• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    2014-09-06 10:49:34BaoNanXiaWeiweiShenLianfeng
    關鍵詞:資源分配公平性分配

    Bao Nan Xia Weiwei Shen Lianfeng

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    ?

    Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    Bao Nan Xia Weiwei Shen Lianfeng

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    To satisfy different service requirements of multiple users in the orthogonal frequency division multiple access wireless local area network (OFDMA-WLAN) system downlink transmission, a resource allocation algorithm based on fairness and quality of service (QoS) provisioning is proposed. Different QoS requirements are converted into different rate requirements to calculate the QoS satisfaction level. The optimization object is revised as a fairness-driven resource optimization function to provide fairness. The complex resource allocation problem is divided into channel allocation and power assignment sub-problems. The sub-problems are solved by the bipartite graph matching and water-filling based method. Compared with other algorithms, the proposed algorithm sacrifices less data rate for higher fairness and QoS satisfaction. The simulation results show that the proposed algorithm is capable of providing QoS and fairness, and performs better in a tradeoff among QoS, fairness and data rate.

    QoS (quality of service) satisfaction level; fairness driven function; bipartite graph matching; water-filling; resource allocation

    The orthogonal frequency division multiple access (OFDMA) scheme has been intensively explored for offering greater flexibility in allocation of frequency resources[1]. IEEE 802.16e and the femtocell system also use the OFDMA to exploit multi-user diversity for higher network capacity[2]. It also has become the mainstream multiple access scheme for the downlink of the 3rd generation partner project long term evolution (3GPP LTE). Many researchers devote themselves to integrating the OFDMA technology into existing wireless communication networks by modifying the corresponding access algorithm[3-4]to solve the problems of multipath fading or multiple access interference[5]. A lot of documents focus on resource allocation of the OFDMA system for the maximum network throughput[6]and spectrum efficiency[7]by using centralized or distributed algorithms. Some researchers combine the OFDMA technology with cognitive radio technology and study on the resource management for resource sharing between primary and secondary networks to ensure that the second user does not interfere with the primary user[8-10]. The IEEE 802.11 work group has been trying to make standards for very high data rate wireless local area network (WLAN)[2]. Some technical improvements have been studied to integrate multiuser dynamic OFDMA into the IEEE 802.11 WLAN[11-12].

    Since the OFDMA technology is important for multiuser system performance, many resource allocation algorithms have been studied for the OFDMA-based systems in the past few years. In the earliest studies, algorithms committed to find an efficient way to maximize the system sum rate with total power constraint[13-15]. Then, the users’ priority is considered during the resource allocation. Weighted sum-rate maximization and weighted sum-power minimization problems are proposed in Ref.[16] and solved by the Lagrange dual decomposition method. It is found that the complexity of the traditional optimization method is high; thus, the evolutionary algorithm is proposed to reduce the complexity[17-18]. However, these references only consider the sum rate. The disadvantage is that maximizing the data rate may lead to unfair transmission and unsatisfied quality of service (QoS), although providing fairness and QoS guarantee will decrease the system data rate. In recent years, QoS and fairness provisioning have been the important research aspects for network resource optimization. Sacchi et al.[19]proposed an OFDMA resource balance strategy based on the game theory, in which the object of optimization is the mean opinion score (MOS) but not data rate. By considering different QoS requirements of users, Ref.[20] integrated power control, relay selection and sub-carrier assign into resource allocation optimization to maximize system throughput, and supported QoS by QoS pricing. The optimal fair number of accessed real-time (RT) users and non-real-time (NRT) users is calculated in Ref.[21], but each RT user is only assigned one sub-channel and how to assign appropriate channels to users is not explained.

    In the above references, different QoS requirements of different services are not considered in resource allocation. If the resource is allocated only for bringing the highest data rate, the heterogeneous QoS requirements cannot be satisfied. When a user with a lower rate requirement is assigned a good channel with a higher data rate, the resource is wasted and it is unfair for other users with higher data requirements. In this paper, channels are assigned according to different users’ QoS requests. Meanwhile, the fairness is considered in the allocation process. To prevent wasting of resources, channels should be properly allocated to users according to their demands. The optimization object is replaced by fairness-driven QoS satisfaction. The simulation results show that, the proposed resource allocation algorithm provides a better tradeoff among fairness, QoS guarantees of heterogeneous services and the system data rate.

    1 System Model and Problem Formulation

    As shown in Fig.1, the OFDMA technique is integrated into the WLAN downlink transmission by the frame aggregation scheme and the link adaption scheme. The channel state information (CSI), available spectrum opportunities and the user’s QoS request, which will be used in the allocation algorithm, are assumed to be available at the access point (AP) and remain unchanged during the allocation time period. AP assigns channels for downlink transmission and determines how much transmit power is allowed. The resource allocation results will be the input parameters of the frame aggregation and fragmentation module and the physical layer (PHY) processing module.

