• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized SHA-1 hash function implemented on FPGA

    2014-09-06 10:49:40XueYeHuAiqun
    關(guān)鍵詞:時鐘預(yù)處理能耗

    Xue Ye Hu Aiqun

    (Research Center of Information Security, Southeast University, Nanjing 211189, China)

    ?

    Optimized SHA-1 hash function implemented on FPGA

    Xue Ye Hu Aiqun

    (Research Center of Information Security, Southeast University, Nanjing 211189, China)

    In order to meet the needs of higher operation speed and lower energy consumption, an optimized SHA-1 algorithm is proposed. It combines two methods: loop-unfolding and pre-processing. In the process, intermediate variables are introduced in the iterations and pre-calculated, so that the original single-threading operation can perform in a multi-threading way. This optimized algorithm exploits parallelism to shorten the critical path for hash operations. And the cycles of the original algorithm are reduced from 80 to 41, which greatly improves the operation speed. Therefore, the shortened iterations of the optimized design require a smaller amount of hardware resource, thus achieving a lower energy consumption. The optimized algorithm is implemented on FPGA (field programmable gate array). It can achieve a throughput rate of 1.2 Gbit/s with the maximum clock frequency of 91 MHz, reaching a fair balance between operation speed and throughput rate. The simulation results show that, compared with other optimized SHA-1 algorithms, this algorithm obtains higher operation speed and throughput rate without compromising the security of the original SHA-1 algorithm.

    SHA-1; hash function; loop unfolding; pre-processing; FPGA

    As critical components in modern cryptology, hash functions have a wide range of applications in message certification and digital signature[1], because they do not require the processed data to be retrieved. A cryptographic hash function must have the following properties: pre-image resistance (related to that of one-way function), second pre-image resistance, collision resistance, as well as being able to withstand all known types of cryptanalytic attack.

    The SHA-1 algorithm is one of the most popular hash algorithms. In 2005, researchers found attacks on SHA-1, suggesting that the algorithm may not be secure enough for ongoing use. Wang et al.[2]announced an attack that can find collisions in the full version of SHA-1, requiring fewer than 269operations while a brute-force search will require 280operations. Their analysis is built upon the original differential attack on SHA-0, the near collision attack on SHA-0, the multiblock collision techniques, as well as the message modification techniques used in the collision search attack on MD5. They exploit the following two weaknesses: one is that the file preprocessing step is not complicated enough; the other is that certain math operations in the first 20 rounds have unexpected security problems. Although other data can be found by Wang’s collision attack, the content of the data is uncertain, which is most likely to be an unreadable code. In digital signature, people can identify that the data is damaged and there will be no loss. Therefore, in many cases, the SHA-1 algorithm is still secure.

    This paper focuses on high-throughput design for the SHA-1. Techniques such as loop unfolding, pre-processing, multi-input adding based on a carry-save adder and pipeline have been proposed[3-7]to achieve high throughput rate, high speed operation, and low cost consumption, but only one or two methods have been applied up to date. Here, the first two methods are integrated and implemented on FPGA to obtain optimized results. The improvement is based on unfolding transformation performing two Hash operations in a cycle. The critical path of a hash operation is short due to the pre-processing of the coefficients and the algorithm parallelism.

    In this paper, the conventional SHA-1 algorithm is explained, then the proposed design is presented. Afterwards, the hardware implementation, simulation results, as well as the performance comparison with other works are displayed. Finally, conclusions are made concerning this new design.

    1 SHA-1 Algorithm

    The SHA-1 algorithm is one of the most popular hash algorithms. It is designed by the U.S. National Security Agency and issued as a federal information processing standard. The input message of the SHA-1 algorithm has a maximum length of less than 264bits, which generates a 160-bit message digest.

    The conventional SHA-1 structure is shown in Fig.1. The required input message of SHA-1 is a multiple of 512 bits, so it is necessary that the original message is padded. The process of padding is as follows: First, one bit “1” and then 0≤k<512 bits “0”are appended at the end of the massage, so that the length of the message (in bits) is congruent to 448 (mod 512). Afterwards, the length of the message, in bits, is appended as a 64-bit big-endian integer. After padding, the input message can be divided into one or multiple 512-bit blocks. Then, each block is expanded into 80 32-bit wordsWt, one 32-bit word for each round of the SHA-1 processing and each block goes through 4 rounds of hash operations with each round consisting of 20 calculation units. The final result is obtained by adding the performing output with the previous hash code.

