| 简卡轻食公司| 黄色日韩在线| 青春草亚洲视频在线观看| 老师上课跳d突然被开到最大视频| 人人妻人人澡欧美一区二区| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在| 午夜福利视频1000在线观看| 1000部很黄的大片| 少妇人妻精品综合一区二区| 亚洲av中文av极速乱| 秋霞在线观看毛片| 久久久午夜欧美精品| 国产乱来视频区| 男人舔奶头视频| 午夜老司机福利剧场| 日日摸夜夜添夜夜添av毛片| 亚洲一级一片aⅴ在线观看| 国产乱来视频区| 天堂中文最新版在线下载 | 深夜a级毛片| 在线 av 中文字幕| 亚洲欧美日韩东京热| 街头女战士在线观看网站| 成人午夜高清在线视频| 男女那种视频在线观看| 国产一级毛片七仙女欲春2| 成人漫画全彩无遮挡| 在线观看人妻少妇| 中文欧美无线码| 久久国内精品自在自线图片| 国产成人freesex在线| 亚洲自偷自拍三级| 晚上一个人看的免费电影| 91久久精品电影网| av卡一久久| 国产亚洲精品av在线| 亚洲av男天堂| a级毛色黄片| 寂寞人妻少妇视频99o| 在线免费十八禁| 亚洲精品亚洲一区二区| 国产精品伦人一区二区| 九九久久精品国产亚洲av麻豆| 又爽又黄a免费视频| 亚洲av免费在线观看| 国产日韩欧美在线精品| 丰满乱子伦码专区| 尾随美女入室| 久久韩国三级中文字幕| 欧美三级亚洲精品| 国产人妻一区二区三区在| 亚洲av国产av综合av卡| 成人二区视频| 国产亚洲5aaaaa淫片| 国产人妻一区二区三区在| 色网站视频免费| 丝袜美腿在线中文| 亚洲人成网站在线观看播放| 偷拍熟女少妇极品色| 搞女人的毛片| 国模一区二区三区四区视频| 1000部很黄的大片| 99热这里只有是精品在线观看| 黄片无遮挡物在线观看| 国产久久久一区二区三区| 丰满人妻一区二区三区视频av| 联通29元200g的流量卡| 欧美一区二区亚洲| 欧美最新免费一区二区三区| 久久久精品欧美日韩精品| 人妻一区二区av| 亚洲欧美日韩卡通动漫| 大陆偷拍与自拍| 亚洲精品日本国产第一区| 亚洲精品自拍成人| 亚洲av不卡在线观看| 亚洲综合色惰| 高清在线视频一区二区三区| 国产一区二区三区av在线| 亚洲精品第二区| 国产女主播在线喷水免费视频网站 | 久久精品人妻少妇| 熟女人妻精品中文字幕| 国产精品福利在线免费观看| 色尼玛亚洲综合影院| 精品午夜福利在线看| av专区在线播放| 在线观看美女被高潮喷水网站| 成年版毛片免费区| 亚洲精品日本国产第一区| 2022亚洲国产成人精品| 内地一区二区视频在线| 又粗又硬又长又爽又黄的视频| 人人妻人人看人人澡| 91在线精品国自产拍蜜月| 大陆偷拍与自拍| 人妻少妇偷人精品九色| 亚洲自拍偷在线| 亚洲精品一区蜜桃| 麻豆国产97在线/欧美| 国产成人一区二区在线| 丰满少妇做爰视频| 91午夜精品亚洲一区二区三区| 亚洲精品456在线播放app| 热99在线观看视频| 成人一区二区视频在线观看| 国产精品女同一区二区软件| 国产男女超爽视频在线观看| av女优亚洲男人天堂| 黄片无遮挡物在线观看| 久热久热在线精品观看| 亚洲国产精品sss在线观看| 国产精品伦人一区二区| 久久99精品国语久久久| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 亚洲av免费高清在线观看| 欧美xxⅹ黑人| 色视频www国产| 久久久午夜欧美精品| 麻豆乱淫一区二区| 亚洲精品乱码久久久久久按摩| 麻豆成人午夜福利视频| 免费观看av网站的网址| 国产成人a∨麻豆精品| 日本熟妇午夜| 日本av手机在线免费观看| 