• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    2014-09-06 10:49:34BaoNanXiaWeiweiShenLianfeng
    關鍵詞:資源分配公平性分配

    Bao Nan Xia Weiwei Shen Lianfeng

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    ?

    Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    Bao Nan Xia Weiwei Shen Lianfeng

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    To satisfy different service requirements of multiple users in the orthogonal frequency division multiple access wireless local area network (OFDMA-WLAN) system downlink transmission, a resource allocation algorithm based on fairness and quality of service (QoS) provisioning is proposed. Different QoS requirements are converted into different rate requirements to calculate the QoS satisfaction level. The optimization object is revised as a fairness-driven resource optimization function to provide fairness. The complex resource allocation problem is divided into channel allocation and power assignment sub-problems. The sub-problems are solved by the bipartite graph matching and water-filling based method. Compared with other algorithms, the proposed algorithm sacrifices less data rate for higher fairness and QoS satisfaction. The simulation results show that the proposed algorithm is capable of providing QoS and fairness, and performs better in a tradeoff among QoS, fairness and data rate.

    QoS (quality of service) satisfaction level; fairness driven function; bipartite graph matching; water-filling; resource allocation

    The orthogonal frequency division multiple access (OFDMA) scheme has been intensively explored for offering greater flexibility in allocation of frequency resources[1]. IEEE 802.16e and the femtocell system also use the OFDMA to exploit multi-user diversity for higher network capacity[2]. It also has become the mainstream multiple access scheme for the downlink of the 3rd generation partner project long term evolution (3GPP LTE). Many researchers devote themselves to integrating the OFDMA technology into existing wireless communication networks by modifying the corresponding access algorithm[3-4]to solve the problems of multipath fading or multiple access interference[5]. A lot of documents focus on resource allocation of the OFDMA system for the maximum network throughput[6]and spectrum efficiency[7]by using centralized or distributed algorithms. Some researchers combine the OFDMA technology with cognitive radio technology and study on the resource management for resource sharing between primary and secondary networks to ensure that the second user does not interfere with the primary user[8-10]. The IEEE 802.11 work group has been trying to make standards for very high data rate wireless local area network (WLAN)[2]. Some technical improvements have been studied to integrate multiuser dynamic OFDMA into the IEEE 802.11 WLAN[11-12].

    Since the OFDMA technology is important for multiuser system performance, many resource allocation algorithms have been studied for the OFDMA-based systems in the past few years. In the earliest studies, algorithms committed to find an efficient way to maximize the system sum rate with total power constraint[13-15]. Then, the users’ priority is considered during the resource allocation. Weighted sum-rate maximization and weighted sum-power minimization problems are proposed in Ref.[16] and solved by the Lagrange dual decomposition method. It is found that the complexity of the traditional optimization method is high; thus, the evolutionary algorithm is proposed to reduce the complexity[17-18]. However, these references only consider the sum rate. The disadvantage is that maximizing the data rate may lead to unfair transmission and unsatisfied quality of service (QoS), although providing fairness and QoS guarantee will decrease the system data rate. In recent years, QoS and fairness provisioning have been the important research aspects for network resource optimization. Sacchi et al.[19]proposed an OFDMA resource balance strategy based on the game theory, in which the object of optimization is the mean opinion score (MOS) but not data rate. By considering different QoS requirements of users, Ref.[20] integrated power control, relay selection and sub-carrier assign into resource allocation optimization to maximize system throughput, and supported QoS by QoS pricing. The optimal fair number of accessed real-time (RT) users and non-real-time (NRT) users is calculated in Ref.[21], but each RT user is only assigned one sub-channel and how to assign appropriate channels to users is not explained.

    In the above references, different QoS requirements of different services are not considered in resource allocation. If the resource is allocated only for bringing the highest data rate, the heterogeneous QoS requirements cannot be satisfied. When a user with a lower rate requirement is assigned a good channel with a higher data rate, the resource is wasted and it is unfair for other users with higher data requirements. In this paper, channels are assigned according to different users’ QoS requests. Meanwhile, the fairness is considered in the allocation process. To prevent wasting of resources, channels should be properly allocated to users according to their demands. The optimization object is replaced by fairness-driven QoS satisfaction. The simulation results show that, the proposed resource allocation algorithm provides a better tradeoff among fairness, QoS guarantees of heterogeneous services and the system data rate.

