• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    2014-09-06 10:49:34BaoNanXiaWeiweiShenLianfeng
    關鍵詞:資源分配公平性分配

    Bao Nan Xia Weiwei Shen Lianfeng

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    ?

    Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    Bao Nan Xia Weiwei Shen Lianfeng

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    To satisfy different service requirements of multiple users in the orthogonal frequency division multiple access wireless local area network (OFDMA-WLAN) system downlink transmission, a resource allocation algorithm based on fairness and quality of service (QoS) provisioning is proposed. Different QoS requirements are converted into different rate requirements to calculate the QoS satisfaction level. The optimization object is revised as a fairness-driven resource optimization function to provide fairness. The complex resource allocation problem is divided into channel allocation and power assignment sub-problems. The sub-problems are solved by the bipartite graph matching and water-filling based method. Compared with other algorithms, the proposed algorithm sacrifices less data rate for higher fairness and QoS satisfaction. The simulation results show that the proposed algorithm is capable of providing QoS and fairness, and performs better in a tradeoff among QoS, fairness and data rate.

    QoS (quality of service) satisfaction level; fairness driven function; bipartite graph matching; water-filling; resource allocation

    The orthogonal frequency division multiple access (OFDMA) scheme has been intensively explored for offering greater flexibility in allocation of frequency resources[1]. IEEE 802.16e and the femtocell system also use the OFDMA to exploit multi-user diversity for higher network capacity[2]. It also has become the mainstream multiple access scheme for the downlink of the 3rd generation partner project long term evolution (3GPP LTE). Many researchers devote themselves to integrating the OFDMA technology into existing wireless communication networks by modifying the corresponding access algorithm[3-4]to solve the problems of multipath fading or multiple access interference[5]. A lot of documents focus on resource allocation of the OFDMA system for the maximum network throughput[6]and spectrum efficiency[7]by using centralized or distributed algorithms. Some researchers combine the OFDMA technology with cognitive radio technology and study on the resource management for resource sharing between primary and secondary networks to ensure that the second user does not interfere with the primary user[8-10]. The IEEE 802.11 work group has been trying to make standards for very high data rate wireless local area network (WLAN)[2]. Some technical improvements have been studied to integrate multiuser dynamic OFDMA into the IEEE 802.11 WLAN[11-12].

    Since the OFDMA technology is important for multiuser system performance, many resource allocation algorithms have been studied for the OFDMA-based systems in the past few years. In the earliest studies, algorithms committed to find an efficient way to maximize the system sum rate with total power constraint[13-15]. Then, the users’ priority is considered during the resource allocation. Weighted sum-rate maximization and weighted sum-power minimization problems are proposed in Ref.[16] and solved by the Lagrange dual decomposition method. It is found that the complexity of the traditional optimization method is high; thus, the evolutionary algorithm is proposed to reduce the complexity[17-18]. However, these references only consider the sum rate. The disadvantage is that maximizing the data rate may lead to unfair transmission and unsatisfied quality of service (QoS), although providing fairness and QoS guarantee will decrease the system data rate. In recent years, QoS and fairness provisioning have been the important research aspects for network resource optimization. Sacchi et al.[19]proposed an OFDMA resource balance strategy based on the game theory, in which the object of optimization is the mean opinion score (MOS) but not data rate. By considering different QoS requirements of users, Ref.[20] integrated power control, relay selection and sub-carrier assign into resource allocation optimization to maximize system throughput, and supported QoS by QoS pricing. The optimal fair number of accessed real-time (RT) users and non-real-time (NRT) users is calculated in Ref.[21], but each RT user is only assigned one sub-channel and how to assign appropriate channels to users is not explained.

    In the above references, different QoS requirements of different services are not considered in resource allocation. If the resource is allocated only for bringing the highest data rate, the heterogeneous QoS requirements cannot be satisfied. When a user with a lower rate requirement is assigned a good channel with a higher data rate, the resource is wasted and it is unfair for other users with higher data requirements. In this paper, channels are assigned according to different users’ QoS requests. Meanwhile, the fairness is considered in the allocation process. To prevent wasting of resources, channels should be properly allocated to users according to their demands. The optimization object is replaced by fairness-driven QoS satisfaction. The simulation results show that, the proposed resource allocation algorithm provides a better tradeoff among fairness, QoS guarantees of heterogeneous services and the system data rate.

    1 System Model and Problem Formulation

    As shown in Fig.1, the OFDMA technique is integrated into the WLAN downlink transmission by the frame aggregation scheme and the link adaption scheme. The channel state information (CSI), available spectrum opportunities and the user’s QoS request, which will be used in the allocation algorithm, are assumed to be available at the access point (AP) and remain unchanged during the allocation time period. AP assigns channels for downlink transmission and determines how much transmit power is allowed. The resource allocation results will be the input parameters of the frame aggregation and fragmentation module and the physical layer (PHY) processing module.