    Fig.1 Downlink transmission model at the AP

    Assume thatNstations (STAs) and one AP shareKsub-channels. In this paper, the resource allocation optimization problem can be described as maximizing the sum satisfaction on the condition of system constraints and QoS constraints. The problem formulations are given as follows:

    (1)

    s.t.

    (2)

    (3)

    (4)

    (5)

    (6)

    2 Resource Allocation for Different QoS Requirements and Fairness

    2.1 QoS-based resource optimization problem

    With the constraints in section 1, the optimal result of problem (1) is difficult to be found. To decrease the complexity of optimization, QoS constraints should be handled first. Note that the data rate should at least reach a lower bound, so that the packet error rate (PER) will be below the threshold and the packet will be delivered in time.

    The PER can be expressed as the increasing function of the average bit error rate (BER), and the data rate can be expressed as the decreasing function of the BER. So constraint (3) can be converted into the same form as constraint (5).

    (7)

    For packets with the time delay threshold, the data rate at the current slot should be large enough to ensure that the most urgent packet can be delivered in time. Since the data rate can be expressed as the decreasing function of the past time after the urgent packet is created, constraint (4) can be converted into the same form as constraint (5).

    (8)

    Now different QoS requirements can be converted into different data rate requirements. According to problem formulations given in section 1, each user’s QoS satisfaction is evaluated by the QoS satisfaction level (QSL), which is given as

    (9)

    So the QoS-based resource optimization problem can be expressed as

    (10)

    s.t.

    constraint (2) and constraint (6)

    2.2 Fairness-driven resource optimization problem

    Problem (10) is a nonlinear programming problem. By relaxing integer constraint (2) to continuous values in range [0,1], problem (10) becomes convex and the optimal result is easy to be found by solving the Lagrangian function. However, problem (10) does not reflect the fairness allocation. Resource may be only assigned to the user with the highest data rate requirement. To achieve fairness, problem (10) can be revised by a fairness-driven utility function[23]as

    (11)

    s.t.

    constraint (2) and constraint (6)

    It is difficult to solve problem (11) because it involves two log functions. One of the log functions is the Shannon formula used for calculating data rate in Eq.(9). The optimal solution cannot be calculated by the Lagrangian function directly, so problem (11) is divided into several small problems to find a suboptimal solution. The channel allocation will be solved first, and then the power will be assigned based on the channel allocation result.

    Given average power assignment, each user can calculate the fairness-driven utility log(si) on each channel. Assume that the number of users is equal to the number of channels. The channel allocation problem can be solved by bipartite graph matching. As shown in Fig.2, letxset include all users, andyset include all the channels. Let the weight of edge is the fairness-driven utility. The object of optimal matching is the object of the maximization problem (11).

    The channel allocation set can be calculated as

    (12)

    s.t. constraint (2)

    Given the channel allocation set, the power assignment

    Fig.2 Bipartite graph matching for channel allocation

    can be solved by the water-filling-based method. The object of power assignment is the same as the object of problem (10). According to Ref.[22], the transmission power is assigned as

    (13)

    2.3 Resource allocation based on fairness and QoS provisioning

    According to the above analysis, the steps of the proposed algorithm for resource allocation based on fairness and QoS provisioning (RAFQ) can be given as follows:

    1) Collect information: The AP collects CSI, available spectrum opportunities and QoS requirements of each user. Different QoS requirements will be converted into different data rate requirements. All the information should be collected at the beginning of every resource allocation circle.

    2) Channel allocation: Given the average power assignment, AP calculates the channel allocation set by solving Eq.(12).

    3) Power assignment: Given the channel allocation set, AP calculates the power assignment result by solving Eq.(13).

    4) Repeat step 1) to 3) at every resource allocation circle.

    3 Simulation Results

    In this section, the performance of the proposed algorithm is evaluated and compared with three other algorithms which are discussed in Ref.[22]. The first algorithm is the maximum rate resource allocation algorithm (MRRA), in which the resource is always allocated to the user bringing the highest data rate. The second algorithm is the QoS provisioning channel allocation (QPCA) algorithm proposed in Ref.[21], in which the channel bringing the highest data rate is assigned to the user with the highest QSL. The third algorithm is the spectrum allocation based on the general genetic (SAGG) algorithm proposed in Ref.[17], but the fitness function is replaced by the QSL. All the parameters used in the simulation are summarized in Tab.1. Channels between the AP and wireless users are modeled as parallel AWGN channels with different channel gains. Each channel can only be allocated to one user.

    Tab.1 Parameters used for evaluation

    A fairness index[24]is used to evaluate the fairness performance of different algorithms. A higher value ofd(x) implies a higher degree of fairness.

    (14)

    In Fig.3, the QSL of user 1 is much lower than that of user 3 when there is no fairness consideration. But with fairness consideration in the proposed algorithm, the QSL of user 1 is greater than that of user 3. This means that some resource of user 3 is re-allocated to user 1 to provide fair allocation. The fairness index with fairness consideration is 0.814 4, and the fairness index without fairness consideration is 0.698 4. The value increases by 16.61%, which means that the fairness of resource allocation is improved.