    1 System Model and Problem Formulation

    As shown in Fig.1, the OFDMA technique is integrated into the WLAN downlink transmission by the frame aggregation scheme and the link adaption scheme. The channel state information (CSI), available spectrum opportunities and the user’s QoS request, which will be used in the allocation algorithm, are assumed to be available at the access point (AP) and remain unchanged during the allocation time period. AP assigns channels for downlink transmission and determines how much transmit power is allowed. The resource allocation results will be the input parameters of the frame aggregation and fragmentation module and the physical layer (PHY) processing module.

    Fig.1 Downlink transmission model at the AP

    Assume thatNstations (STAs) and one AP shareKsub-channels. In this paper, the resource allocation optimization problem can be described as maximizing the sum satisfaction on the condition of system constraints and QoS constraints. The problem formulations are given as follows:

    (1)

    s.t.

    (2)

    (3)

    (4)

    (5)

    (6)

    2 Resource Allocation for Different QoS Requirements and Fairness

    2.1 QoS-based resource optimization problem

    With the constraints in section 1, the optimal result of problem (1) is difficult to be found. To decrease the complexity of optimization, QoS constraints should be handled first. Note that the data rate should at least reach a lower bound, so that the packet error rate (PER) will be below the threshold and the packet will be delivered in time.

    The PER can be expressed as the increasing function of the average bit error rate (BER), and the data rate can be expressed as the decreasing function of the BER. So constraint (3) can be converted into the same form as constraint (5).

    (7)

    For packets with the time delay threshold, the data rate at the current slot should be large enough to ensure that the most urgent packet can be delivered in time. Since the data rate can be expressed as the decreasing function of the past time after the urgent packet is created, constraint (4) can be converted into the same form as constraint (5).

    (8)

    Now different QoS requirements can be converted into different data rate requirements. According to problem formulations given in section 1, each user’s QoS satisfaction is evaluated by the QoS satisfaction level (QSL), which is given as

    (9)

    So the QoS-based resource optimization problem can be expressed as

    (10)

    s.t.

    constraint (2) and constraint (6)

    2.2 Fairness-driven resource optimization problem

    Problem (10) is a nonlinear programming problem. By relaxing integer constraint (2) to continuous values in range [0,1], problem (10) becomes convex and the optimal result is easy to be found by solving the Lagrangian function. However, problem (10) does not reflect the fairness allocation. Resource may be only assigned to the user with the highest data rate requirement. To achieve fairness, problem (10) can be revised by a fairness-driven utility function[23]as

    (11)

    s.t.

    constraint (2) and constraint (6)

    It is difficult to solve problem (11) because it involves two log functions. One of the log functions is the Shannon formula used for calculating data rate in Eq.(9). The optimal solution cannot be calculated by the Lagrangian function directly, so problem (11) is divided into several small problems to find a suboptimal solution. The channel allocation will be solved first, and then the power will be assigned based on the channel allocation result.

    Given average power assignment, each user can calculate the fairness-driven utility log(si) on each channel. Assume that the number of users is equal to the number of channels. The channel allocation problem can be solved by bipartite graph matching. As shown in Fig.2, letxset include all users, andyset include all the channels. Let the weight of edge is the fairness-driven utility. The object of optimal matching is the object of the maximization problem (11).

    The channel allocation set can be calculated as

    (12)

    s.t. constraint (2)

    Given the channel allocation set, the power assignment

    Fig.2 Bipartite graph matching for channel allocation

    can be solved by the water-filling-based method. The object of power assignment is the same as the object of problem (10). According to Ref.[22], the transmission power is assigned as

    (13)

    2.3 Resource allocation based on fairness and QoS provisioning

    According to the above analysis, the steps of the proposed algorithm for resource allocation based on fairness and QoS provisioning (RAFQ) can be given as follows:

    1) Collect information: The AP collects CSI, available spectrum opportunities and QoS requirements of each user. Different QoS requirements will be converted into different data rate requirements. All the information should be collected at the beginning of every resource allocation circle.