    Fig.1 Downlink transmission model at the AP

    Assume thatNstations (STAs) and one AP shareKsub-channels. In this paper, the resource allocation optimization problem can be described as maximizing the sum satisfaction on the condition of system constraints and QoS constraints. The problem formulations are given as follows:

    (1)

    s.t.

    (2)

    (3)

    (4)

    (5)

    (6)

    2 Resource Allocation for Different QoS Requirements and Fairness

    2.1 QoS-based resource optimization problem

    With the constraints in section 1, the optimal result of problem (1) is difficult to be found. To decrease the complexity of optimization, QoS constraints should be handled first. Note that the data rate should at least reach a lower bound, so that the packet error rate (PER) will be below the threshold and the packet will be delivered in time.

    The PER can be expressed as the increasing function of the average bit error rate (BER), and the data rate can be expressed as the decreasing function of the BER. So constraint (3) can be converted into the same form as constraint (5).

    (7)

    For packets with the time delay threshold, the data rate at the current slot should be large enough to ensure that the most urgent packet can be delivered in time. Since the data rate can be expressed as the decreasing function of the past time after the urgent packet is created, constraint (4) can be converted into the same form as constraint (5).

    (8)

    Now different QoS requirements can be converted into different data rate requirements. According to problem formulations given in section 1, each user’s QoS satisfaction is evaluated by the QoS satisfaction level (QSL), which is given as

    (9)

    So the QoS-based resource optimization problem can be expressed as

    (10)

    s.t.

    constraint (2) and constraint (6)

    2.2 Fairness-driven resource optimization problem

    Problem (10) is a nonlinear programming problem. By relaxing integer constraint (2) to continuous values in range [0,1], problem (10) becomes convex and the optimal result is easy to be found by solving the Lagrangian function. However, problem (10) does not reflect the fairness allocation. Resource may be only assigned to the user with the highest data rate requirement. To achieve fairness, problem (10) can be revised by a fairness-driven utility function[23]as

    (11)

    s.t.

    constraint (2) and constraint (6)

    It is difficult to solve problem (11) because it involves two log functions. One of the log functions is the Shannon formula used for calculating data rate in Eq.(9). The optimal solution cannot be calculated by the Lagrangian function directly, so problem (11) is divided into several small problems to find a suboptimal solution. The channel allocation will be solved first, and then the power will be assigned based on the channel allocation result.

    Given average power assignment, each user can calculate the fairness-driven utility log(si) on each channel. Assume that the number of users is equal to the number of channels. The channel allocation problem can be solved by bipartite graph matching. As shown in Fig.2, letxset include all users, andyset include all the channels. Let the weight of edge is the fairness-driven utility. The object of optimal matching is the object of the maximization problem (11).

    The channel allocation set can be calculated as

    (12)

    s.t. constraint (2)

    Given the channel allocation set, the power assignment

    Fig.2 Bipartite graph matching for channel allocation

    can be solved by the water-filling-based method. The object of power assignment is the same as the object of problem (10). According to Ref.[22], the transmission power is assigned as

    (13)

    2.3 Resource allocation based on fairness and QoS provisioning

    According to the above analysis, the steps of the proposed algorithm for resource allocation based on fairness and QoS provisioning (RAFQ) can be given as follows:

    1) Collect information: The AP collects CSI, available spectrum opportunities and QoS requirements of each user. Different QoS requirements will be converted into different data rate requirements. All the information should be collected at the beginning of every resource allocation circle.

    2) Channel allocation: Given the average power assignment, AP calculates the channel allocation set by solving Eq.(12).

    3) Power assignment: Given the channel allocation set, AP calculates the power assignment result by solving Eq.(13).

    4) Repeat step 1) to 3) at every resource allocation circle.

    3 Simulation Results

    In this section, the performance of the proposed algorithm is evaluated and compared with three other algorithms which are discussed in Ref.[22]. The first algorithm is the maximum rate resource allocation algorithm (MRRA), in which the resource is always allocated to the user bringing the highest data rate. The second algorithm is the QoS provisioning channel allocation (QPCA) algorithm proposed in Ref.[21], in which the channel bringing the highest data rate is assigned to the user with the highest QSL. The third algorithm is the spectrum allocation based on the general genetic (SAGG) algorithm proposed in Ref.[17], but the fitness function is replaced by the QSL. All the parameters used in the simulation are summarized in Tab.1. Channels between the AP and wireless users are modeled as parallel AWGN channels with different channel gains. Each channel can only be allocated to one user.

    Tab.1 Parameters used for evaluation

    A fairness index[24]is used to evaluate the fairness performance of different algorithms. A higher value ofd(x) implies a higher degree of fairness.

    (14)

    In Fig.3, the QSL of user 1 is much lower than that of user 3 when there is no fairness consideration. But with fairness consideration in the proposed algorithm, the QSL of user 1 is greater than that of user 3. This means that some resource of user 3 is re-allocated to user 1 to provide fair allocation. The fairness index with fairness consideration is 0.814 4, and the fairness index without fairness consideration is 0.698 4. The value increases by 16.61%, which means that the fairness of resource allocation is improved.