    Fig.1 Conventional SHA-1 structure

    The iterative process of the hash operation is shown in Fig.2. There are both logical operations and additions in each round of calculation, and all the calculations are bitwise, such as rotations to the left (?) and nonlinear functionft. The five 32-bit data (At,Bt,Ct,Dt,Et) are calculated from the values obtained in the previous cycle by using the required nonlinear operations. The initial values of the five 160-bit hash variablesH0,H1,H2,H3,H4are predefined (H0=0x67452301,H1=0xEFCDAB89,H2

    Fig.2 Computational mode of hash operation

    =0x98BADCFE,H3=0x10325476,H4=0xC3D2E1F0), and remain constant throughout the calculations. While at the beginning of each data block calculation, the values of the variablesA,B,C,D,Eare determined by those hash values. After all the data blocks are computed, the final hash value is the output digest message.

    The 32-bit data wordWt(t=0,1,…,79) expanding from the input blocks is as

    (1)

    The value of the constantKtand the performance of the nonlinear functionfare determined by one of the 80 rounds being executed, which are listed in Tab.1.

    Tab.1 ConstantKtand nonlinear functionf

    2 Proposed SHA-1 Structure

    The time consumption in the conventional SHA-1 algorithm is determined by the combined delay in each hash operation. Therefore, the overall consumption can be reduced significantly by cutting down the number of processing rounds.

    The proposed method performs two hash operations in one cycle. The coefficient pre-computation of hash function and parallelism are available in two independent hash operation blocks. The deducted hash operations are as

    (2)

    wherect,dt,etare directly derived fromat-2,bt-2,ct-2, whileatandbtrequire the computational result ofat-1. In order to achieve a higher parallelism in hash operations and reduce the critical path delay in the hash operation block, new parameterslt,mtandntare defined and pre-computed as important addends to represent the respective computational results ofat-1.

    The proposed SHA-1 structure is composed of pre-processing and post-processing parts, as shown in Fig.3. The pre-processing part is responsible for the pre-computation of the defined termslt,mtandnt, while the post-processing part is responsible for the iterative hash operation using the values fromattoetas well as the previous output from the pre-processing part. Because there is no data dependence between the two processing blocks, it is possible for the parallel computation.

    Fig.3 Optimized SHA-1 architecture

    The longest path delay in the two processing blocks exists inatandlt, which are two additions and one nonlinear functionf.

    Consequently, the critical path delay for the hash operation is the delay of two additions and one nonlinear functionf. An additional cycle is needed to initialize the new defined termslt,mtandntat the beginning, while the other 40 cycles are required for iterative operation. The proposed SHA-1 structure requires a total of 41 cycles to complete the hash operations. It not only reduces the iterative cycles by half, but also dramatically shortens the critical path delay.

    3 Implementations on FPGA

    The optimized SHA-1 architecture is implemented on FPGA EP1S25F1020C5, which is one of the Stratix families from Altera.

    After successful compiling, an ASCII string text “abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq” is chosen as an input of the program, and the execution result, which is a 160-bit hexadecimal string text, is shown in Fig.4. Fig.4 also depicts the required 41 clock

    Fig.4 Program execution result

    cycles to complete the whole execution.

    The validity of the proposed algorithm is tested using the SHA-1 checking software HashCalc. As shown in Fig.5, the testing result is consistent with that of the program.

    Fig.5 Testing result

    4 Performance Analysis

    Comparisons with other SHA-1 designs mainly focus on four factors: frequency, throughput, the number of slices and cycles. The greater the number of slices, the higher the energy consumption of the FPGA. And the more the number of cycles, the more slowly the program will run on the same hardware. Tab.2 shows performance comparisons with other optimized structures. The throughput is calculated by

    whereTis the throughput rate;pis the stage of pipeline;fis the frequency of the system;nis the number of cycles.

    Tab.2 Performance comparisons with other optimized structures

    Ref.[1] uses the original SHA-1 architecture without modification. Refs.[2] and [3] employ both unfolding and pipeline with 4 stages, while Ref.[4] combines loop unfolding, pre-processing and pipelining, but implemented on a different device (Virtex-2).

    Tradeoffs among the four evaluated factors are apparently laid out. Though not having the highest throughput rate, the proposed design has reached a fair balance among frequency, the number of slices and cycles.

