• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Speech emotion recognitionusing semi-supervised discriminant analysis

    2014-09-06 10:49:27XuXinzhouHuangChengweiJinYunWuChenZhaoLi
    關(guān)鍵詞:東南大學(xué)約簡維數(shù)

    Xu Xinzhou Huang Chengwei Jin Yun Wu Chen Zhao Li,3

    (1Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China)(2School of Physical Science and Technology, Soochow University, Suzhou 215006, China)(3Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China)

    ?

    Speech emotion recognitionusing semi-supervised discriminant analysis

    Xu Xinzhou1Huang Chengwei2Jin Yun1Wu Chen1Zhao Li1,3

    (1Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China)(2School of Physical Science and Technology, Soochow University, Suzhou 215006, China)(3Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China)

    Semi-supervised discriminant analysis (SDA), which uses a combination of multiple embedding graphs, and kernel SDA (KSDA) are adopted in supervised speech emotion recognition. When the emotional factors of speech signal samples are preprocessed, different categories of features including pitch, zero-cross rate, energy, durance, formant and Mel frequency cepstrum coefficient (MFCC), as well as their statistical parameters, are extracted from the utterances of samples. In the dimensionality reduction stage before the feature vectors are sent into classifiers, parameter-optimized SDA and KSDA are performed to reduce dimensionality. Experiments on the Berlin speech emotion database show that SDA for supervised speech emotion recognition outperforms some other state-of-the-art dimensionality reduction methods based on spectral graph learning, such as linear discriminant analysis (LDA), locality preserving projections (LPP), marginal Fisher analysis (MFA) etc., when multi-class support vector machine (SVM) classifiers are used. Additionally, KSDA can achieve better recognition performance based on kernelized data mapping compared with the above methods including SDA.

    speech emotion recognition; speech emotion feature; semi-supervised discriminant analysis; dimensionality reduction

    Speech emotion recognition (SER) has become a popular research field[1-8]since its combination of speech signal processing, pattern recognition and machine learning. It is widely admitted that some kinds of low-dimensionality manifold structures or subspaces lie in common speech emotion feature space. Additionally, the dimensionality of SER features usually turns to be relatively high using the proposed features[1-7]. Therefore, dimensionality reduction methods play an important role in SER, which can reduce the computational complexity and raise the recognition rate.

    In the current research, some manifold-based methods combined with supervised information are proposed to discover the underlying sample space structures of speech emotion signal[6-7]. Meanwhile, subspace learning including manifold learning, for instance, LLE[9], Isomap[10], LE(LPP)[11-12], MLE[13], LDP[14]etc., as well as some unified frameworks[15-16]of them are proposed to combine discriminant analysis, manifold learning and least square problems. Most of them can provide efficient ways to solve dimensionality reduction or some other problems in machine learning and the computer vision field. In these methods, semi-supervised discriminant analysis(SDA)[17], which avoids using only a single embedding graph, makes discriminant information andk-nearest neighbor information together to achieve a better training form for the dimensionality reduction stage.

    In this paper, based on SDA, a speech emotion recognition method with the parameters optimized by validation sets is proposed to meet high recognition rates for speech emotion from different speakers. Then, kernel SDA (KSDA) is also adopted based on kernelized data mapping of SDA. We input original speech emotion features into SDA and KSDA. These original features come from recent research. Feature selection methods and SVD described in Ref.[12] can be adopted, since there are many redundant features and the dimensionality of the original feature sometimes exceeds the number of training samples.

    1 Methods

    1.1 Speech emotion features

    The original speech emotion features adopted here are mainly composed of two kinds of features, prosodic features and acoustic quality features. Prosodic features[5], which include pitch, energy of voiced segments, durance features etc., can reflect the changes and overall characteristics of an utterance. Acoustic quality features, which come from frame acoustic features, generally describe the timbre of an utterance.

    Here, these features are classified according to different extraction sources. The stage of feature extraction comes after the preprocessing stage, which includes pre-emphasis and enframing. The features adopted in this paper are listed below. The statistics here include maximum, minimum, mean, median, standard deviation and range of an utterance formed by frames.

    1) Energy features[2-6]Statistics, the first-order and second-order jitter of the energy sequence; statistics of its first-order and second-order difference sequence; statistics, the first-order and second-order jitter of the energy sequence, with three different frequency bands respectively.

    2) Pitch(F0) features[1-7]Statistics, the first-order and second-order jitter of the pitch sequence; the statistics of its first-order and second-order difference sequence; the slope of the voiced-frame sequence.

    3) Zero-cross rate features[3]Statistics of zero-cross rate sequence and its first-order and second-order difference sequence.

    4) Durance features[1-3,5-6]The number of voiced and unvoiced frames and segments; the longest duration of voiced and unvoiced segments; the ratio of the number of unvoiced to voiced frames; the ratio of the number of unvoiced to voiced segments; the speech rate.

    5) Formant (F1, F2, F3) features[2-3,5-7]Statistics of formant frequency sequence and bandwidth sequence; their first-order and second-order difference sequence; the first-order and second-order jitter of the formant frequency sequence.