    Fig.3 The QSL of RAFQ with/without considering fairness

    This result is also confirmed by Fig.4, in which the fairness index of the proposed algorithm is higher than that of other algorithms. In three other algorithms, the object of power assignment is the sum rate; the power is assigned to improve some users’ data rate while some others’ requirements are ignored. Thus the fairness index of the QPCA algorithm decreases after the power allocation. Fig.4 shows that the fairness performance of the proposed algorithm is better than those of three other algorithms.

    Fig.4 Comparison of fairness index

    The total QSL comparison is given in Fig.5. The proposed algorithm has the highest total QSL value. It reveals that the RAFQ algorithm can provide different QoS guarantees and fairness. However, the RAFQ algorithm does not have the highest sum rate in Fig.6. This is because the data rate is not the only target in the RAFQ algorithm; different QoS requirements are integrated into QoS satisfaction level; and the resource allocation process is driven by the fairness. The proposed algorithm sacrifices

    Fig.5 Comparison of total QSL

    Fig.6 Comparison of sum rate

    some data rate to the QoS and fairness guarantee, but it can still obtain the second-highest data rate when it compares with other algorithms. So it is a good trade off among the data rate, QoS and fairness.

    4 Conclusion

    In this paper, a resource allocation algorithm is proposed for dynamic resource optimization with QoS and fairness guarantee. The system model is presumed as the OFDMA-WLAN downlink transmission system. Different QoS requirements of multiple users are converted into different data rate requirements, which are integrated into the QoS satisfaction level. The fairness-driven utility function is used to provide user fairness. The channels are allocated through bipartite graph matching. Power assignment is solved by the water-filling-based method, in which the correction factor is used to obtain fairness. The proposed RAFQ algorithm is compared with three other algorithms on total QSL, fairness index and sum rate. The simulation results show that the proposed algorithm improves fairness and QoS satisfaction with less data rate sacrifice, and performs a good tradeoff among QoS, fairness and data rate.

    [1]Wong I C, Evans B L. Optimal downlink OFDMA resource allocation with linear complexity to maximize ergodic rates [J].IEEETransactionsonWirelessCommunications, 2008, 7(3): 962-971.

    [2]Sahin M E, Guvenc I, Jeong M-R, et al. Handling CCI and ICI in OFDMA femtocell networks through frequency scheduling [J].IEEETransactionsonConsumerElectronics, 2009, 55(4): 1936-1944.

    [3]Alnuweiri H M, Fallah Y P, Nasiopoulos P, et al. OFDMA-based medium access control for next-generation WLANs [J].EURASIPJournalonWirelessCommunicationsandNetworking, 2009, 2009: 512865-01-512865-09.

    [4]Wang D D, Minn H, Al-Dhahir N. A distributed opportunistic access scheme and its application to OFDMA systems [J].IEEETransactionsonCommunications, 2009, 57(3): 738-746.

    [5]Jung Junwoo, Lim Jaesung. Group contention-based OFDMA MAC protocol for multiple access interference-free in WLAN systems [J].IEEETransactionsonWirelessCommunications, 2012, 11(2): 648-658.

    [6]Mokari N, Navaie K, Khoshkholgh M G. Downlink radio resource allocation in OFDMA spectrum sharing environment with partial channel state information [J].IEEETransactionsonWirelessCommunications, 2011, 10(10): 3482-3495.

    [7]Ngo D T, Tellambura C, Nguyen H H. Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control [J].IEEETransactionsonVehicularTechnology, 2009, 58(9): 4878-4889.

    [8]Mitran P, Le L B, Rosenberg C. Queue-aware resource allocation for downlink OFDMA cognitive radio networks [J].IEEETransactionsonWirelessCommunications, 2010, 9(10): 3100-3111.

    [9]Choi K W, Hossain E, Kim D I. Downlink subchannel and power allocation in multi-cell OFDMA cognitive radio networks [J].IEEETransactionsonWirelessCommunications, 2011, 10(7): 2259-2271.

    [10]Ngo D T, Tellambura C, Nguyen H H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration [J].IEEETransactionsonVehicularTechnology, 2010, 59(4): 1668-1679.

    [11]Kwon Hojoong, Seo Hanbyul, Kim Seonwook, et al. Generalized CSMA/CA for OFDMA systems: protocol design, throughput analysis, and implementation issues [J].IEEETransactionsonWirelessCommunications, 2009, 8(8): 4176-4187.

    [12]Valentin S, Freitag T, Karl H. Integrating multiuser dynamic OFDMA into IEEE 802.11 WLANs-LLC/MAC extensions and system performance [C]//IEEEInternationalConferenceonCommunications. Beijing, China, 2008: 3328-3334.

    [13]Jang J, Lee K. Transmit power adaptation for multiuser OFDM systems [J].IEEEJournalonSelectedAreasinCommunications, 2003, 21(2): 171-178.