    Fig.3 The QSL of RAFQ with/without considering fairness

    This result is also confirmed by Fig.4, in which the fairness index of the proposed algorithm is higher than that of other algorithms. In three other algorithms, the object of power assignment is the sum rate; the power is assigned to improve some users’ data rate while some others’ requirements are ignored. Thus the fairness index of the QPCA algorithm decreases after the power allocation. Fig.4 shows that the fairness performance of the proposed algorithm is better than those of three other algorithms.

    Fig.4 Comparison of fairness index

    The total QSL comparison is given in Fig.5. The proposed algorithm has the highest total QSL value. It reveals that the RAFQ algorithm can provide different QoS guarantees and fairness. However, the RAFQ algorithm does not have the highest sum rate in Fig.6. This is because the data rate is not the only target in the RAFQ algorithm; different QoS requirements are integrated into QoS satisfaction level; and the resource allocation process is driven by the fairness. The proposed algorithm sacrifices

    Fig.5 Comparison of total QSL

    Fig.6 Comparison of sum rate

    some data rate to the QoS and fairness guarantee, but it can still obtain the second-highest data rate when it compares with other algorithms. So it is a good trade off among the data rate, QoS and fairness.

    4 Conclusion

    In this paper, a resource allocation algorithm is proposed for dynamic resource optimization with QoS and fairness guarantee. The system model is presumed as the OFDMA-WLAN downlink transmission system. Different QoS requirements of multiple users are converted into different data rate requirements, which are integrated into the QoS satisfaction level. The fairness-driven utility function is used to provide user fairness. The channels are allocated through bipartite graph matching. Power assignment is solved by the water-filling-based method, in which the correction factor is used to obtain fairness. The proposed RAFQ algorithm is compared with three other algorithms on total QSL, fairness index and sum rate. The simulation results show that the proposed algorithm improves fairness and QoS satisfaction with less data rate sacrifice, and performs a good tradeoff among QoS, fairness and data rate.

    [1]Wong I C, Evans B L. Optimal downlink OFDMA resource allocation with linear complexity to maximize ergodic rates [J].IEEETransactionsonWirelessCommunications, 2008, 7(3): 962-971.

    [2]Sahin M E, Guvenc I, Jeong M-R, et al. Handling CCI and ICI in OFDMA femtocell networks through frequency scheduling [J].IEEETransactionsonConsumerElectronics, 2009, 55(4): 1936-1944.

    [3]Alnuweiri H M, Fallah Y P, Nasiopoulos P, et al. OFDMA-based medium access control for next-generation WLANs [J].EURASIPJournalonWirelessCommunicationsandNetworking, 2009, 2009: 512865-01-512865-09.

    [4]Wang D D, Minn H, Al-Dhahir N. A distributed opportunistic access scheme and its application to OFDMA systems [J].IEEETransactionsonCommunications, 2009, 57(3): 738-746.

    [5]Jung Junwoo, Lim Jaesung. Group contention-based OFDMA MAC protocol for multiple access interference-free in WLAN systems [J].IEEETransactionsonWirelessCommunications, 2012, 11(2): 648-658.

    [6]Mokari N, Navaie K, Khoshkholgh M G. Downlink radio resource allocation in OFDMA spectrum sharing environment with partial channel state information [J].IEEETransactionsonWirelessCommunications, 2011, 10(10): 3482-3495.

    [7]Ngo D T, Tellambura C, Nguyen H H. Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control [J].IEEETransactionsonVehicularTechnology, 2009, 58(9): 4878-4889.

    [8]Mitran P, Le L B, Rosenberg C. Queue-aware resource allocation for downlink OFDMA cognitive radio networks [J].IEEETransactionsonWirelessCommunications, 2010, 9(10): 3100-3111.

    [9]Choi K W, Hossain E, Kim D I. Downlink subchannel and power allocation in multi-cell OFDMA cognitive radio networks [J].IEEETransactionsonWirelessCommunications, 2011, 10(7): 2259-2271.

    [10]Ngo D T, Tellambura C, Nguyen H H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration [J].IEEETransactionsonVehicularTechnology, 2010, 59(4): 1668-1679.

    [11]Kwon Hojoong, Seo Hanbyul, Kim Seonwook, et al. Generalized CSMA/CA for OFDMA systems: protocol design, throughput analysis, and implementation issues [J].IEEETransactionsonWirelessCommunications, 2009, 8(8): 4176-4187.

    [12]Valentin S, Freitag T, Karl H. Integrating multiuser dynamic OFDMA into IEEE 802.11 WLANs-LLC/MAC extensions and system performance [C]//IEEEInternationalConferenceonCommunications. Beijing, China, 2008: 3328-3334.

    [13]Jang J, Lee K. Transmit power adaptation for multiuser OFDM systems [J].IEEEJournalonSelectedAreasinCommunications, 2003, 21(2): 171-178.

    [14]Jiao W, Cai L, Tao M. Competitive scheduling for OFDMA systems with guaranteed transmission rate [J].ElsevierComputerCommunications,SpecialIssueonAdaptiveMulticarrierCommunicationsandNetwork, 2009, 32(3): 501-510.