    6) MFCC features[2-3]Statistics of MFCC sequences and their first-order difference sequence.

    According to the feature extraction methods, the feature vectors of a speech emotion recognition utterance have a dimensionality of 408.

    1.2 Semi-supervised discriminant analysis and its un-ified forms

    The methods of SDA come from the idea of RDA(regularized discriminant analysis), which aims to solve the problem of a small number of training samples. Ak-nearest neighbor term in SDA is introduced to replace the former regularize term in RDA. The original form of SDA and RDA is as

    (1)

    whereSt=Sb+Sw;Swis the within-class scatter matrix, whileSbis the between-class scatter matrix, as described in LDA[18]. Parameterτ≥0, controlling balance between different kinds of information.L=D-Sis the Laplacian matrix ofS, where the element of rowiand columnjinSandDis

    (2)

    Thus,asproposedinLPP[12]andLE[11],J(a) in SDA is

    2aTX(D-S)XTa=2aTXLXTa

    (3)

    In the form of SDA, the additional term based on existing LDA is used to control the balance between supervised label information and the nearest neighbor information of training samples. It can be seen as a combination form of LDA and a similar form of LPP. According to the graph embedding framework proposed by Yan[15], the graph embedding form of SDA is shown as

    (4)

    whereDIandDPare the diagonal matrices with each diagonal element representing the corresponding node degrees ofWIandWP, respectively;ec∈RN×1is the column vector with the elements, which are corresponding to emotion classc, being equal to 1, otherwise the elements are equal to 0;ncis the number of samples in classc;Ncis the number of classes.

    For supervised SDA (all the training samples are labeled) and semi-supervised situation of SDA, the adjacency matrices of intrinsic and penalty graphs are shown as

    (5)

    (6)

    Tomaketheparameterτbetween 0 and 1, we can let the two graphs simultaneously be divided byτ+1.

    By changing the linear form of data mapping into RKHS[18], we can draw supervised KSDA in graph embedding according to Eqs.(4) and (5). Then, the mapping in the new space is performed. The form is shown as

    (7)

    In Ref.[16], a least-square unified framework is proposed and used for LDA, RDA and their kernelized form. Then, according to the form of SDA in (1) and (4), the unified least-square form for SDA and KSDA can be written as

    (8)

    whereWr=(GTG)-1/2,Wc=I,Γ1=GT,Γ2=PT;Gn×cis the indicator matrix with its elementsgij=1 when sampleibelongs to classj, otherwisegij=0;Pis the approximate decomposition ofSwhereS≈PPT;γ=Xin SDA andγ=φ(X) in KSDA;Adx×kspans the subspace which preserves the correlation betweenΓandγ;Bdd×kspans the column space ofΓ. More information can be seen in Ref.[16].

    Eq.(8) can be solved by the form of a generalized eigenvalue problem (GEP). By minimizing the costing function in Eq.(8), the learning of training samples can also be achieved.

    1.3 Semi-supervised discriminant analysis for super-vised speech emotion recognition

    In the first stage, pre-emphasizing is done by a high-pass filter. Then, each utterance sample is enframed by the Hamming window. After that, the features in section 1.1 are extracted for each utterance sample, which leads to a 408-dimensional feature vector for every sample. We call the above procedure as a priori feature extraction. In contrast, the information of training samples are necessary in the stage of feature selection, SDA and KSDA. We call them as the posteriori feature extraction stage. The Fisher discriminant ratio is chosen as the rule of feature selection. Then, multi-class SVM classifiers are used for the dimension-reduced samples in the final classification stage.

    Various kinds of classifiers can be adopted for the classifying stage of SER. The classifier adopted in the experiments here is SVM with linear mapping. Due to the computational complexity of multi-class SVM in optimization, we construct multi-class SVM by voting with 2-class SVM between every 2 classes. However, the voting here may have confusion when the numbers of votes for some classes are the same. To reduce the impact of the problem, when the problem occurs, we only consider the 2-class SVM classifiers related to confusion classes.

    Although SDA is approved to be a useful dimensionality reduction algorithm by experiments in Ref.[17], the choice of the parameter between supervised information andk-nearest neighbor information of training samples for supervised situation is not discussed in detail. Owing to convergence problems of the objective function in SDA when using the parameter as an alternating-optimization variable, we enumerate the discrete values of the parameter to achieve relatively better recognition results in every training set, which is divided into training and validation subsets by cross-validation.

    2 Experiments

    2.1 Corpus and preparations

    The corpus adopted in the experiments is the Berlin speech emotion database (EMO-DB), which has 494 samples selected from 900 original ones. 10 professional actors (5 male, 5 female) spoke 10 different short sentences in German. Seven emotion categories including fear, disgust, joy, boredom, neutral, sadness and anger are in the Berlin corpus. The sampling frequency of the database is 16 kHz, while quantization uses 16 bits. Though some deficiencies such as the size of the sample set, the acting factor and language factor exist in EMO-DB, the database is still reliable as a standard corpus for speech emotion recognition research.