    [14]Jiao W, Cai L, Tao M. Competitive scheduling for OFDMA systems with guaranteed transmission rate [J].ElsevierComputerCommunications,SpecialIssueonAdaptiveMulticarrierCommunicationsandNetwork, 2009, 32(3): 501-510.

    [15]Tao M, Liang Y C, Zhang F. Resource allocation for delay differentiated traffic in multiuser OFDM systems [J].IEEETransactionsonWirelessCommunications, 2008, 7(6): 2190-2201.

    [16]Seong K, Mohseni M, Cio J M. Optimal resource allocation for OFDMA downlink systems [C]//IEEEInternationalSymposiumonInformationTheory. Seattle, WA, USA, 2006: 1394-1398.

    [17]Zhao Zhijin, Peng Zhen, Zheng Shilian, et al. Cognitive radio spectrum allocation using evolutionary algorithms [J].IEEETransactionsonWirelessCommunications, 2009, 8(9): 4421-4425.

    [18]Koudouridis G P, Qvarfordt C, Cai T, et al. Partial frequency allocation in downlink OFDMA based on evolutionary algorithms [C]//2010IEEE72ndVehicularTechnologyConferenceFall(VTC 2010-Fall). Ottawa, ON, CAN, 2010: 1-5.

    [19]Sacchi C, Granelli F, Schlegel C. A QoE-oriented strategy for OFDMA radio resource allocation based on min-MOS maximization [J].IEEECommunicationsLetters, 2011, 15(5): 494-496.

    [20]Zhang Danhua, Wang Youzheng, Lu Jianhua. QoS aware resource allocation in cooperative OFDMA systems with service differentiation [C]//IEEEInternationalConferenceonCommunications. Cape Town, RSA, 2010: 1-5.

    [21]Alshamrani A, Shen X M, Xie L L. QoS provisioning for heterogeneous services in cooperative cognitive radio networks [J].IEEEJournalonSelectedAreasinCommunications, 2011, 29(4): 819-830.

    [22]Bao Nan, Li Junchao, Xia Weiwei, et al. QoS-aware resource allocation algorithm for OFDMA-WLAN integrated system [C]//2013IEEEWirelessCommunicationsandNetworkingConference. Shanghai, China, 2013: 807-812.

    [23]Peng Chunyi, Zheng Haitao, Zhao Ben Y. Utilization and fairness in spectrum assignment for opportunistic spectrum access [J].MobileNetworksandApplications, 2006, 11(4): 555-576.

    [24]Jain R, Chiu D, Hawe W. A quantitative measure of fairness and discrimination for resource allocation in shared computer systems [R]. Hudson: Digital Institution Corporation, 1984.

    基于公平性和QoS保障的OFDMA-WLAN系統(tǒng)資源分配

    鮑 楠 夏瑋瑋 沈連豐

    (東南大學移動通信國家重點實驗室,南京 210096)

    為了滿足OFDMA-WLAN系統(tǒng)下行通信中多用戶的不同業(yè)務需求,提出一種基于公平性和QoS服務保障的資源分配算法.不同的QoS要求被轉換成不同的速率要求來計算QoS滿意等級;優(yōu)化目標被修改為公平性驅動的優(yōu)化函數(shù)以提供公平性保障;復雜的資源分配問題被劃分為信道分配和功率分配問題,并通過二分圖匹配和注水法得到分配結果.與其他算法相比,所提出的算法犧牲了較少的數(shù)據(jù)速率換取更高的公平性和QoS滿意度.仿真結果表明所提算法具有保障QoS和公平性的能力,且在QoS、公平性和速率之間權衡折中時表現(xiàn)更好.

    QoS滿意等級;公平性驅動函數(shù);二分圖匹配;注水法;資源分配

    TN915

    s:The National Science and Technology Major Project (No.2012ZX03004005-003), the National Natural Science Foundation of China (No.61171081, 61201175), the Science and Technology Support Program of Jiangsu Province (No.BE2011187).

    10.3969/j.issn.1003-7985.2014.01.001

    :Bao Nan, Xia Weiwei, Shen Lianfeng. Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system[J].Journal of Southeast University (English Edition),2014,30(1):1-6.

    10.3969/j.issn.1003-7985.2014.01.001

    Received 2013-09-14.

    Biographies:Bao Nan (1985—), female, graduate; Shen Lianfeng (corresponding author), male, professor, lfshen@seu.edu.cn.