    [15]Tao M, Liang Y C, Zhang F. Resource allocation for delay differentiated traffic in multiuser OFDM systems [J].IEEETransactionsonWirelessCommunications, 2008, 7(6): 2190-2201.

    [16]Seong K, Mohseni M, Cio J M. Optimal resource allocation for OFDMA downlink systems [C]//IEEEInternationalSymposiumonInformationTheory. Seattle, WA, USA, 2006: 1394-1398.

    [17]Zhao Zhijin, Peng Zhen, Zheng Shilian, et al. Cognitive radio spectrum allocation using evolutionary algorithms [J].IEEETransactionsonWirelessCommunications, 2009, 8(9): 4421-4425.

    [18]Koudouridis G P, Qvarfordt C, Cai T, et al. Partial frequency allocation in downlink OFDMA based on evolutionary algorithms [C]//2010IEEE72ndVehicularTechnologyConferenceFall(VTC 2010-Fall). Ottawa, ON, CAN, 2010: 1-5.

    [19]Sacchi C, Granelli F, Schlegel C. A QoE-oriented strategy for OFDMA radio resource allocation based on min-MOS maximization [J].IEEECommunicationsLetters, 2011, 15(5): 494-496.

    [20]Zhang Danhua, Wang Youzheng, Lu Jianhua. QoS aware resource allocation in cooperative OFDMA systems with service differentiation [C]//IEEEInternationalConferenceonCommunications. Cape Town, RSA, 2010: 1-5.

    [21]Alshamrani A, Shen X M, Xie L L. QoS provisioning for heterogeneous services in cooperative cognitive radio networks [J].IEEEJournalonSelectedAreasinCommunications, 2011, 29(4): 819-830.

    [22]Bao Nan, Li Junchao, Xia Weiwei, et al. QoS-aware resource allocation algorithm for OFDMA-WLAN integrated system [C]//2013IEEEWirelessCommunicationsandNetworkingConference. Shanghai, China, 2013: 807-812.

    [23]Peng Chunyi, Zheng Haitao, Zhao Ben Y. Utilization and fairness in spectrum assignment for opportunistic spectrum access [J].MobileNetworksandApplications, 2006, 11(4): 555-576.

    [24]Jain R, Chiu D, Hawe W. A quantitative measure of fairness and discrimination for resource allocation in shared computer systems [R]. Hudson: Digital Institution Corporation, 1984.

    基于公平性和QoS保障的OFDMA-WLAN系統(tǒng)資源分配

    鮑 楠 夏瑋瑋 沈連豐

    (東南大學移動通信國家重點實驗室,南京 210096)

    為了滿足OFDMA-WLAN系統(tǒng)下行通信中多用戶的不同業(yè)務需求,提出一種基于公平性和QoS服務保障的資源分配算法.不同的QoS要求被轉換成不同的速率要求來計算QoS滿意等級;優(yōu)化目標被修改為公平性驅動的優(yōu)化函數(shù)以提供公平性保障;復雜的資源分配問題被劃分為信道分配和功率分配問題,并通過二分圖匹配和注水法得到分配結果.與其他算法相比,所提出的算法犧牲了較少的數(shù)據(jù)速率換取更高的公平性和QoS滿意度.仿真結果表明所提算法具有保障QoS和公平性的能力,且在QoS、公平性和速率之間權衡折中時表現(xiàn)更好.

    QoS滿意等級;公平性驅動函數(shù);二分圖匹配;注水法;資源分配

    TN915

    s:The National Science and Technology Major Project (No.2012ZX03004005-003), the National Natural Science Foundation of China (No.61171081, 61201175), the Science and Technology Support Program of Jiangsu Province (No.BE2011187).

    10.3969/j.issn.1003-7985.2014.01.001

    :Bao Nan, Xia Weiwei, Shen Lianfeng. Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system[J].Journal of Southeast University (English Edition),2014,30(1):1-6.

    10.3969/j.issn.1003-7985.2014.01.001

    Received 2013-09-14.

    Biographies:Bao Nan (1985—), female, graduate; Shen Lianfeng (corresponding author), male, professor, lfshen@seu.edu.cn.