    The corpus is divided into training and test subsets by different ratios. We repeat the experiments for 20 times or more, with random partitions of training and test sets. The mean values can be calculated based on the repeating experiments. We use 5-fold cross-validation in the training set to choose a relatively appropriate parameter in every dimensionality reduction for SDA or KSDA. In KSDA, three different parameters for three Gaussian kernels, respectively, are used in the experiments. The detailed properties and advantages of kernel methods are stated in Ref.[18].

    2.2 Results

    The 2-dimensional space of test samples is illustrated in Fig.1, where the spaces of LDA[18], LPP[12], MFA[15]and SDA[17]are represented. It is worth noting that only LPP(see Fig.1(b)) is an unsupervised algorithm. Therefore, the structure of the test samples in LPP seems not so satisfying in speech emotion recognition due to the inaccuracy of the features. It can be seen from Fig.1 that the samples of anger and fear are relatively easier to be separated from other classes in most circumstances.

    Fig.1 2-dimensional feature space. (a)LDA; (b)LPP; (c)MFA; (d)SDA

    The recognition rates of SDA, PCA, LDA, LPP, MFA, kernel1-SDA, kernel2-SDA and kernel3-SDA are shown in Fig.2. The reduced dimensionalities are between 1 and 10 in Fig.2. These dimensionality reduction algorithms are similar under the framework of graph embedding. Generally, the recognition rates increase with the increase of the dimensionality. However, the maximum values of the quotient affect the recognition rates of LDA and SDA when the dimensionality is greater than 6 in the Berlin database. On the contrary, this kind of problem does not exist in PCA, LPP and MFA.

    Fig.2(a) shows the recognition rates comparison of SDA, PCA, LDA, LPP and MFA. It is obvious that SDA can achieve better performance even in the condition of supervised dimensionality reduction. Therefore, the combination of embedding graphs can improve the recognition rate of speech emotion features in SER. Then, the algorithms with supervised information (LDA, MFA, SDA) outperform the algorithms without supervised information (PCA, LPP) by a large margin. We can see from the experimental results that the importance of supervised information is very apparent.

    As seen in Fig.2(b), KSDA can improve the performance of SDA by nonlinear data mapping. In detail, kernel1-SDA and kernel2-SDA, which are with relatively smaller Gaussian kernel parameters, perform better than kernel3-SDA, whose Gaussian kernel parameter is larger. Based on the experiments, kernel mapping raises the performance of SDA in speech emotion recognition. However, the optimized choice for the parameters of kernels and their combination forms are still worth discussing.

    Tab.1 provides the best recognition rates of speech emotion recognition using PCA, LDA, LPP, MFA, SDA and KSDA at different ratios of the number of training samples to test samples. It can be seen that SDA and

    KSDA can achieve better performance than PCA, LDA, LPP, MFA and baseline in speech emotion recognition, when the ratios of training to test samples are 5∶5 and 6∶4.

    Tab.1 The best recognition rates using the algorithms at different ratios of training to test samples %

    RatioBaselinePCALDALPPMFASDAKernel1-SDAKernel2-SDAKernel3-SDA5∶573.466.373.868.173.975.778.478.176.86∶474.266.474.468.474.675.978.678.477.3

    Fig.2 Recognition rates of different methods when the dimensionality changes. (a) SDA, PCA, LDA, LPP and MFA; (b) SDA, kernel1-SDA, kernel2-SDA and kernel3-SDA

    3 Conclusion

    We use SDA and KSDA with optimized parameters in the dimensionality reduction stage of speech emotion recognition to improve the performance of recognition rates. SDA and KSDA can obviously achieve better recognition capability by only spending extra computational cost in the stage of training. It can be drawn from the experimental results that appropriately combining embedding graphs together is an effective way to obtain better performance than using individual graphs in speech emotion recognition.

    However, there are some problems in speech emotion recognition using SDA methods. Optimization by defining a proper cost function is worth researching. Based on the thought of SDA in the framework of graph embedding, more categories of graphs and their optimized combination can be adopted in speech emotion recognition. In addition, more accurate selection of speech emotion features is another direction of future research.

    [1]Dellaert F, Polzin T, Waibel A. Recognizing emotion in speech[C]//InternationalConferenceonSpokenLanguage. Philadelphia, PA, USA, 1996, 3: 1970-1973.

    [2]Ververidis D, Kotropoulos C. Emotional speech recognition: resources, features, and methods[J].SpeechCommunication, 2006, 48(9): 1162-1181.

    [3]Schuller B, Rigoll G. Timing levels in segment-based speech emotion recognition[C]//InternationalConferenceonSpokenLanguage. Pittsburgh, PA, USA, 2006: 1818-1821.

    [4]Oudeyer P. The production and recognition of emotions in speech: features and algorithms[J].InternationalJournalofHuman-ComputerStudies, 2003, 59(1/2): 157-183.