    5 Conclusion

    This paper analyzes a high-speed SHA-1 design. By using loop unfolding and pre-processing techniques, the original 80 performing cycles are reduced to 41, and the implementations on FPGA show the proposed design gives the maximum throughput of 1.2 Gbit/s when working at 91 MHz clock frequency. Compared with other designs, the proposed design reaches a fair balance among the four evaluation factors without compromising the security of the original algorithm.

    Further research reveals that methods such as pipeline and multi-input adding based on a carry-save adder[8-11]can be used to improve the throughput rate. Our future efforts will be concentrated on the comparisons between different hash algorithms[12], including the comparison of collision rate, execution speed, cracking methods and so on. Furthermore, we will also focus on the actual application scenarios[13], such as in a specific security system.

    [1]Yiakoumis I I, Papadonikolakis M E, Michail H E, et al. Maximizing the hash function of authentication codes [J].IEEEPotentials, 2006, 25(2): 9-12.

    [2]Wang Xiaoyun, Yin Yiqun Lisa, Yu Hongbo. Finding collisions in the full SHA-1[C]//25thAnnualInternationalCryptologyConference. Santa Barbara, CA, USA, 2005: 1-16.

    [3]Michail H, Goutis C. Holistic methodology for designing ultra high-speed SHA-1 hashing cryptographic module in hardware [C]//IEEEInternationalConferenceonElectronDevicesandSolid-StateCircuits. Hong Kong, China, 2008.

    [4]Lee Y K, Chan H, Verbauwhede I. Throughput optimized SHA-1 architecture using unfolding transformation [C]//IEEE17thInternationalConferenceonApplication-specificSystems,ArchitecturesandProcessors. Steamboat Springs, CO, USA, 2006: 354-359

    [5]Lee E H, Lee J H, Park Ⅱ H, et al. Implementation of high-speed SHA-1 architecture[J].IEICEElectronicsExpress, 2009, 6(16): 1174-1179.

    [6]Jung E G, Han D, Lee J G. Low area and high speed SHA-1 implementation [C]//SoCDesignConference. Jeju, Republic of Korea, 2011: 365-367.

    [7]Kim J-W, Lee H-U, Won Y. Design for high throughput SHA-1 hash function on FPGA [C]//FourthInternationalConferenceonUbiquitousandFutureNetworks. Phuket, Thailand, 2012: 403-404.

    [8]Michail H E, Kakarountas A P, Milidonis A S, et al. A top-down design methodology for ultrahigh-performance hashing cores [J].IEEETransactionsonDependableandSecureComputing, 2009, 6(4): 255-268.

    [9]Jiang L H, Wang Y L, Zhao Q X, et al. Ultra high throughput architectures for SHA-1 hash algorithm on FPGA [C]//ComputationalIntelligenceandSoftwareEngineering. Wuhan, China, 2009.

    [10]Nakajima J, Matsui M. Performance analysis and parallel implementation of dedicated hash functions[J].IEICETransFundElectronCommunComputSci, 2003, E86-A(1): 54-63.

    [11]Hodjat A, Verbauwhede I. A 21.54 Gbits/s fully pipelined AES processor on FPGA[C]//Proceedingsofthe12thAnnualIEEESymposiumonField-ProgrammableCustomComputingMachines. Napa, CA, USA, 2004: 308-309.

    [12]Wang Z Q, Cao L S. Implementation and comparison of two hash algorithms [C]//FifthInternationalConferenceonDigitalObjectIdentifier. Shiyan, China, 2013: 721-725.

    [13]Ratna P, Agung A, Purnamasari P D, et al. QiR (quality in research), analysis and comparison of MD5 and SHA-1 algorithm implementation in Simple-O authentication based security system [C]//InternationalConferenceonDigitalObjectIdentifier. Yogyakarta, Indonesia, 2013: 99-104.