    猜你喜歡
    資源分配公平性分配
    新研究揭示新冠疫情對資源分配的影響 精讀
    英語文摘(2020年10期)2020-11-26 08:12:20
    應答器THR和TFFR分配及SIL等級探討
    遺產的分配
    一種分配十分不均的財富
    一種基于價格競爭的D2D通信資源分配算法
    測控技術(2018年7期)2018-12-09 08:57:56
    績效考核分配的實踐與思考
    一種提高TCP與UDP數(shù)據(jù)流公平性的擁塞控制機制
    公平性問題例談
    關于公平性的思考
    OFDMA系統(tǒng)中容量最大化的資源分配算法
    計算機工程(2014年6期)2014-02-28 01:25:32
    一本久久精品| 国产亚洲av片在线观看秒播厂| 黄色欧美视频在线观看| 久久女婷五月综合色啪小说| 久久99精品国语久久久| 久久久久久久大尺度免费视频| 午夜免费观看性视频| 日韩,欧美,国产一区二区三区| 日韩欧美 国产精品| 国产成人91sexporn| 一级毛片久久久久久久久女| 国产精品一二三区在线看| 欧美精品高潮呻吟av久久| 成人亚洲精品一区在线观看| 国产一区二区在线观看av| 久久综合国产亚洲精品| 亚洲精品成人av观看孕妇| 中文字幕久久专区| 日本黄大片高清| 日本午夜av视频| 青春草亚洲视频在线观看| 国产片特级美女逼逼视频| 伊人久久国产一区二区| 女性生殖器流出的白浆| 国产极品粉嫩免费观看在线 | 日日撸夜夜添| 中文字幕精品免费在线观看视频 | 久久久久国产精品人妻一区二区| 精品一区二区三卡| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 亚洲欧美日韩另类电影网站| 另类亚洲欧美激情| 国产黄色免费在线视频| 丰满迷人的少妇在线观看| 国产精品99久久99久久久不卡 | 中文字幕人妻丝袜制服| 精品国产一区二区久久| 99九九在线精品视频 | 久久久久视频综合| 国产淫片久久久久久久久| 国产亚洲av片在线观看秒播厂| 成人亚洲精品一区在线观看| 日韩大片免费观看网站| 大香蕉97超碰在线| 青春草视频在线免费观看| 插逼视频在线观看| 日韩中文字幕视频在线看片| 夜夜骑夜夜射夜夜干| 亚洲不卡免费看| 欧美激情极品国产一区二区三区 | av网站免费在线观看视频| 国产精品人妻久久久影院| 99九九在线精品视频 | 精品久久国产蜜桃| 久久精品国产亚洲网站| 久久久久久久久久成人| 3wmmmm亚洲av在线观看| 午夜福利视频精品| 成人二区视频| 国产精品蜜桃在线观看| 一区二区av电影网| 十分钟在线观看高清视频www | 亚洲熟女精品中文字幕| 26uuu在线亚洲综合色| 国产乱来视频区| 美女cb高潮喷水在线观看| 国产 精品1| 欧美丝袜亚洲另类| 国产欧美日韩一区二区三区在线 | av在线老鸭窝| 熟女av电影| av有码第一页| 午夜福利网站1000一区二区三区| 在线观看av片永久免费下载| 国产 一区精品| 国产精品国产三级国产av玫瑰| 噜噜噜噜噜久久久久久91| 日本av手机在线免费观看| 在现免费观看毛片| 亚洲av综合色区一区| 韩国av在线不卡| 另类精品久久| 日本免费在线观看一区| 国产一区二区在线观看日韩| 久久精品久久久久久噜噜老黄| 久久午夜综合久久蜜桃| 欧美 亚洲 国产 日韩一| 亚洲av综合色区一区| 夜夜爽夜夜爽视频| 精品酒店卫生间| 黄色配什么色好看| 永久网站在线| 美女主播在线视频| 七月丁香在线播放| 成人18禁高潮啪啪吃奶动态图 | 哪个播放器可以免费观看大片| 日韩大片免费观看网站| av一本久久久久| 青青草视频在线视频观看| 91久久精品国产一区二区成人| 春色校园在线视频观看| 最近的中文字幕免费完整| 免费看日本二区| 十八禁高潮呻吟视频 | 女人精品久久久久毛片| 欧美少妇被猛烈插入视频| av天堂久久9| 少妇猛男粗大的猛烈进出视频| 曰老女人黄片| 色视频www国产| 国产在线一区二区三区精| 久久这里有精品视频免费| 一个人看视频在线观看www免费| 国产av码专区亚洲av| 国产黄色免费在线视频| 一区二区av电影网| 亚洲国产欧美在线一区| 国产精品欧美亚洲77777| 国产精品女同一区二区软件| 国模一区二区三区四区视频| 日韩 亚洲 欧美在线| 美女视频免费永久观看网站| 一个人免费看片子| 91精品一卡2卡3卡4卡| 五月开心婷婷网| 这个男人来自地球电影免费观看 | 另类亚洲欧美激情| 精品人妻熟女毛片av久久网站| 美女脱内裤让男人舔精品视频| 日韩av不卡免费在线播放| 欧美日韩精品成人综合77777| 一本色道久久久久久精品综合| 夫妻午夜视频| 