    [5]Tato R, Santos R, Kompe R, et al. Emotional space improves emotion recognition[C]//InternationalConferenceonSpokenLanguage. Denver, CO, USA, 2002: 2029-2032.

    [6]Zhang S Q, Zhao X M, Lei B C. Speech emotion recognition using an enhanced kernel Isomap for human-robot interaction[J].InternationalJournalofAdvancedRoboticSystems, 2013, 10: 114-01-114-07.

    [7]You M Y, Chen C, Bu J J, et al. Emotional speech analysis on nonlinear manifold[C]//InternationalConferenceonPatternRecognition. Hong Kong, China, 2006,3: 91-94.

    [8]Ayadi M, Kamel M, Karray F. Survey on speech emotion recognition: features, classification schemes, and databases[J].PatternRecognition, 2011, 44(3): 572-587.

    [9]Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000, 290(5500): 2323-2326.

    [10]Tenenbaum J, de Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000, 290(5500): 2319-2323.

    [11]Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//AdvancesinNeutralInformationProcessingSystems14. Whistler, British Columbia, Canada, 2002: 585-591.

    [12]He X F, Niyogi P. Locality preserving projections[C]//AdvancesinNeuralInformationProcessingSystems15. Whistler, British Columbia, Canada, 2003: 153-160.

    [13]Wang R P, Shan S G, Chen X L, et al. Maximal linear embedding for dimensionality reduction[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2011, 33(9): 1776-1792.

    [14]Cai H P, Mikolajczyk K, Matas J. Learning linear discriminant projections for dimensionality reduction of image descriptors[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2011, 33(2): 338-352.

    [15]Yan S C, Xu D, Zhang B Y, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2007, 29(1): 40-51.

    [16]De la Torre F. A least-squares framework for component analysis[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2012, 34(6): 1041-1055.

    [17]Cai D, He X F. Semi-supervised discriminant analysis[C]//InternationalConferenceonComputerVision. Rio de Janeiro, Brazil, 2007: 1-7.

    [18]Shawe-Taylor J, Cristianini N.Kernelmethodsforpatternanalysis[M]. Cambridge, UK: Cambridge University Press, 2004.

    基于半監(jiān)督判別分析的語音情感識別

    徐新洲1黃程韋2金 赟1吳 塵1趙 力1,3

    (1東南大學(xué)水聲信號處理教育部重點(diǎn)實(shí)驗(yàn)室,南京 210096) (2蘇州大學(xué)物理科學(xué)與技術(shù)學(xué)院, 蘇州 215006) (3東南大學(xué)兒童發(fā)展與學(xué)習(xí)科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室, 南京 210096)

    將基于多個(gè)嵌入圖組合形式的半監(jiān)督判別分析 (SDA)以及核SDA (KSDA)應(yīng)用于全監(jiān)督的語音情感識別. 在語音信號樣本情感成分的預(yù)處理階段, 從樣本語段中提取出多種特征及其統(tǒng)計(jì)參數(shù), 包括基音、過零率、能量、持續(xù)長度、共振峰和 MFCC (Mel頻率倒譜系數(shù)). 在將樣本特征送入分類器之前的維數(shù)約簡階段, 使用經(jīng)過參數(shù)優(yōu)化的SDA或KSDA進(jìn)行降維. Berlin語音情感數(shù)據(jù)庫上的實(shí)驗(yàn)表明,在使用多類SVM分類器時(shí)的全監(jiān)督語音情感識別中, SDA優(yōu)于其他一些先進(jìn)的基于譜圖學(xué)習(xí)的維數(shù)約簡算法, 如LDA, LPP, MFA等, 而KSDA通過核化的數(shù)據(jù)映射, 能夠取得比上述所有算法更好的識別效果.

    語音情感識別; 語音情感特征; 半監(jiān)督判別分析; 維數(shù)約簡

    TN912.3

    s:The National Natural Science Foundation of China (No. 61231002, 61273266), the Ph.D. Programs Foundation of Ministry of Education of China (No.20110092130004).

    :Xu Xinzhou, Huang Chengwei, Jin Yun, et al.Speech emotion recognition using semi-supervised discriminant analysis[J].Journal of Southeast University (English Edition),2014,30(1):7-12.

    10.3969/j.issn.1003-7985.2014.01.002

    10.3969/j.issn.1003-7985.2014.01.002

    Received 2013-08-05.

    Biographies:Xu Xinzhou (1987—), male, graduate; Zhao Li (corresponding author), male, doctor, professor, zhaoli@seu.edu.cn.