    FPGA實現(xiàn)的一種SHA-1優(yōu)化雜湊算法

    薛 也 胡愛群

    (東南大學(xué)信息安全研究中心,南京 211189)

    為了滿足實際應(yīng)用中對算法速度以及能耗的需要,提出了一種優(yōu)化的SHA-1算法.該算法將環(huán)展開與預(yù)處理2種方法相結(jié)合,通過在迭代過程中引入中間變量,并且對中間變量進行預(yù)先計算,使原本單線程的運算能夠多線程地并行運行.這種并行性縮短了散列函數(shù)操作的關(guān)鍵路徑,將循環(huán)周期從原來的80縮減到了41,運算速率得到了提高,運算時所需的芯片面積也得以減少,從而降低了能耗.該算法在FPGA中硬件實現(xiàn)時的吞吐率高達1.2 Gbit/s,時鐘頻率最高為91 MHz,在吞吐率與時鐘頻率方面取得了較好的平衡.仿真結(jié)果表明,與其他SHA-1的改進算法相比,該優(yōu)化算法在沒有影響經(jīng)典算法安全性的基礎(chǔ)上,獲得了較高的吞吐率和較快的速率.

    SHA-1;雜湊算法;環(huán)展開;預(yù)處理;FPGA

    TP30

    s:The Project of Wireless Intelligence Terminal Inspection Services (No.6704000084), the Special Program of the National Development and Reform Committee.

    :Xue Ye, Hu Aiqun. Optimized SHA-1 hash function implemented on FPGA[J].Journal of Southeast University (English Edition),2014,30(1):13-16.

    10.3969/j.issn.1003-7985.2014.01.003

    10.3969/j.issn.1003-7985.2014.01.003

    Received 2013-05-06.

    Biographies:Xue Ye (1989—), female, graduate; Hu Aiqun (corresponding author), male, doctor, professor, aqhu@seu.edu.cn.