我要看黄色一级片免费的| 日韩一区二区三区影片| 新久久久久国产一级毛片| 18+在线观看网站| 三级经典国产精品| 男的添女的下面高潮视频| 亚洲欧美精品专区久久| 亚洲伊人久久精品综合| 国产国拍精品亚洲av在线观看| 美女xxoo啪啪120秒动态图| 一二三四中文在线观看免费高清| 国产美女午夜福利| videos熟女内射| kizo精华| 久久久久久久久久人人人人人人| 日韩av不卡免费在线播放| 亚洲国产av新网站| 亚洲精品国产成人久久av| av天堂久久9| 黄色毛片三级朝国网站 | av有码第一页| 亚洲精品久久久久久婷婷小说| 亚洲熟女精品中文字幕| 亚洲欧洲日产国产| 亚洲高清免费不卡视频| 妹子高潮喷水视频| 一个人免费看片子| 中文资源天堂在线| 在线天堂最新版资源| 国产亚洲5aaaaa淫片| 桃花免费在线播放| 精品一区在线观看国产| 91精品国产国语对白视频| 久久久久网色| 亚洲美女搞黄在线观看| 草草在线视频免费看| 亚洲一级一片aⅴ在线观看| 嫩草影院新地址| 水蜜桃什么品种好| 欧美成人精品欧美一级黄| 精品人妻一区二区三区麻豆| 男女无遮挡免费网站观看| 五月开心婷婷网| 久久热精品热| av福利片在线| 免费久久久久久久精品成人欧美视频 | av免费观看日本| 五月玫瑰六月丁香| 亚洲,一卡二卡三卡| 六月丁香七月| 青春草国产在线视频| 成年女人在线观看亚洲视频| av天堂中文字幕网| 欧美日韩一区二区视频在线观看视频在线| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 国产精品一二三区在线看| 国产精品不卡视频一区二区| 欧美激情极品国产一区二区三区 | 久久国产亚洲av麻豆专区| 亚洲综合精品二区| 男人和女人高潮做爰伦理| 免费观看的影片在线观看| 美女cb高潮喷水在线观看| 日韩免费高清中文字幕av| 噜噜噜噜噜久久久久久91| 99热国产这里只有精品6| 久久免费观看电影| 国产精品国产av在线观看| 久久精品夜色国产| 午夜福利视频精品| 成人特级av手机在线观看| 26uuu在线亚洲综合色| 成人亚洲精品一区在线观看| 国产日韩欧美在线精品| 久久人人爽人人片av| 少妇猛男粗大的猛烈进出视频| 美女福利国产在线| av国产久精品久网站免费入址| 欧美 亚洲 国产 日韩一| 黄色视频在线播放观看不卡| 熟女人妻精品中文字幕| 另类精品久久| 久久久a久久爽久久v久久| 精品久久久噜噜| 久久久欧美国产精品| 久久鲁丝午夜福利片| 国产女主播在线喷水免费视频网站| 国产精品一区二区性色av| freevideosex欧美| 久久99蜜桃精品久久| 一区在线观看完整版| av免费在线看不卡| 多毛熟女@视频| 久久久久久久精品精品| 国语对白做爰xxxⅹ性视频网站| 成年人午夜在线观看视频| 午夜精品国产一区二区电影| 久久久久久久亚洲中文字幕| 大又大粗又爽又黄少妇毛片口| 日韩欧美一区视频在线观看 | 精品久久国产蜜桃| 久久精品久久精品一区二区三区| 王馨瑶露胸无遮挡在线观看| av不卡在线播放| 中文乱码字字幕精品一区二区三区| 特大巨黑吊av在线直播| 久久久a久久爽久久v久久| 午夜免费男女啪啪视频观看| 九草在线视频观看| 亚洲av二区三区四区| 美女大奶头黄色视频| 国产精品无大码| 天堂8中文在线网| 国产精品久久久久久久久免| 男的添女的下面高潮视频| 伊人亚洲综合成人网| 一区二区av电影网| 久久久国产一区二区| 啦啦啦视频在线资源免费观看| 亚洲国产精品成人久久小说| 一个人免费看片子| 亚洲av日韩在线播放| 国产熟女午夜一区二区三区 | 国产精品无大码| av免费在线看不卡| 美女xxoo啪啪120秒动态图| 日韩免费高清中文字幕av| 妹子高潮喷水视频| videos熟女内射| 另类亚洲欧美激情| 久久国产精品大桥未久av | 国产老妇伦熟女老妇高清| 中文乱码字字幕精品一区二区三区| 国产69精品久久久久777片| 精品视频人人做人人爽| 三级经典国产精品| 亚洲精品自拍成人| 777米奇影视久久| 色视频在线一区二区三区| 最近的中文字幕免费完整| 精品视频人人做人人爽| .