    2) Channel allocation: Given the average power assignment, AP calculates the channel allocation set by solving Eq.(12).

    3) Power assignment: Given the channel allocation set, AP calculates the power assignment result by solving Eq.(13).

    4) Repeat step 1) to 3) at every resource allocation circle.

    3 Simulation Results

    In this section, the performance of the proposed algorithm is evaluated and compared with three other algorithms which are discussed in Ref.[22]. The first algorithm is the maximum rate resource allocation algorithm (MRRA), in which the resource is always allocated to the user bringing the highest data rate. The second algorithm is the QoS provisioning channel allocation (QPCA) algorithm proposed in Ref.[21], in which the channel bringing the highest data rate is assigned to the user with the highest QSL. The third algorithm is the spectrum allocation based on the general genetic (SAGG) algorithm proposed in Ref.[17], but the fitness function is replaced by the QSL. All the parameters used in the simulation are summarized in Tab.1. Channels between the AP and wireless users are modeled as parallel AWGN channels with different channel gains. Each channel can only be allocated to one user.

    Tab.1 Parameters used for evaluation

    A fairness index[24]is used to evaluate the fairness performance of different algorithms. A higher value ofd(x) implies a higher degree of fairness.

    (14)

    In Fig.3, the QSL of user 1 is much lower than that of user 3 when there is no fairness consideration. But with fairness consideration in the proposed algorithm, the QSL of user 1 is greater than that of user 3. This means that some resource of user 3 is re-allocated to user 1 to provide fair allocation. The fairness index with fairness consideration is 0.814 4, and the fairness index without fairness consideration is 0.698 4. The value increases by 16.61%, which means that the fairness of resource allocation is improved.

    Fig.3 The QSL of RAFQ with/without considering fairness

    This result is also confirmed by Fig.4, in which the fairness index of the proposed algorithm is higher than that of other algorithms. In three other algorithms, the object of power assignment is the sum rate; the power is assigned to improve some users’ data rate while some others’ requirements are ignored. Thus the fairness index of the QPCA algorithm decreases after the power allocation. Fig.4 shows that the fairness performance of the proposed algorithm is better than those of three other algorithms.

    Fig.4 Comparison of fairness index

    The total QSL comparison is given in Fig.5. The proposed algorithm has the highest total QSL value. It reveals that the RAFQ algorithm can provide different QoS guarantees and fairness. However, the RAFQ algorithm does not have the highest sum rate in Fig.6. This is because the data rate is not the only target in the RAFQ algorithm; different QoS requirements are integrated into QoS satisfaction level; and the resource allocation process is driven by the fairness. The proposed algorithm sacrifices

    Fig.5 Comparison of total QSL

    Fig.6 Comparison of sum rate

    some data rate to the QoS and fairness guarantee, but it can still obtain the second-highest data rate when it compares with other algorithms. So it is a good trade off among the data rate, QoS and fairness.

    4 Conclusion

    In this paper, a resource allocation algorithm is proposed for dynamic resource optimization with QoS and fairness guarantee. The system model is presumed as the OFDMA-WLAN downlink transmission system. Different QoS requirements of multiple users are converted into different data rate requirements, which are integrated into the QoS satisfaction level. The fairness-driven utility function is used to provide user fairness. The channels are allocated through bipartite graph matching. Power assignment is solved by the water-filling-based method, in which the correction factor is used to obtain fairness. The proposed RAFQ algorithm is compared with three other algorithms on total QSL, fairness index and sum rate. The simulation results show that the proposed algorithm improves fairness and QoS satisfaction with less data rate sacrifice, and performs a good tradeoff among QoS, fairness and data rate.

    [1]Wong I C, Evans B L. Optimal downlink OFDMA resource allocation with linear complexity to maximize ergodic rates [J].IEEETransactionsonWirelessCommunications, 2008, 7(3): 962-971.

    [2]Sahin M E, Guvenc I, Jeong M-R, et al. Handling CCI and ICI in OFDMA femtocell networks through frequency scheduling [J].IEEETransactionsonConsumerElectronics, 2009, 55(4): 1936-1944.