    猜你喜歡
    時鐘預(yù)處理能耗
    120t轉(zhuǎn)爐降低工序能耗生產(chǎn)實踐
    昆鋼科技(2022年2期)2022-07-08 06:36:14
    能耗雙控下,漲價潮再度來襲!
    別樣的“時鐘”
    探討如何設(shè)計零能耗住宅
    古代的時鐘
    日本先進的“零能耗住宅”
    華人時刊(2018年15期)2018-11-10 03:25:26
    基于預(yù)處理MUSIC算法的分布式陣列DOA估計
    有趣的時鐘
    時鐘會開“花”
    淺談PLC在預(yù)處理生產(chǎn)線自動化改造中的應(yīng)用
    午夜免费男女啪啪视频观看| 淫秽高清视频在线观看| av在线播放精品| 日韩 亚洲 欧美在线| 国产大屁股一区二区在线视频| 麻豆成人av视频| 欧美三级亚洲精品| 国产精品久久久久久精品电影| or卡值多少钱| 国产中年淑女户外野战色| 午夜精品一区二区三区免费看| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美精品专区久久| 少妇的逼好多水| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 日韩国内少妇激情av| 午夜福利在线在线| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人久久小说| 国产激情偷乱视频一区二区| 亚洲精品视频女| 天堂√8在线中文| av国产久精品久网站免费入址| 如何舔出高潮| 十八禁网站网址无遮挡 | 91在线精品国自产拍蜜月| 水蜜桃什么品种好| 欧美高清成人免费视频www| 久久99精品国语久久久| 高清av免费在线| 春色校园在线视频观看| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 亚洲av男天堂| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 女人久久www免费人成看片| 国产一区二区三区av在线| 亚洲内射少妇av| 一本一本综合久久| 午夜免费观看性视频| 国产精品一区二区性色av| 日韩大片免费观看网站| 国产老妇伦熟女老妇高清| 一级爰片在线观看| 永久免费av网站大全| 日韩三级伦理在线观看| 国产人妻一区二区三区在| 免费少妇av软件| 天堂中文最新版在线下载 | 丰满乱子伦码专区| 麻豆精品久久久久久蜜桃| 精品久久久久久久人妻蜜臀av| 永久免费av网站大全| 少妇的逼好多水| 亚洲成人久久爱视频| 久久精品熟女亚洲av麻豆精品 | 国产av国产精品国产| 免费看日本二区| 麻豆成人av视频| 亚洲国产精品sss在线观看| 嫩草影院精品99| 韩国av在线不卡| 国产又色又爽无遮挡免| 边亲边吃奶的免费视频| 亚洲av电影在线观看一区二区三区 | 黑人高潮一二区| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 老司机影院毛片| 国产精品av视频在线免费观看| 久久韩国三级中文字幕| 久热久热在线精品观看| 亚洲av二区三区四区| 亚洲欧美成人综合另类久久久| 久久精品久久精品一区二区三区| 亚洲精品国产av蜜桃| 少妇熟女aⅴ在线视频| 日韩欧美精品v在线| 成人漫画全彩无遮挡| 日韩 亚洲 欧美在线| kizo精华| 少妇人妻一区二区三区视频| 男女视频在线观看网站免费| 观看免费一级毛片| 男女啪啪激烈高潮av片| 观看美女的网站| 欧美xxxx黑人xx丫x性爽| 直男gayav资源| 色网站视频免费| 99热网站在线观看| 午夜爱爱视频在线播放| 搞女人的毛片| 美女国产视频在线观看| 老司机影院成人| 久久精品熟女亚洲av麻豆精品 | 最后的刺客免费高清国语| 国产大屁股一区二区在线视频| 精品熟女少妇av免费看| 国产高清国产精品国产三级 | 一本一本综合久久| 91精品一卡2卡3卡4卡| 人人妻人人澡欧美一区二区| 一个人免费在线观看电影| 特级一级黄色大片| 91av网一区二区| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 高清午夜精品一区二区三区| 国产成人福利小说| 国产精品久久久久久久久免| 国产精品.