    猜你喜歡
    東南大學(xué)約簡維數(shù)
    β-變換中一致丟番圖逼近問題的維數(shù)理論
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    一類齊次Moran集的上盒維數(shù)
    基于二進(jìn)制鏈表的粗糙集屬性約簡
    實(shí)值多變量維數(shù)約簡:綜述
    基于模糊貼近度的屬性約簡
    關(guān)于齊次Moran集的packing維數(shù)結(jié)果
    亚洲人成77777在线视频| 中文字幕人妻丝袜制服| 看免费成人av毛片| 日韩,欧美,国产一区二区三区| 黄色 视频免费看| 熟女人妻精品中文字幕| 中文字幕最新亚洲高清| 综合色丁香网| av卡一久久| 老司机亚洲免费影院| 超碰97精品在线观看| 午夜影院在线不卡| 91精品三级在线观看| 日本黄大片高清| 一级毛片 在线播放| 亚洲精品久久午夜乱码| 久热久热在线精品观看| 黄色配什么色好看| 亚洲欧美成人综合另类久久久| 美女xxoo啪啪120秒动态图| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲 | 夜夜骑夜夜射夜夜干| 免费黄网站久久成人精品| 国产探花极品一区二区| 波多野结衣一区麻豆| 青春草亚洲视频在线观看| 最近2019中文字幕mv第一页| 18+在线观看网站| 亚洲精品aⅴ在线观看| 中国三级夫妇交换| 9热在线视频观看99| 国产又爽黄色视频| 母亲3免费完整高清在线观看 | 9色porny在线观看| 在线亚洲精品国产二区图片欧美| 精品酒店卫生间| 波多野结衣一区麻豆| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| 精品酒店卫生间| 看非洲黑人一级黄片| 日本爱情动作片www.在线观看| 久久99热6这里只有精品| 亚洲精品一二三| 免费高清在线观看视频在线观看| 91在线精品国自产拍蜜月| 欧美3d第一页| 久久久久国产网址| 国产一区二区在线观看日韩| videossex国产| 黑人巨大精品欧美一区二区蜜桃 | 国产精品嫩草影院av在线观看| 久久久国产欧美日韩av| 精品福利永久在线观看| 午夜久久久在线观看| av女优亚洲男人天堂| 国产色爽女视频免费观看| 99视频精品全部免费 在线| 精品一区二区三区四区五区乱码 | 亚洲国产日韩一区二区| 国产精品秋霞免费鲁丝片| 日日摸夜夜添夜夜爱| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜| 搡女人真爽免费视频火全软件| 免费观看无遮挡的男女| 丁香六月天网| 欧美精品人与动牲交sv欧美| 欧美另类一区| 香蕉精品网在线| 亚洲国产日韩一区二区| 中国三级夫妇交换| 在线 av 中文字幕| 日韩成人伦理影院| 在线亚洲精品国产二区图片欧美| 久久精品人人爽人人爽视色| 大码成人一级视频| 曰老女人黄片| 人人妻人人爽人人添夜夜欢视频| 久久久久精品久久久久真实原创| 美女内射精品一级片tv| 免费少妇av软件| 在线看a的网站| 九色成人免费人妻av| 亚洲国产精品成人久久小说| 尾随美女入室| 国产一区二区在线观看av| 精品国产国语对白av| 免费黄频网站在线观看国产| a级毛片在线看网站| 成人国产av品久久久| 777米奇影视久久| 一区二区三区四区激情视频| 亚洲精品成人av观看孕妇| 午夜影院在线不卡| 久久av网站| 狠狠婷婷综合久久久久久88av| 国产精品无大码| 99热网站在线观看| 黑人猛操日本美女一级片| 亚洲av电影在线观看一区二区三区| 毛片一级片免费看久久久久| 99久国产av精品国产电影| 久久99热6这里只有精品| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品999| 狠狠婷婷综合久久久久久88av| 1024视频免费在线观看| √禁漫天堂资源中文www| 一二三四在线观看免费中文在 | 日韩大片免费观看网站| 99热全是精品| 亚洲经典国产精华液单| 国产精品三级大全| 人妻系列 视频| 欧美+日韩+精品| 国产 一区精品| 黄色毛片三级朝国网站| 成年动漫av网址| 2022亚洲国产成人精品| 卡戴珊不雅视频在线播放| 高清在线视频一区二区三区| 亚洲欧美一区二区三区黑人 | 水蜜桃什么品种好| 黄色一级大片看看| 一级片'在线观看视频| 侵犯人妻中文字幕一二三四区| 日韩成人伦理影院| 99久久中文字幕三级久久日本| 国产精品熟女久久久久浪| 少妇被粗大的猛进出69影院 | 人妻少妇偷人精品九色| 国产欧美亚洲国产| 自拍欧美九色日韩亚洲蝌蚪91| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 