    [3]Alnuweiri H M, Fallah Y P, Nasiopoulos P, et al. OFDMA-based medium access control for next-generation WLANs [J].EURASIPJournalonWirelessCommunicationsandNetworking, 2009, 2009: 512865-01-512865-09.

    [4]Wang D D, Minn H, Al-Dhahir N. A distributed opportunistic access scheme and its application to OFDMA systems [J].IEEETransactionsonCommunications, 2009, 57(3): 738-746.

    [5]Jung Junwoo, Lim Jaesung. Group contention-based OFDMA MAC protocol for multiple access interference-free in WLAN systems [J].IEEETransactionsonWirelessCommunications, 2012, 11(2): 648-658.

    [6]Mokari N, Navaie K, Khoshkholgh M G. Downlink radio resource allocation in OFDMA spectrum sharing environment with partial channel state information [J].IEEETransactionsonWirelessCommunications, 2011, 10(10): 3482-3495.

    [7]Ngo D T, Tellambura C, Nguyen H H. Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control [J].IEEETransactionsonVehicularTechnology, 2009, 58(9): 4878-4889.

    [8]Mitran P, Le L B, Rosenberg C. Queue-aware resource allocation for downlink OFDMA cognitive radio networks [J].IEEETransactionsonWirelessCommunications, 2010, 9(10): 3100-3111.

    [9]Choi K W, Hossain E, Kim D I. Downlink subchannel and power allocation in multi-cell OFDMA cognitive radio networks [J].IEEETransactionsonWirelessCommunications, 2011, 10(7): 2259-2271.

    [10]Ngo D T, Tellambura C, Nguyen H H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration [J].IEEETransactionsonVehicularTechnology, 2010, 59(4): 1668-1679.

    [11]Kwon Hojoong, Seo Hanbyul, Kim Seonwook, et al. Generalized CSMA/CA for OFDMA systems: protocol design, throughput analysis, and implementation issues [J].IEEETransactionsonWirelessCommunications, 2009, 8(8): 4176-4187.

    [12]Valentin S, Freitag T, Karl H. Integrating multiuser dynamic OFDMA into IEEE 802.11 WLANs-LLC/MAC extensions and system performance [C]//IEEEInternationalConferenceonCommunications. Beijing, China, 2008: 3328-3334.

    [13]Jang J, Lee K. Transmit power adaptation for multiuser OFDM systems [J].IEEEJournalonSelectedAreasinCommunications, 2003, 21(2): 171-178.

    [14]Jiao W, Cai L, Tao M. Competitive scheduling for OFDMA systems with guaranteed transmission rate [J].ElsevierComputerCommunications,SpecialIssueonAdaptiveMulticarrierCommunicationsandNetwork, 2009, 32(3): 501-510.

    [15]Tao M, Liang Y C, Zhang F. Resource allocation for delay differentiated traffic in multiuser OFDM systems [J].IEEETransactionsonWirelessCommunications, 2008, 7(6): 2190-2201.

    [16]Seong K, Mohseni M, Cio J M. Optimal resource allocation for OFDMA downlink systems [C]//IEEEInternationalSymposiumonInformationTheory. Seattle, WA, USA, 2006: 1394-1398.

    [17]Zhao Zhijin, Peng Zhen, Zheng Shilian, et al. Cognitive radio spectrum allocation using evolutionary algorithms [J].IEEETransactionsonWirelessCommunications, 2009, 8(9): 4421-4425.

    [18]Koudouridis G P, Qvarfordt C, Cai T, et al. Partial frequency allocation in downlink OFDMA based on evolutionary algorithms [C]//2010IEEE72ndVehicularTechnologyConferenceFall(VTC 2010-Fall). Ottawa, ON, CAN, 2010: 1-5.

    [19]Sacchi C, Granelli F, Schlegel C. A QoE-oriented strategy for OFDMA radio resource allocation based on min-MOS maximization [J].IEEECommunicationsLetters, 2011, 15(5): 494-496.

    [20]Zhang Danhua, Wang Youzheng, Lu Jianhua. QoS aware resource allocation in cooperative OFDMA systems with service differentiation [C]//IEEEInternationalConferenceonCommunications. Cape Town, RSA, 2010: 1-5.