久久久| 日韩制服骚丝袜av| 麻豆成人午夜福利视频| 欧美+日韩+精品| 国产 一区精品| 欧美激情在线99| 日本三级黄在线观看| 精品国产一区二区三区久久久樱花 | 99热这里只有是精品50| 中文字幕av成人在线电影| 激情 狠狠 欧美| 美女高潮的动态| 少妇熟女aⅴ在线视频| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色综合www| av专区在线播放| 久久99蜜桃精品久久| 91在线精品国自产拍蜜月| 99久久人妻综合| 肉色欧美久久久久久久蜜桃 | 狂野欧美白嫩少妇大欣赏| kizo精华| 日日撸夜夜添| 内射极品少妇av片p| 国产午夜精品久久久久久一区二区三区| 久久97久久精品| 又爽又黄a免费视频| 欧美xxⅹ黑人| 国产精品女同一区二区软件| 午夜久久久久精精品| 国产爱豆传媒在线观看| 免费观看无遮挡的男女| 国产色婷婷99| 97人妻精品一区二区三区麻豆| 男女视频在线观看网站免费| 亚洲人成网站在线观看播放| 亚洲欧美成人综合另类久久久| 亚洲四区av| 天堂av国产一区二区熟女人妻| 只有这里有精品99| 午夜老司机福利剧场| 欧美97在线视频| 神马国产精品三级电影在线观看| 国产高清国产精品国产三级 | 色视频www国产| 国产精品一区二区三区四区免费观看| 久久人人爽人人爽人人片va| 亚洲人成网站在线播| 欧美日韩综合久久久久久| 色哟哟·www| 亚洲成人一二三区av| 国产精品.久久久| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 日韩欧美 国产精品| 视频中文字幕在线观看| 中文字幕久久专区| 久久精品国产自在天天线| 亚洲va在线va天堂va国产| av专区在线播放| 亚洲欧美精品专区久久| 欧美日韩国产mv在线观看视频 | 久久久久久久大尺度免费视频| 成人亚洲欧美一区二区av| 日韩大片免费观看网站| 日韩一区二区三区影片| 国产熟女欧美一区二区| 综合色丁香网| 国产亚洲av片在线观看秒播厂 | 五月天丁香电影| 欧美人与善性xxx| 精品一区二区免费观看| 成年免费大片在线观看| 午夜福利在线观看免费完整高清在| 久久久精品94久久精品| 又爽又黄a免费视频| 日韩av不卡免费在线播放| 69人妻影院| 丝袜喷水一区| 日本与韩国留学比较| 亚洲精品影视一区二区三区av| 99久久精品一区二区三区| 91av网一区二区| 午夜精品在线福利| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 亚洲国产高清在线一区二区三| 青春草亚洲视频在线观看| 如何舔出高潮| freevideosex欧美| 国产亚洲av嫩草精品影院| 日韩一区二区视频免费看| 男女下面进入的视频免费午夜| 亚洲国产精品成人久久小说| 国内精品一区二区在线观看| 亚州av有码| 国产黄色视频一区二区在线观看| 精品不卡国产一区二区三区| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 亚洲熟妇中文字幕五十中出| 尤物成人国产欧美一区二区三区| 日韩欧美精品v在线| 2021少妇久久久久久久久久久| 欧美+日韩+精品| 精品午夜福利在线看| 国产中年淑女户外野战色| 欧美日韩综合久久久久久| 久久久精品欧美日韩精品| 老师上课跳d突然被开到最大视频| 久久久久久九九精品二区国产| 一区二区三区四区激情视频| 日韩成人伦理影院| 美女黄网站色视频| 国产免费一级a男人的天堂| 一个人免费在线观看电影| 精品一区二区三卡| 日韩制服骚丝袜av| 亚洲精品456在线播放app| 永久网站在线| 亚洲高清免费不卡视频| 国产伦精品一区二区三区四那| 国产不卡一卡二| 麻豆成人午夜福利视频| 你懂的网址亚洲精品在线观看| 深爱激情五月婷婷| 亚洲丝袜综合中文字幕| 一级毛片 在线播放| 又爽又黄无遮挡网站| 免费观看在线日韩| 免费观看性生交大片5| 亚洲三级黄色毛片| 国产伦精品一区二区三区视频9| 男人爽女人下面视频在线观看| 国产成人freesex在线| 亚洲av成人av| 日本三级黄在线观看| 人人妻人人澡欧美一区二区| 最近的中文字幕免费完整| 国产有黄有色有爽视频| 免费大片18禁| 国产在线男女| 床上黄色一级片| 精品亚洲乱码少妇综合久久| 国产午夜精品久久久久久一区二区三区| 在现免费观看毛片| 欧美不卡视频在线免费观看| 国产精品女同一区二区软件| 国产精品人妻久久久久久| 日韩三级伦理在线观看| 天堂影院成人在线观看| 亚洲精品日韩av片在线观看| 一级黄片播放器| 全区人妻精品视频| 毛片一级片免费看久久久久| 国产探花极品一区二区| 九色成人免费人妻av| 亚洲美女搞黄在线观看| 美女大奶头视频| 久久久久精品性色| 亚洲第一区二区三区不卡| 啦啦啦中文免费视频观看日本| 成年女人在线观看亚洲视频 | 日本一二三区视频观看| 亚洲色图av天堂| 国产高清国产精品国产三级 | 亚洲天堂国产精品一区在线| 免费播放大片免费观看视频在线观看| 特大巨黑吊av在线直播| 日产精品乱码卡一卡2卡三| 在现免费观看毛片| 成人亚洲欧美一区二区av| 搡老妇女老女人老熟妇| 久久亚洲国产成人精品v| 国产国拍精品亚洲av在线观看| 亚洲久久久久久中文字幕| 91午夜精品亚洲一区二区三区| 国产在视频线精品| 黄色日韩在线| 69av精品久久久久久| 97超碰精品成人国产| 亚州av有码| 国产久久久一区二区三区| 久久99精品国语久久久| 成人性生交大片免费视频hd| 日本黄大片高清| 毛片一级片免费看久久久久| 国产精品.