日韩中文字幕视频在线看片| 韩国高清视频一区二区三区| 亚洲成人av在线免费| 国产男人的电影天堂91| 国产成人欧美| 成年美女黄网站色视频大全免费| 久久热在线av| 高清在线视频一区二区三区| 视频在线观看一区二区三区| 精品少妇内射三级| 国产精品人妻久久久久久| 欧美人与性动交α欧美精品济南到 | 精品人妻偷拍中文字幕| 国产精品久久久久久av不卡| av视频免费观看在线观看| 亚洲天堂av无毛| 99久久综合免费| 在线观看一区二区三区激情| 成人黄色视频免费在线看| 大片免费播放器 马上看| 国产亚洲精品第一综合不卡 | 亚洲精品国产av蜜桃| 熟女电影av网| 美女xxoo啪啪120秒动态图| 99久久人妻综合| 国产福利在线免费观看视频| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 天堂中文最新版在线下载| 伦理电影免费视频| 国产亚洲精品第一综合不卡 | 国产爽快片一区二区三区| av.在线天堂| 久久午夜综合久久蜜桃| 少妇精品久久久久久久| 男人操女人黄网站| 9热在线视频观看99| 久久精品国产亚洲av涩爱| 日本vs欧美在线观看视频| 久久久久网色| 久久精品人人爽人人爽视色| 国产日韩一区二区三区精品不卡| 乱人伦中国视频| 纵有疾风起免费观看全集完整版| 热re99久久国产66热| 精品一品国产午夜福利视频| 视频区图区小说| 色婷婷久久久亚洲欧美| 国产一区二区激情短视频 | 人妻少妇偷人精品九色| 久久久久久久久久人人人人人人| 亚洲av电影在线观看一区二区三区| 欧美成人午夜免费资源| 国产精品国产三级专区第一集| 久久韩国三级中文字幕| 18禁国产床啪视频网站| 少妇的丰满在线观看| 国产乱来视频区| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲日产国产| 丁香六月天网| 精品国产乱码久久久久久小说| 国内精品宾馆在线| 伦理电影大哥的女人| 中文精品一卡2卡3卡4更新| 国产69精品久久久久777片| 成人亚洲欧美一区二区av| 免费av中文字幕在线| 男人舔女人的私密视频| 免费高清在线观看视频在线观看| 老司机亚洲免费影院| 国产在线视频一区二区| 国产精品一区二区在线不卡| 免费黄频网站在线观看国产| 看非洲黑人一级黄片| 国产 精品1| 不卡视频在线观看欧美| 日本猛色少妇xxxxx猛交久久| 丝袜在线中文字幕| 日韩av不卡免费在线播放| av卡一久久| 国产午夜精品一二区理论片| 少妇的丰满在线观看| 蜜桃国产av成人99| 丝袜人妻中文字幕| 在线 av 中文字幕| 国产av码专区亚洲av| 中国国产av一级| av在线老鸭窝| 少妇人妻 视频| 亚洲欧美一区二区三区国产| 一级毛片黄色毛片免费观看视频| av在线播放精品| 日韩精品免费视频一区二区三区 | 国产亚洲一区二区精品| 一级片免费观看大全| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 有码 亚洲区| 黑人巨大精品欧美一区二区蜜桃 | 高清毛片免费看| freevideosex欧美| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 在线观看三级黄色| 在线观看人妻少妇| 成人国产麻豆网| 一二三四在线观看免费中文在 | 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验| 最黄视频免费看| 精品久久久精品久久久| 欧美精品亚洲一区二区| 日韩三级伦理在线观看| 欧美成人午夜精品| 捣出白浆h1v1| 啦啦啦在线观看免费高清www| 欧美丝袜亚洲另类| 99精国产麻豆久久婷婷| 九色成人免费人妻av| 久热久热在线精品观看| 国产精品久久久久久久电影| 国产男人的电影天堂91| 韩国高清视频一区二区三区| 九九在线视频观看精品| av天堂久久9| 久久99热6这里只有精品| 老司机影院毛片| 伦理电影免费视频| 18禁动态无遮挡网站| 国产av码专区亚洲av| 丰满乱子伦码专区| 久久精品国产a三级三级三级| 国产免费一级a男人的天堂| 一区二区三区四区激情视频| 伊人久久国产一区二区| 久久免费观看电影| 久久99热这里只频精品6学生| 少妇精品久久久久久久| 日本与韩国留学比较| 国产成人免费无遮挡视频| 精品亚洲成国产av| 18在线观看网站| 一区二区三区四区激情视频| 高清在线视频一区二区三区| 满18在线观看网站| 两个人看的免费小视频| 欧美亚洲日本最大视频资源| 成年美女黄网站色视频大全免费| 狂野欧美激情性xxxx在线观看| 天堂俺去俺来也www色官网| 最近中文字幕2019免费版| 国产精品一区二区在线不卡| 在线亚洲精品国产二区图片欧美| 日韩熟女老妇一区二区性免费视频| 极品人妻少妇av视频| 18禁在线无遮挡免费观看视频| av在线老鸭窝| 国产免费福利视频在线观看| 多毛熟女@视频| 99热6这里只有精品| 亚洲欧美成人精品一区二区| 亚洲一区二区三区欧美精品| 欧美性感艳星| 女人被躁到高潮嗷嗷叫费观| 免费高清在线观看日韩| 亚洲精品乱久久久久久| 午夜激情av网站| 蜜桃在线观看..