    猜你喜歡
    資源分配公平性分配
    新研究揭示新冠疫情對資源分配的影響 精讀
    英語文摘(2020年10期)2020-11-26 08:12:20
    應答器THR和TFFR分配及SIL等級探討
    遺產的分配
    一種分配十分不均的財富
    一種基于價格競爭的D2D通信資源分配算法
    測控技術(2018年7期)2018-12-09 08:57:56
    績效考核分配的實踐與思考
    一種提高TCP與UDP數(shù)據(jù)流公平性的擁塞控制機制
    公平性問題例談
    關于公平性的思考
    OFDMA系統(tǒng)中容量最大化的資源分配算法
    計算機工程(2014年6期)2014-02-28 01:25:32
    国产成人系列免费观看| 日本91视频免费播放| 亚洲精品日本国产第一区| 日本爱情动作片www.在线观看| 中国三级夫妇交换| 一区二区av电影网| 女人精品久久久久毛片| 一二三四中文在线观看免费高清| 一级黄片播放器| 国产精品久久久av美女十八| 色网站视频免费| 欧美日韩福利视频一区二区| 在线观看国产h片| 亚洲国产精品成人久久小说| 丁香六月天网| 大陆偷拍与自拍| 日韩av在线免费看完整版不卡| 亚洲三区欧美一区| 亚洲欧美清纯卡通| av女优亚洲男人天堂| 精品亚洲成国产av| 欧美日韩综合久久久久久| bbb黄色大片| 久久久久久久精品精品| 妹子高潮喷水视频| 欧美人与善性xxx| 最新的欧美精品一区二区| 成年女人毛片免费观看观看9 | 久久精品国产a三级三级三级| 搡老岳熟女国产| 国产不卡av网站在线观看| 黄色一级大片看看| 久久99一区二区三区| 哪个播放器可以免费观看大片| 天天躁夜夜躁狠狠久久av| 女人久久www免费人成看片| 黄色视频不卡| 岛国毛片在线播放| 亚洲欧美精品自产自拍| 午夜福利网站1000一区二区三区| 超色免费av| 国产一区二区三区av在线| 亚洲av男天堂| 欧美少妇被猛烈插入视频| 久久国产亚洲av麻豆专区| 国产老妇伦熟女老妇高清| 黄网站色视频无遮挡免费观看| 伊人久久大香线蕉亚洲五| 在线观看人妻少妇| 黄片小视频在线播放| 中文字幕另类日韩欧美亚洲嫩草| 成人手机av| 亚洲一级一片aⅴ在线观看| av电影中文网址| 亚洲av成人不卡在线观看播放网 | 欧美日韩视频高清一区二区三区二| 久久97久久精品| 2021少妇久久久久久久久久久| 黄网站色视频无遮挡免费观看| 国产乱人偷精品视频| 热99久久久久精品小说推荐| 90打野战视频偷拍视频| 欧美精品人与动牲交sv欧美| av福利片在线| 午夜激情久久久久久久| 亚洲精品久久午夜乱码| 国产精品熟女久久久久浪| 国产成人欧美| 久久婷婷青草| 黑丝袜美女国产一区| 国产精品成人在线| 日本av手机在线免费观看| 亚洲精品中文字幕在线视频| 黄色视频不卡| 色婷婷av一区二区三区视频| 亚洲综合精品二区| 久久国产精品男人的天堂亚洲| 制服丝袜香蕉在线| 国产激情久久老熟女| 亚洲欧美中文字幕日韩二区| 日韩电影二区| 夫妻性生交免费视频一级片| 大话2 男鬼变身卡| 亚洲国产av新网站| 一二三四中文在线观看免费高清| 涩涩av久久男人的天堂| 久久精品国产亚洲av高清一级| 啦啦啦在线观看免费高清www| 成年人午夜在线观看视频| 精品视频人人做人人爽| a级毛片在线看网站| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 一级爰片在线观看| 老鸭窝网址在线观看| 欧美另类一区| 亚洲精品中文字幕在线视频| 亚洲av日韩精品久久久久久密 | 成人三级做爰电影| 国产黄色视频一区二区在线观看| 18禁国产床啪视频网站| 日本色播在线视频| 亚洲成人手机| 亚洲成人免费av在线播放| 精品免费久久久久久久清纯 | 黄色视频在线播放观看不卡| 尾随美女入室| 国产极品粉嫩免费观看在线| 一区二区三区乱码不卡18| 欧美精品高潮呻吟av久久| 国产成人精品无人区| √禁漫天堂资源中文www| 国产日韩欧美视频二区| 国产一区二区三区综合在线观看| 日韩一卡2卡3卡4卡2021年| 2021少妇久久久久久久久久久| 青春草视频在线免费观看| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 国产欧美日韩一区二区三区在线| 在线天堂最新版资源| 国产男人的电影天堂91| 一级黄片播放器| 国产探花极品一区二区| 午夜老司机福利片| 中文字幕精品免费在线观看视频| 午夜免费观看性视频| 麻豆av在线久日| 久久热在线av| av线在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 国产激情久久老熟女| 少妇人妻精品综合一区二区| 国产一区二区三区综合在线观看| 国产一区二区在线观看av| 一级毛片我不卡| 男女无遮挡免费网站观看| 久久天躁狠狠躁夜夜2o2o | 国产黄色视频一区二区在线观看| 老汉色av国产亚洲站长工具| 亚洲免费av在线视频| 中文乱码字字幕精品一区二区三区| 亚洲人成网站在线观看播放| av在线观看视频网站免费| av又黄又爽大尺度在线免费看| av一本久久久久| 国产在视频线精品| 麻豆精品久久久久久蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 在线天堂中文资源库| 精品福利永久在线观看| 精品一区二区免费观看| 人人澡人人妻人| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠躁躁| 久热这里只有精品99| 久久久久精品人妻al黑| 国产av一区二区精品久久| 亚洲七黄色美女视频| 99热国产这里只有精品6| 成人18禁高潮啪啪吃奶动态图| 2021少妇久久久久久久久久久| 女人高潮潮喷娇喘18禁视频| 精品酒店卫生间| 人成视频在线观看免费观看| 观看av在线不卡| 中文精品一卡2卡3卡4更新| 91精品国产国语对白视频| 国产精品久久久久久精品古装| 亚洲精华国产精华液的使用体验| 亚洲精品aⅴ在线观看| 中国三级夫妇交换| 亚洲欧美清纯卡通| 亚洲av在线观看美女高潮| 国产免费现黄频在线看| 欧美人与性动交α欧美精品济南到| 久久ye,这里只有精品| 亚洲精品日本国产第一区| 午夜福利视频在线观看免费| 久久女婷五月综合色啪小说| 久久久久精品久久久久真实原创| 亚洲欧洲精品一区二区精品久久久 | 黄色视频不卡| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看| 亚洲熟女毛片儿| 色网站视频免费| 国产亚洲最大av| 男人舔女人的私密视频| 纵有疾风起免费观看全集完整版| 日本爱情动作片www.在线观看| av在线老鸭窝| 波多野结衣一区麻豆| 国产精品久久久久成人av| 亚洲国产精品999| 亚洲伊人久久精品综合| 亚洲精品成人av观看孕妇| 国产免费现黄频在线看| av天堂久久9| www.自偷自拍.com| 高清黄色对白视频在线免费看| 操美女的视频在线观看| 美女午夜性视频免费| 伦理电影大哥的女人| 日本午夜av视频| 久久青草综合色| 国产亚洲精品第一综合不卡| 国产黄色免费在线视频| 国产淫语在线视频| 国产精品一国产av| 免费日韩欧美在线观看| 女性生殖器流出的白浆| 欧美另类一区| 国产亚洲av片在线观看秒播厂| 久久99精品国语久久久| 又黄又粗又硬又大视频| av一本久久久久| 亚洲av成人不卡在线观看播放网 | 蜜桃在线观看..| 99热网站在线观看| 久久人人爽人人片av| 亚洲人成77777在线视频| √禁漫天堂资源中文www| 丝瓜视频免费看黄片| 成人毛片60女人毛片免费| 欧美日韩视频高清一区二区三区二| 欧美精品高潮呻吟av久久| 久久性视频一级片| 国语对白做爰xxxⅹ性视频网站| 国产不卡av网站在线观看| 女人精品久久久久毛片| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 最近手机中文字幕大全| 国产成人一区二区在线| 亚洲精品国产一区二区精华液| 男人舔女人的私密视频| av在线观看视频网站免费| 欧美人与性动交α欧美软件| 成年人免费黄色播放视频| 啦啦啦在线观看免费高清www| 亚洲精品国产av蜜桃| 亚洲激情五月婷婷啪啪| 国产精品久久久久成人av| 亚洲在久久综合| 高清av免费在线| 丝瓜视频免费看黄片| 久久99精品国语久久久| 9热在线视频观看99| 国产成人精品在线电影| 日本av手机在线免费观看| 成年动漫av网址| 视频区图区小说| 九色亚洲精品在线播放| 你懂的网址亚洲精品在线观看| 中文字幕最新亚洲高清| 久久精品熟女亚洲av麻豆精品| 久久久久精品久久久久真实原创| 热re99久久精品国产66热6| 最近最新中文字幕大全免费视频 | 男人舔女人的私密视频| 91aial.com中文字幕在线观看| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 看免费av毛片| 黄片小视频在线播放| 啦啦啦在线观看免费高清www| 韩国精品一区二区三区| 欧美人与性动交α欧美精品济南到| 国产精品99久久99久久久不卡 | 狂野欧美激情性bbbbbb| 亚洲第一区二区三区不卡| 久久精品久久精品一区二区三区| 亚洲成人国产一区在线观看 | 欧美人与性动交α欧美软件| 亚洲成色77777| 成人影院久久| 久久精品熟女亚洲av麻豆精品| 性少妇av在线| 纯流量卡能插随身wifi吗| 亚洲av中文av极速乱| 亚洲欧美清纯卡通| 久久女婷五月综合色啪小说| 中文字幕av电影在线播放| 午夜免费男女啪啪视频观看| 啦啦啦在线观看免费高清www| 亚洲精品一区蜜桃| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| 