国产精品久久| 亚洲熟女精品中文字幕| 日韩强制内射视频| 国产精品久久久久久av不卡| 久久精品国产亚洲网站| 精品亚洲成a人片在线观看| 97超碰精品成人国产| 91午夜精品亚洲一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 美女xxoo啪啪120秒动态图| 亚洲四区av| 国产精品久久久久久久久免| 久久这里有精品视频免费| 亚洲av二区三区四区| 3wmmmm亚洲av在线观看| 精品久久久久久久久av| 国产精品熟女久久久久浪| 妹子高潮喷水视频| 久久这里有精品视频免费| 最近中文字幕2019免费版| 婷婷色综合大香蕉| 日韩强制内射视频| 99久久综合免费| 精品99又大又爽又粗少妇毛片| 亚洲精品一二三| 在线天堂最新版资源| 日韩制服骚丝袜av| 国产精品久久久久久av不卡| videos熟女内射| 国产男女超爽视频在线观看| 最黄视频免费看| a级毛片免费高清观看在线播放| 亚洲精品日本国产第一区| 一级毛片aaaaaa免费看小| 亚洲激情五月婷婷啪啪| 九九久久精品国产亚洲av麻豆| 国产综合精华液| 免费黄色在线免费观看| 99久久精品一区二区三区| 一级,二级,三级黄色视频| 七月丁香在线播放| 综合色丁香网| 熟妇人妻不卡中文字幕| 亚洲性久久影院| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产成人久久av| 丝袜脚勾引网站| 少妇精品久久久久久久| av.在线天堂| 久久久久久久久大av| 毛片一级片免费看久久久久| 99热这里只有是精品在线观看| 国产精品不卡视频一区二区| 永久免费av网站大全| 亚洲精品色激情综合| 精品人妻熟女av久视频| 91成人精品电影| 久久精品国产亚洲av涩爱| 我的老师免费观看完整版| 精品久久国产蜜桃| a级毛色黄片| 九草在线视频观看| 最新中文字幕久久久久| 中文字幕精品免费在线观看视频 | 国产男人的电影天堂91| 色婷婷久久久亚洲欧美| 日本91视频免费播放| 插逼视频在线观看| 国产精品人妻久久久影院| 国产片特级美女逼逼视频| 97超碰精品成人国产| 观看av在线不卡| 国产免费视频播放在线视频| 极品少妇高潮喷水抽搐| 亚洲欧美精品自产自拍| 国产精品欧美亚洲77777| 在线观看www视频免费| 久久久久久久久久久免费av| 国产精品国产三级国产av玫瑰| 曰老女人黄片| 人人妻人人爽人人添夜夜欢视频 | 啦啦啦中文免费视频观看日本| 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 国产精品久久久久久精品电影小说| 国产精品国产av在线观看| 日本av免费视频播放| 99九九在线精品视频 | 国产伦精品一区二区三区视频9| 中文乱码字字幕精品一区二区三区| 少妇的逼水好多| 日韩精品有码人妻一区| av女优亚洲男人天堂| 伦精品一区二区三区| 国产极品粉嫩免费观看在线 | 亚洲精品乱久久久久久| 人妻少妇偷人精品九色| 亚洲性久久影院| 日韩三级伦理在线观看| 乱系列少妇在线播放| 日韩在线高清观看一区二区三区| 国产精品偷伦视频观看了| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放 | videossex国产| av视频免费观看在线观看| 日韩精品有码人妻一区| 国产片特级美女逼逼视频| 熟女av电影| 国内揄拍国产精品人妻在线| 性色avwww在线观看| 亚洲av在线观看美女高潮| 插逼视频在线观看| 激情五月婷婷亚洲| 欧美3d第一页| 日本免费在线观看一区| 国产精品三级大全| 国产视频内射| 亚洲成色77777| 精品久久久久久久久av| 国产美女午夜福利| 亚洲久久久国产精品| 亚州av有码| a级毛色黄片| 99视频精品全部免费 在线| 黑人猛操日本美女一级片| 久热久热在线精品观看| 在线天堂最新版资源| 亚洲国产精品一区三区| 久久久久久久久久久丰满| av.在线天堂| 欧美性感艳星| 99久久人妻综合| 精品人妻偷拍中文字幕| 久久久久人妻精品一区果冻| 男人狂女人下面高潮的视频| 国产成人精品无人区| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 欧美精品人与动牲交sv欧美| 国产精品久久久久久av不卡| 人妻 亚洲 视频| 国产极品天堂在线| 六月丁香七月| 人妻 亚洲 视频| 亚洲国产av新网站| 水蜜桃什么品种好| 大香蕉久久网| 高清av免费在线| 国产深夜福利视频在线观看| 久久久午夜欧美精品| 国产成人a∨麻豆精品| 亚洲丝袜综合中文字幕| 搡女人真爽免费视频火全软件| 插阴视频在线观看视频| 乱人伦中国视频| freevideosex欧美| 一区二区三区免费毛片| 午夜免费男女啪啪视频观看| 视频区图区小说| 老司机影院成人| 麻豆成人av视频| 七月丁香在线播放| 丰满饥渴人妻一区二区三| 国产白丝娇喘喷水9色精品| 又粗又硬又长又爽又黄的视频| 国产美女午夜福利| 精品国产露脸久久av麻豆| 国产成人91sexporn| 一级黄片播放器| 国产白丝娇喘喷水9色精品| 日韩av不卡免费在线播放| 久久青草综合色| 丝袜喷水一区| av在线观看视频网站免费| 99久久精品国产国产毛片| 成人美女网站在线观看视频| 国产精品成人在线| 