| 一区在线观看完整版| 亚洲欧美一区二区三区国产| 精品人妻偷拍中文字幕| 色婷婷久久久亚洲欧美| 在线看a的网站| 国产在视频线精品| 日本免费在线观看一区| av电影中文网址| 日韩熟女老妇一区二区性免费视频| 视频中文字幕在线观看| 在线精品无人区一区二区三| 国产精品女同一区二区软件| 深夜精品福利| 亚洲情色 制服丝袜| 人妻 亚洲 视频| 啦啦啦在线观看免费高清www| 精品亚洲成国产av| 久久久久视频综合| 国产精品久久久av美女十八| 五月玫瑰六月丁香| 午夜影院在线不卡| 午夜激情久久久久久久| 午夜福利乱码中文字幕| www.色视频.com| 在线免费观看不下载黄p国产| 成人午夜精彩视频在线观看| 国产成人精品一,二区| 大话2 男鬼变身卡| 亚洲欧美日韩卡通动漫| 青春草视频在线免费观看| 美女国产视频在线观看| 性色av一级| 亚洲精品aⅴ在线观看| 亚洲国产最新在线播放| 午夜视频国产福利| 免费在线观看黄色视频的| 久久久久精品性色| 国产毛片在线视频| 一本—道久久a久久精品蜜桃钙片| 国产一级毛片在线| 精品福利永久在线观看| 最后的刺客免费高清国语| 伦精品一区二区三区| 少妇被粗大猛烈的视频| 少妇 在线观看| 国产熟女欧美一区二区| 欧美国产精品一级二级三级| 黄色 视频免费看| 成年美女黄网站色视频大全免费| 夫妻午夜视频| 国产欧美日韩一区二区三区在线| 久久人妻熟女aⅴ| 欧美国产精品一级二级三级| 亚洲美女搞黄在线观看| 男女下面插进去视频免费观看 | 水蜜桃什么品种好| 看免费成人av毛片| 亚洲精品乱久久久久久| 亚洲精品成人av观看孕妇| 免费高清在线观看日韩| 午夜久久久在线观看| 亚洲熟女精品中文字幕| 久久午夜福利片| 少妇精品久久久久久久| 如日韩欧美国产精品一区二区三区| 我要看黄色一级片免费的| 国产欧美亚洲国产| 国产片内射在线| 一个人免费看片子| 成人黄色视频免费在线看| 国产老妇伦熟女老妇高清| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 麻豆精品久久久久久蜜桃| 岛国毛片在线播放| 极品人妻少妇av视频| 春色校园在线视频观看| 熟女av电影| 久久99精品国语久久久| 免费观看性生交大片5| 99热全是精品| 久久久国产精品麻豆| 午夜久久久在线观看| 中文字幕制服av| 久久人妻熟女aⅴ| 国精品久久久久久国模美| 午夜免费观看性视频| 又大又黄又爽视频免费| 97精品久久久久久久久久精品| 国产男女超爽视频在线观看| 久久午夜综合久久蜜桃| 99久久人妻综合| 久久99蜜桃精品久久| 欧美日韩国产mv在线观看视频| 亚洲精华国产精华液的使用体验| 美女国产视频在线观看| 欧美成人午夜精品| 99精国产麻豆久久婷婷| 人人妻人人添人人爽欧美一区卜| 极品少妇高潮喷水抽搐| 一区二区三区精品91| 国产成人a∨麻豆精品| 18+在线观看网站| 久久热在线av| 伦理电影大哥的女人| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 国产成人免费观看mmmm| 青春草国产在线视频| 性高湖久久久久久久久免费观看| 伦理电影免费视频| 女人被躁到高潮嗷嗷叫费观| 成人毛片60女人毛片免费| 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 欧美人与善性xxx| 自拍欧美九色日韩亚洲蝌蚪91| 免费看av在线观看网站| 边亲边吃奶的免费视频| 国精品久久久久久国模美| 中国美白少妇内射xxxbb| 黑人高潮一二区| 蜜桃国产av成人99| 日韩人妻精品一区2区三区| 一区二区三区四区激情视频| 蜜桃在线观看..| 日韩三级伦理在线观看| 香蕉精品网在线| 亚洲av中文av极速乱| 免费观看无遮挡的男女| 亚洲国产精品999| 少妇的丰满在线观看| 亚洲国产精品国产精品| 亚洲精品,欧美精品| 熟女人妻精品中文字幕| 亚洲av中文av极速乱| 亚洲精品456在线播放app| 亚洲美女视频黄频| 久热久热在线精品观看| freevideosex欧美| 欧美国产精品va在线观看不卡| 亚洲,欧美精品.