久久精品国产亚洲av高清一级| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 国产亚洲最大av| 国产日韩欧美在线精品| 成人国产av品久久久| 丰满乱子伦码专区| 秋霞在线观看毛片| 久久亚洲国产成人精品v| av免费观看日本| av片东京热男人的天堂| 在线观看国产h片| 妹子高潮喷水视频| 欧美在线一区亚洲| 色视频在线一区二区三区| 少妇精品久久久久久久| 天天躁夜夜躁狠狠久久av| 久久国产亚洲av麻豆专区| 国产精品香港三级国产av潘金莲 | 国产精品 国内视频| 91精品伊人久久大香线蕉| 成年动漫av网址| 亚洲天堂av无毛| 日日爽夜夜爽网站| 久久精品熟女亚洲av麻豆精品| 日韩伦理黄色片| av电影中文网址| 午夜免费观看性视频| e午夜精品久久久久久久| 飞空精品影院首页| 91aial.com中文字幕在线观看| 少妇人妻精品综合一区二区| 色精品久久人妻99蜜桃| 国产片特级美女逼逼视频| 狠狠婷婷综合久久久久久88av| 精品少妇内射三级| 国产在线免费精品| 久久97久久精品| 亚洲成av片中文字幕在线观看| 丰满乱子伦码专区| 少妇被粗大的猛进出69影院| 亚洲欧洲日产国产| 久久精品aⅴ一区二区三区四区| 精品午夜福利在线看| 极品少妇高潮喷水抽搐| 日日撸夜夜添| 免费黄网站久久成人精品| 别揉我奶头~嗯~啊~动态视频 | 色婷婷久久久亚洲欧美| 男女免费视频国产| 亚洲精品日本国产第一区| 肉色欧美久久久久久久蜜桃| av不卡在线播放| 精品国产一区二区三区久久久樱花| 99久久综合免费| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 日本黄色日本黄色录像| 丁香六月欧美| 人人妻人人澡人人爽人人夜夜| 亚洲精品av麻豆狂野| 亚洲,欧美,日韩| 久久久久人妻精品一区果冻| 18禁国产床啪视频网站| 天堂8中文在线网| 亚洲欧美成人精品一区二区| 青青草视频在线视频观看| 亚洲国产精品999| 亚洲国产精品一区三区| 男女床上黄色一级片免费看| 天美传媒精品一区二区| 久久鲁丝午夜福利片| 黑人欧美特级aaaaaa片| 欧美黑人欧美精品刺激| 亚洲色图综合在线观看| 国产精品.久久久| 亚洲精品av麻豆狂野| 在线天堂中文资源库| 日本爱情动作片www.在线观看| 国产探花极品一区二区| 在线观看免费高清a一片| 黄色一级大片看看| 午夜日韩欧美国产| 欧美日韩综合久久久久久| 亚洲国产最新在线播放| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一出视频| 欧美在线一区亚洲| 韩国av在线不卡| 亚洲精品久久久久久婷婷小说| 国产精品国产三级国产专区5o| 婷婷色麻豆天堂久久| 久久人人爽人人片av| 免费人妻精品一区二区三区视频| 亚洲欧美激情在线| 国产一区二区三区av在线| 黄色 视频免费看| 99精品久久久久人妻精品| 狠狠精品人妻久久久久久综合| 最黄视频免费看| 熟妇人妻不卡中文字幕| 99久久精品国产亚洲精品| 在线观看人妻少妇| 美女扒开内裤让男人捅视频| 亚洲人成网站在线观看播放| 午夜免费鲁丝| 伦理电影大哥的女人| 王馨瑶露胸无遮挡在线观看| 国产伦人伦偷精品视频| 男人爽女人下面视频在线观看| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| 麻豆av在线久日| 建设人人有责人人尽责人人享有的| 黄片无遮挡物在线观看| 九九爱精品视频在线观看| 国产成人91sexporn| 欧美av亚洲av综合av国产av | 十八禁网站网址无遮挡| 亚洲婷婷狠狠爱综合网| 黄频高清免费视频| a级毛片黄视频| 亚洲精品自拍成人| www日本在线高清视频| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 制服诱惑二区| 国产在线一区二区三区精| 国产97色在线日韩免费| 午夜福利乱码中文字幕| 久久热在线av| 国产免费现黄频在线看| 久久精品亚洲熟妇少妇任你| 日韩av在线免费看完整版不卡| 欧美成人午夜精品| 日韩伦理黄色片| 亚洲专区中文字幕在线 | 午夜日韩欧美国产| 国产 精品1| 欧美最新免费一区二区三区| 在线观看国产h片| 青春草视频在线免费观看| 日本vs欧美在线观看视频| 欧美 日韩 精品 国产| 超色免费av| 曰老女人黄片| 国产精品.