中文字幕av电影在线播放| 大又大粗又爽又黄少妇毛片口| 观看av在线不卡| 国产精品熟女久久久久浪| 18+在线观看网站| 中国三级夫妇交换| 午夜激情福利司机影院| 看十八女毛片水多多多| 精品一区在线观看国产| 亚洲国产毛片av蜜桃av| 亚洲欧美成人综合另类久久久| 美女脱内裤让男人舔精品视频| 日韩制服骚丝袜av| 亚洲av综合色区一区| 国产成人精品久久久久久| 午夜福利视频精品| 人妻 亚洲 视频| 2018国产大陆天天弄谢| 99热这里只有精品一区| 久久99精品国语久久久| 亚洲国产色片| 女人久久www免费人成看片| 国产精品人妻久久久影院| 亚洲图色成人| 亚洲精品久久久久久婷婷小说| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 黑人猛操日本美女一级片| av在线app专区| 成人国产麻豆网| 乱系列少妇在线播放| 亚洲成人av在线免费| 成人漫画全彩无遮挡| 成人午夜精彩视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦啦在线视频资源| 久久人妻熟女aⅴ| 99九九在线精品视频 | 精品一区二区免费观看| 老司机影院成人| h日本视频在线播放| 91在线精品国自产拍蜜月| 少妇的逼水好多| 男女边吃奶边做爰视频| 久久久a久久爽久久v久久| 最近最新中文字幕免费大全7| 美女cb高潮喷水在线观看| 国产黄片美女视频| 国产男人的电影天堂91| 纯流量卡能插随身wifi吗| 久久久久久久久久久久大奶| 免费大片18禁| 成人综合一区亚洲| 看非洲黑人一级黄片| 久久精品国产亚洲网站| 三级国产精品欧美在线观看| videossex国产| 国产精品.久久久| 精品一区在线观看国产| 少妇精品久久久久久久| 亚洲av成人精品一二三区| 国产精品国产三级国产专区5o| 国内少妇人妻偷人精品xxx网站| 男人和女人高潮做爰伦理| 国产av精品麻豆| 免费观看无遮挡的男女| 国产在线视频一区二区| 欧美少妇被猛烈插入视频| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| 内地一区二区视频在线| 只有这里有精品99| 在现免费观看毛片| 高清午夜精品一区二区三区| 毛片一级片免费看久久久久| 麻豆成人av视频| 男女国产视频网站| 伊人久久精品亚洲午夜| 黄色怎么调成土黄色| 久久久久久久久久久免费av| 免费观看无遮挡的男女| 蜜桃在线观看..| 欧美国产精品一级二级三级 | 夜夜看夜夜爽夜夜摸| 国精品久久久久久国模美| 国产探花极品一区二区| av天堂久久9| 午夜视频国产福利| 黑人高潮一二区| 中文在线观看免费www的网站| 亚洲美女视频黄频| 性色av一级| 91午夜精品亚洲一区二区三区| 丝袜脚勾引网站| 亚洲欧美一区二区三区黑人 | 黄色毛片三级朝国网站 | 国产视频首页在线观看| 成人午夜精彩视频在线观看| 免费久久久久久久精品成人欧美视频 | 久久精品国产a三级三级三级| 国产一区二区在线观看日韩| 亚洲国产欧美日韩在线播放 | 国产精品一区www在线观看| 免费观看av网站的网址| 丰满少妇做爰视频| av福利片在线观看| 一二三四中文在线观看免费高清| www.av在线官网国产| 高清不卡的av网站| 内射极品少妇av片p| 成人影院久久| 免费人成在线观看视频色| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡动漫免费视频| 高清毛片免费看| 99热国产这里只有精品6| 如何舔出高潮| 欧美bdsm另类| 欧美 日韩 精品 国产| 日本wwww免费看| 成人二区视频| 深夜a级毛片| 欧美成人精品欧美一级黄| 少妇人妻一区二区三区视频| 啦啦啦啦在线视频资源| 免费观看a级毛片全部| 三上悠亚av全集在线观看 | 国产视频内射| 久久99蜜桃精品久久| 一级黄片播放器| 久久99精品国语久久久| 精品人妻熟女av久视频| 汤姆久久久久久久影院中文字幕| 色视频www国产| 国产 一区精品| 欧美 日韩 精品 国产| 亚洲av成人精品一二三区| 日本91视频免费播放| 国产男人的电影天堂91| 国产av一区二区精品久久| 国产精品一区二区在线不卡| 麻豆成人av视频| 国产av国产精品国产| 久久国产精品大桥未久av | 夫妻性生交免费视频一级片| 午夜福利视频精品| 国产熟女欧美一区二区| 在线 av 中文字幕| 天天躁夜夜躁狠狠久久av| 国产亚洲一区二区精品| av福利片在线| 精品亚洲乱码少妇综合久久| 97超视频在线观看视频| av专区在线播放| 一级二级三级毛片免费看| 免费看光身美女| 久久午夜福利片| 男女免费视频国产| 51国产日韩欧美|