| 桃花免费在线播放| 丝袜脚勾引网站| 90打野战视频偷拍视频| 久久午夜综合久久蜜桃| 国产亚洲av片在线观看秒播厂| 国产精品偷伦视频观看了| 午夜老司机福利剧场| 日本黄色日本黄色录像| 夫妻午夜视频| 亚洲国产精品国产精品| 欧美激情极品国产一区二区三区 | 亚洲精品一二三| 高清不卡的av网站| 天堂中文最新版在线下载| 久久久久国产精品人妻一区二区| av福利片在线| 午夜影院在线不卡| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区综合在线观看 | 亚洲一区二区三区欧美精品| 18禁动态无遮挡网站| 日韩大片免费观看网站| 亚洲精华国产精华液的使用体验| 午夜福利视频精品| 天堂中文最新版在线下载| 亚洲欧美日韩另类电影网站| 最新中文字幕久久久久| 久久久国产欧美日韩av| 中国三级夫妇交换| 午夜福利视频在线观看免费| 女人精品久久久久毛片| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 国产精品一国产av| 欧美亚洲日本最大视频资源| 亚洲熟女精品中文字幕| 麻豆精品久久久久久蜜桃| 丝袜人妻中文字幕| 少妇人妻 视频| 秋霞在线观看毛片| 2022亚洲国产成人精品| 久久精品夜色国产| 午夜日本视频在线| 99热6这里只有精品| 22中文网久久字幕| 国产成人aa在线观看| 一级片免费观看大全| av女优亚洲男人天堂| 免费观看av网站的网址| 婷婷色综合www| 精品国产一区二区三区久久久樱花| 亚洲成人手机| 伦理电影大哥的女人| 黄片播放在线免费| 熟女av电影| av一本久久久久| 亚洲人成网站在线观看播放| √禁漫天堂资源中文www| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| av视频免费观看在线观看| 国产av国产精品国产| 亚洲欧美一区二区三区黑人 | 最近中文字幕2019免费版| 国产片特级美女逼逼视频| 午夜av观看不卡| 国产色爽女视频免费观看| 国产精品一区二区在线不卡| av有码第一页| 成年人午夜在线观看视频| 午夜av观看不卡| 亚洲欧美色中文字幕在线| 久久综合国产亚洲精品| 精品熟女少妇av免费看| 久久99热6这里只有精品| 日日撸夜夜添| 日韩精品免费视频一区二区三区 | 日韩在线高清观看一区二区三区| 国产免费一区二区三区四区乱码| 亚洲一区二区三区欧美精品| 亚洲av在线观看美女高潮| 欧美少妇被猛烈插入视频| 性高湖久久久久久久久免费观看| 水蜜桃什么品种好| 香蕉国产在线看| 天堂俺去俺来也www色官网| 69精品国产乱码久久久| videos熟女内射| 精品第一国产精品| 免费女性裸体啪啪无遮挡网站| 国产日韩欧美视频二区| 十分钟在线观看高清视频www| 中国美白少妇内射xxxbb| 一本久久精品| 成人手机av| 国产精品久久久av美女十八| 亚洲精品久久午夜乱码| 男女下面插进去视频免费观看 | av又黄又爽大尺度在线免费看| 亚洲成av片中文字幕在线观看 | 麻豆精品久久久久久蜜桃| 女人精品久久久久毛片| 伦精品一区二区三区| 欧美国产精品va在线观看不卡| 欧美人与性动交α欧美精品济南到 | 韩国av在线不卡| 亚洲av男天堂| 国产成人一区二区在线| 免费日韩欧美在线观看| 日韩中字成人| 日韩欧美一区视频在线观看| 卡戴珊不雅视频在线播放| 亚洲激情五月婷婷啪啪| 男女午夜视频在线观看 | 亚洲av电影在线进入| 麻豆乱淫一区二区| 十分钟在线观看高清视频www| 深夜精品福利| 美女国产高潮福利片在线看| 精品国产一区二区久久| 一区二区日韩欧美中文字幕 | 欧美日本中文国产一区发布| 黄色视频在线播放观看不卡| 精品一区二区免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产精品成人久久小说| 搡女人真爽免费视频火全软件| 人妻 亚洲 视频| 日韩成人av中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 老司机亚洲免费影院| av在线观看视频网站免费| 国产精品久久久久久精品古装| 日韩中字成人| 高清在线视频一区二区三区| 欧美精品国产亚洲| 亚洲欧美成人精品一区二区| 久久97久久精品| 熟女电影av网| 国产黄色视频一区二区在线观看| 国产精品成人在线| 中文字幕免费在线视频6| av片东京热男人的天堂| 成年动漫av网址| 天堂8中文在线网| 老司机影院毛片| 国产精品久久久久久精品电影小说| freevideosex欧美| 狠狠精品人妻久久久久久综合| 一本—道久久a久久精品蜜桃钙片| 日韩一区二区视频免费看| 午夜免费鲁丝| 国产男女超爽视频在线观看| 亚洲国产精品成人久久小说| 制服诱惑二区| 涩涩av久久男人的天堂| 日韩av免费高清视频| 18禁国产床啪视频网站| 91精品伊人久久大香线蕉| 男女免费视频国产| 在线免费观看不下载黄p国产| 最黄视频免费看| 国产精品麻豆人妻色哟哟久久| 久久久久人妻精品一区果冻| 国产在线视频一区二区| 一区二区三区乱码不卡18|