小蜜桃在线观看免费完整版高清| 一级a做视频免费观看| 一级毛片aaaaaa免费看小| 国产国拍精品亚洲av在线观看| 国产日韩欧美在线精品| 精品午夜福利在线看| 天堂av国产一区二区熟女人妻| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区久久久樱花 | 国产av在哪里看| 色尼玛亚洲综合影院| 亚洲国产欧美人成| 亚洲色图av天堂| 成人av在线播放网站| 美女主播在线视频| 青春草视频在线免费观看| 一个人免费在线观看电影| 夜夜看夜夜爽夜夜摸| 国产乱来视频区| 免费av毛片视频| 亚洲三级黄色毛片| a级毛片免费高清观看在线播放| 亚洲人成网站在线观看播放| 一级二级三级毛片免费看| 国产成人一区二区在线| 一级二级三级毛片免费看| 美女被艹到高潮喷水动态| 激情五月婷婷亚洲| 亚洲国产日韩欧美精品在线观看| 亚洲最大成人av| 看黄色毛片网站| 欧美日韩视频高清一区二区三区二| 麻豆成人av视频| 嫩草影院新地址| 少妇熟女aⅴ在线视频| 毛片一级片免费看久久久久| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 1000部很黄的大片| 2021少妇久久久久久久久久久| av在线蜜桃| 最近2019中文字幕mv第一页| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 2022亚洲国产成人精品| 麻豆av噜噜一区二区三区| 精品人妻偷拍中文字幕| 国产麻豆成人av免费视频| 一区二区三区高清视频在线| 午夜爱爱视频在线播放| 中文字幕av成人在线电影| 午夜激情欧美在线| 2021天堂中文幕一二区在线观| 免费在线观看成人毛片| 亚洲自拍偷在线| 狠狠精品人妻久久久久久综合| 国内揄拍国产精品人妻在线| 伊人久久国产一区二区| 在线免费观看的www视频| 成人一区二区视频在线观看| 精品一区在线观看国产| 亚洲在久久综合| 超碰av人人做人人爽久久| 国产午夜福利久久久久久| 欧美 日韩 精品 国产| 国产黄a三级三级三级人| 久久久久久久久久久免费av| 99热全是精品| 97超视频在线观看视频| 国产一区二区三区综合在线观看 | 免费观看性生交大片5| 中文天堂在线官网| 色尼玛亚洲综合影院| 成人漫画全彩无遮挡| 午夜福利在线观看免费完整高清在| 蜜桃亚洲精品一区二区三区| 有码 亚洲区| 国产男女超爽视频在线观看| 麻豆av噜噜一区二区三区| 亚洲av成人av| 一个人看的www免费观看视频| 国产中年淑女户外野战色| 最近最新中文字幕免费大全7| 亚洲在久久综合| 简卡轻食公司| 国产成人91sexporn| 97超碰精品成人国产| 精品久久久精品久久久| 亚洲乱码一区二区免费版| 色尼玛亚洲综合影院| 26uuu在线亚洲综合色| 午夜福利视频1000在线观看| 又爽又黄a免费视频| 亚洲国产精品国产精品| 五月玫瑰六月丁香| 久久久久久久久久成人| 嫩草影院入口| 边亲边吃奶的免费视频| 国产精品久久久久久久久免| 黑人高潮一二区| 色5月婷婷丁香| 成人无遮挡网站| 久久久午夜欧美精品| 伊人久久国产一区二区| 男女国产视频网站| 特级一级黄色大片| 好男人视频免费观看在线| 91久久精品电影网| 国产精品一二三区在线看| 亚洲美女视频黄频| 秋霞伦理黄片| 丝袜美腿在线中文| 成人毛片a级毛片在线播放| 久久久久久久大尺度免费视频| 精品午夜福利在线看| 十八禁网站网址无遮挡 | 亚洲av成人精品一区久久| 欧美性感艳星| 一级毛片黄色毛片免费观看视频| 久久精品夜色国产| 亚洲av成人精品一二三区| 可以在线观看毛片的网站|