久久久| 色视频在线一区二区三区| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 高清在线视频一区二区三区| 国产熟女午夜一区二区三区| 最近的中文字幕免费完整| 最近最新中文字幕大全免费视频 | 亚洲色图综合在线观看| 熟女av电影| svipshipincom国产片| av在线老鸭窝| 性少妇av在线| 久久久久久久国产电影| 一区二区三区精品91| 久久久久精品性色| 亚洲精品中文字幕在线视频| 免费观看av网站的网址| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜一区二区 | 国产免费又黄又爽又色| 最新在线观看一区二区三区 | 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 亚洲欧美色中文字幕在线| 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| 日韩av在线免费看完整版不卡| 婷婷色av中文字幕| 性少妇av在线| 久久久精品免费免费高清| 久久综合国产亚洲精品| 色网站视频免费| 欧美日韩av久久| 亚洲精品,欧美精品| 女人被躁到高潮嗷嗷叫费观| 少妇的丰满在线观看| 午夜福利一区二区在线看| 欧美久久黑人一区二区| 捣出白浆h1v1| 久久ye,这里只有精品| 国产淫语在线视频| 日韩中文字幕视频在线看片| 久久久久久久大尺度免费视频| 日本av免费视频播放| av线在线观看网站| 多毛熟女@视频| 亚洲成av片中文字幕在线观看| 亚洲国产欧美网| 交换朋友夫妻互换小说| 欧美 日韩 精品 国产| 18禁裸乳无遮挡动漫免费视频| 两个人免费观看高清视频| 人人妻人人添人人爽欧美一区卜| 欧美日韩亚洲综合一区二区三区_| 久久久久精品性色| 99香蕉大伊视频| 一个人免费看片子| 久久热在线av| 精品国产一区二区三区久久久樱花| 777久久人妻少妇嫩草av网站| 国产精品一国产av| 国产精品麻豆人妻色哟哟久久| 搡老乐熟女国产| 亚洲精品美女久久av网站| 中文字幕精品免费在线观看视频| 免费人妻精品一区二区三区视频| 97在线人人人人妻| 欧美中文综合在线视频| 国产一区二区激情短视频 | 男男h啪啪无遮挡| 男女下面插进去视频免费观看| 精品国产超薄肉色丝袜足j| 亚洲av男天堂| a级片在线免费高清观看视频| 午夜福利视频精品| 欧美精品一区二区大全| 老司机靠b影院| 国产一区亚洲一区在线观看| 在线精品无人区一区二区三| 日韩免费高清中文字幕av| 十八禁人妻一区二区| 人人妻,人人澡人人爽秒播 | 国产免费视频播放在线视频| 欧美精品人与动牲交sv欧美| 亚洲精品国产av蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 自线自在国产av| 国产精品免费大片| 国产欧美亚洲国产| 亚洲欧美中文字幕日韩二区| 免费在线观看黄色视频的| 日韩精品免费视频一区二区三区| 中文字幕av电影在线播放| 男女下面插进去视频免费观看| 如何舔出高潮| 成人国语在线视频| 尾随美女入室| 老司机深夜福利视频在线观看 | 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 又粗又硬又长又爽又黄的视频| 亚洲精品美女久久av网站| 五月天丁香电影| 亚洲色图 男人天堂 中文字幕| 午夜福利视频在线观看免费| 我的亚洲天堂| 高清黄色对白视频在线免费看| 免费看av在线观看网站| 国产欧美日韩综合在线一区二区| 中文字幕亚洲精品专区| 成人国产麻豆网| 丁香六月天网| 大码成人一级视频| 久久国产精品男人的天堂亚洲| 国产男人的电影天堂91| 久久婷婷青草| www.熟女人妻精品国产| 亚洲精品一二三| 看免费av毛片| 国产精品一区二区在线观看99| 嫩草影院入口| av.在线天堂| av女优亚洲男人天堂| 亚洲激情五月婷婷啪啪| 99热全是精品| 别揉我奶头~嗯~啊~动态视频 | 成人漫画全彩无遮挡| 91精品三级在线观看| 中文字幕av电影在线播放| 欧美日韩综合久久久久久| 亚洲精品日本国产第一区| 国产黄色免费在线视频| 悠悠久久av| 99久久精品国产亚洲精品| 青春草视频在线免费观看| 我的亚洲天堂| 男的添女的下面高潮视频| 亚洲av在线观看美女高潮| 亚洲av电影在线观看一区二区三区| 亚洲成人av在线免费| 青春草国产在线视频| 日韩中文字幕视频在线看片| 黄色一级大片看看| 久热爱精品视频在线9| 日本vs欧美在线观看视频| 深夜精品福利| 曰老女人黄片| 性少妇av在线| 久久精品国产亚洲av涩爱| 丝袜脚勾引网站| 精品一区二区三区四区五区乱码 | 777久久人妻少妇嫩草av网站| 亚洲国产av影院在线观看| 亚洲第一青青草原| 久久精品亚洲熟妇少妇任你| 69精品国产乱码久久久| 亚洲人成网站在线观看播放| 一本大道久久a久久精品| 美女主播在线视频| 午夜免费男女啪啪视频观看| 好男人视频免费观看在线| 91国产中文字幕| 国产成人系列免费观看| 综合色丁香网| 国产免费福利视频在线观看| 九九爱精品视频在线观看| √禁漫天堂资源中文www| 国产精品.久久久| 一二三四在线观看免费中文在| 女人精品久久久久毛片| 欧美激情 高清一区二区三区| netflix在线观看网站| 91aial.com中文字幕在线观看| 巨乳人妻的诱惑在线观看| 久久精品久久精品一区二区三区| 在线看a的网站| 免费黄网站久久成人精品|