久久久| 亚洲av一区综合| a级一级毛片免费在线观看| 五月玫瑰六月丁香| 天堂网av新在线| 久久99热这里只有精品18| 欧美3d第一页| 国产真实伦视频高清在线观看| 水蜜桃什么品种好| 在线观看av片永久免费下载| 亚洲国产色片| 国产免费一级a男人的天堂| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| 激情 狠狠 欧美| 国产伦精品一区二区三区四那| av又黄又爽大尺度在线免费看| 直男gayav资源| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 精品人妻视频免费看| 在线 av 中文字幕| 大话2 男鬼变身卡| 国产淫片久久久久久久久| 欧美区成人在线视频| 亚洲欧美日韩卡通动漫| 少妇熟女aⅴ在线视频| 一级毛片久久久久久久久女| 特级一级黄色大片| 亚洲av电影在线观看一区二区三区 | av在线亚洲专区| 国产成年人精品一区二区| 亚洲av在线观看美女高潮| 91av网一区二区| 成人鲁丝片一二三区免费| 蜜臀久久99精品久久宅男| 久久久久精品性色| 久久久亚洲精品成人影院| 国产精品久久久久久精品电影小说 | 午夜久久久久精精品| 日韩制服骚丝袜av| 老师上课跳d突然被开到最大视频| 日韩制服骚丝袜av| 亚洲av在线观看美女高潮| 亚洲欧洲国产日韩| 女的被弄到高潮叫床怎么办| 亚洲精品成人久久久久久| 亚洲精品中文字幕在线视频 | 国产人妻一区二区三区在| 精品一区二区三区人妻视频| 免费观看的影片在线观看| 国产男女超爽视频在线观看| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 偷拍熟女少妇极品色| 久久久欧美国产精品| 男女国产视频网站| 赤兔流量卡办理| 久久久久久国产a免费观看| 成人欧美大片| or卡值多少钱| 久久久久久久久久成人| 国精品久久久久久国模美| 搞女人的毛片| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品专区欧美| av黄色大香蕉| 日韩大片免费观看网站| 成人综合一区亚洲| 高清av免费在线| 久久精品熟女亚洲av麻豆精品 | 丝袜喷水一区| 又粗又硬又长又爽又黄的视频| 久久久a久久爽久久v久久| 97超视频在线观看视频| 精品国内亚洲2022精品成人| 麻豆国产97在线/欧美| 国产探花在线观看一区二区| av一本久久久久| 日韩欧美一区视频在线观看 | 免费大片黄手机在线观看| 国产av国产精品国产| 国产毛片a区久久久久| 啦啦啦中文免费视频观看日本| 伊人久久精品亚洲午夜| 欧美激情在线99| 亚洲色图av天堂| 午夜福利在线观看吧| 精品国产露脸久久av麻豆 | 久久久久久久久久久免费av| 亚洲aⅴ乱码一区二区在线播放| 99久久九九国产精品国产免费| 午夜福利视频精品| 大陆偷拍与自拍| 成人无遮挡网站| 国产老妇女一区| 亚洲婷婷狠狠爱综合网| 免费观看在线日韩| 美女黄网站色视频| 久久精品熟女亚洲av麻豆精品 | 亚洲人成网站高清观看| 亚洲熟妇中文字幕五十中出| 亚洲av中文字字幕乱码综合| 一级毛片久久久久久久久女| 免费无遮挡裸体视频| 欧美一区二区亚洲| 岛国毛片在线播放| 好男人视频免费观看在线| 国产av码专区亚洲av| 亚洲四区av| 久久久久久九九精品二区国产| 午夜激情欧美在线| 91av网一区二区| 国产91av在线免费观看| 丰满人妻一区二区三区视频av| 久久久a久久爽久久v久久| 亚洲av成人av| 91精品一卡2卡3卡4卡| av在线天堂中文字幕| 亚洲无线观看免费| 成人午夜高清在线视频| 在线a可以看的网站| 午夜老司机福利剧场| 国产成人精品久久久久久| 乱系列少妇在线播放| 亚洲精品乱码久久久久久按摩| 99热这里只有是精品在线观看| 国产 一区精品| 亚洲美女搞黄在线观看| xxx大片免费视频| 美女被艹到高潮喷水动态| 丰满乱子伦码专区| 少妇熟女aⅴ在线视频| 亚洲精品影视一区二区三区av| 全区人妻精品视频| 国产美女午夜福利| 亚洲精品亚洲一区二区| 欧美日韩亚洲高清精品| www.色视频.com| 国产高清三级在线| 精品一区在线观看国产| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 夫妻性生交免费视频一级片| 亚洲国产色片| 深夜a级毛片| 亚洲图色成人| 亚洲自偷自拍三级| 小蜜桃在线观看免费完整版高清| 最近中文字幕高清免费大全6| 精品酒店卫生间| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| 日韩一区二区三区影片| 日韩精品有码人妻一区| 十八禁国产超污无遮挡网站| 噜噜噜噜噜久久久久久91| 亚洲最大成人中文| 性色avwww在线观看| 久久久久久九九精品二区国产| 成年免费大片在线观看| 精品一区二区免费观看| 99久久精品一区二区三区| 国产综合精华液| 欧美不卡视频在线免费观看| 老司机影院成人| 久久99精品国语久久久| 亚洲av在线观看美女高潮| 亚洲av福利一区| 国产亚洲精品av在线| 啦啦啦韩国在线观看视频| 久久99热这里只有精品18| 国产免费又黄又爽又色| 99九九线精品视频在线观看视频| 精品酒店卫生间| 国产亚洲精品久久久com| 午夜日本视频在线| 国产精品蜜桃在线观看| 99热网站在线观看| 国产在线男女| 丝袜美腿在线中文| 麻豆久久精品国产亚洲av| 国产精品一二三区在线看| eeuss影院久久| 午夜久久久久精精品| 国产精品日韩av在线免费观看| 伊人久久精品亚洲午夜| 日本一二三区视频观看| 亚洲真实伦在线观看| 久热久热在线精品观看| 亚州av有码| 日韩在线高清观看一区二区三区| 欧美激情在线99| 亚洲欧美一区二区三区黑人 | 久久久久久伊人网av| 青春草视频在线免费观看| 最近视频中文字幕2019在线8| 99re6热这里在线精品视频| 一个人观看的视频www高清免费观看| 永久网站在线| 又爽又黄无遮挡网站| 高清日韩中文字幕在线| 小蜜桃在线观看免费完整版高清| 国产免费视频播放在线视频 | 国产亚洲一区二区精品| 久久久久久伊人网av| 国产午夜精品一二区理论片| 国产精品久久久久久av不卡| 在线观看av片永久免费下载| 狠狠精品人妻久久久久久综合| 在线免费观看的www视频| 久久亚洲国产成人精品v| 美女内射精品一级片tv| 国产精品综合久久久久久久免费| 国产精品伦人一区二区| 亚洲国产欧美在线一区| 国产成人一区二区在线| 午夜福利视频1000在线观看| 街头女战士在线观看网站| 别揉我奶头 嗯啊视频| 午夜激情久久久久久久| 欧美+日韩+精品| 高清欧美精品videossex| 男人舔奶头视频| 99热这里只有精品一区| 高清av免费在线| 看免费成人av毛片| av女优亚洲男人天堂| 日韩欧美精品v在线| 国产高清三级在线| 天美传媒精品一区二区| 免费观看av网站的网址| 成人二区视频| 亚洲av成人av| 国产毛片a区久久久久| 简卡轻食公司| 亚洲欧美成人综合另类久久久| 美女被艹到高潮喷水动态| 日韩av在线大香蕉| 男女边摸边吃奶| 精品99又大又爽又粗少妇毛片| 日本猛色少妇xxxxx猛交久久| 不卡视频在线观看欧美| 久久久久网色| 日本色播在线视频| 国产色爽女视频免费观看| 在线观看美女被高潮喷水网站| 人体艺术视频欧美日本| 美女高潮的动态| 日韩三级伦理在线观看| 亚洲欧美日韩东京热| 在线免费十八禁| 日韩精品有码人妻一区| 赤兔流量卡办理| 丰满少妇做爰视频| 亚洲欧美精品专区久久| 欧美一级a爱片免费观看看| 91在线精品国自产拍蜜月| 国产高潮美女av| 内地一区二区视频在线| 国产精品三级大全| 三级男女做爰猛烈吃奶摸视频| 日韩一区二区三区影片| 国产精品国产三级国产av玫瑰| 在线播放无遮挡| 99久久精品国产国产毛片| 哪个播放器可以免费观看大片| 十八禁国产超污无遮挡网站| 最近中文字幕高清免费大全6| 纵有疾风起免费观看全集完整版 | 日韩欧美精品v在线| 中文字幕久久专区| 男女视频在线观看网站免费| 2022亚洲国产成人精品| videos熟女内射| 一级二级三级毛片免费看| 亚洲欧美精品自产自拍| 亚洲精品中文字幕在线视频 | 免费黄频网站在线观看国产| 偷拍熟女少妇极品色| 精品一区二区三区人妻视频| 成年av动漫网址| 搡老乐熟女国产| 熟女电影av网| 国产精品蜜桃在线观看| 色综合站精品国产| 国产熟女欧美一区二区| 欧美 日韩 精品 国产| 少妇的逼好多水| 国产男女超爽视频在线观看| 欧美丝袜亚洲另类| 日本色播在线视频| 精品国内亚洲2022精品成人| 18禁在线无遮挡免费观看视频| 男人舔奶头视频| 日本一本二区三区精品| 一二三四中文在线观看免费高清| 久久久午夜欧美精品| 亚洲在线自拍视频| 91精品伊人久久大香线蕉| 亚洲av中文av极速乱| 亚洲人成网站高清观看| 国产免费视频播放在线视频 | 亚洲国产精品国产精品| 国产女主播在线喷水免费视频网站 | 日日啪夜夜撸| 免费少妇av软件| 亚洲精品影视一区二区三区av| av播播在线观看一区| 国产色婷婷99| 美女内射精品一级片tv| 亚洲欧美日韩无卡精品| a级一级毛片免费在线观看| 男插女下体视频免费在线播放| eeuss影院久久|