    [21]Alshamrani A, Shen X M, Xie L L. QoS provisioning for heterogeneous services in cooperative cognitive radio networks [J].IEEEJournalonSelectedAreasinCommunications, 2011, 29(4): 819-830.

    [22]Bao Nan, Li Junchao, Xia Weiwei, et al. QoS-aware resource allocation algorithm for OFDMA-WLAN integrated system [C]//2013IEEEWirelessCommunicationsandNetworkingConference. Shanghai, China, 2013: 807-812.

    [23]Peng Chunyi, Zheng Haitao, Zhao Ben Y. Utilization and fairness in spectrum assignment for opportunistic spectrum access [J].MobileNetworksandApplications, 2006, 11(4): 555-576.

    [24]Jain R, Chiu D, Hawe W. A quantitative measure of fairness and discrimination for resource allocation in shared computer systems [R]. Hudson: Digital Institution Corporation, 1984.

    基于公平性和QoS保障的OFDMA-WLAN系統(tǒng)資源分配

    鮑 楠 夏瑋瑋 沈連豐

    (東南大學移動通信國家重點實驗室,南京 210096)

    為了滿足OFDMA-WLAN系統(tǒng)下行通信中多用戶的不同業(yè)務需求,提出一種基于公平性和QoS服務保障的資源分配算法.不同的QoS要求被轉換成不同的速率要求來計算QoS滿意等級;優(yōu)化目標被修改為公平性驅動的優(yōu)化函數(shù)以提供公平性保障;復雜的資源分配問題被劃分為信道分配和功率分配問題,并通過二分圖匹配和注水法得到分配結果.與其他算法相比,所提出的算法犧牲了較少的數(shù)據(jù)速率換取更高的公平性和QoS滿意度.仿真結果表明所提算法具有保障QoS和公平性的能力,且在QoS、公平性和速率之間權衡折中時表現(xiàn)更好.

    QoS滿意等級;公平性驅動函數(shù);二分圖匹配;注水法;資源分配

    TN915

    s:The National Science and Technology Major Project (No.2012ZX03004005-003), the National Natural Science Foundation of China (No.61171081, 61201175), the Science and Technology Support Program of Jiangsu Province (No.BE2011187).

    10.3969/j.issn.1003-7985.2014.01.001

    :Bao Nan, Xia Weiwei, Shen Lianfeng. Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system[J].Journal of Southeast University (English Edition),2014,30(1):1-6.

    10.3969/j.issn.1003-7985.2014.01.001

    Received 2013-09-14.

    Biographies:Bao Nan (1985—), female, graduate; Shen Lianfeng (corresponding author), male, professor, lfshen@seu.edu.cn.

    猜你喜歡
    資源分配公平性分配
    新研究揭示新冠疫情對資源分配的影響 精讀
    英語文摘(2020年10期)2020-11-26 08:12:20
    應答器THR和TFFR分配及SIL等級探討
    遺產的分配
    一種分配十分不均的財富
    一種基于價格競爭的D2D通信資源分配算法
    測控技術(2018年7期)2018-12-09 08:57:56
    績效考核分配的實踐與思考
    一種提高TCP與UDP數(shù)據(jù)流公平性的擁塞控制機制
    公平性問題例談
    關于公平性的思考
    OFDMA系統(tǒng)中容量最大化的資源分配算法
    計算機工程(2014年6期)2014-02-28 01:25:32
    久久香蕉国产精品| 久久久久久国产a免费观看| 久9热在线精品视频| 国产精品一区二区精品视频观看| 一个人观看的视频www高清免费观看 | 97超级碰碰碰精品色视频在线观看| 国产伦精品一区二区三区视频9 | 热99re8久久精品国产| 天天躁日日操中文字幕| 亚洲无线在线观看| www日本黄色视频网| 国产伦精品一区二区三区四那| 欧美性猛交╳xxx乱大交人| 日韩国内少妇激情av| 欧美成人性av电影在线观看| 美女午夜性视频免费| 国产精品98久久久久久宅男小说| 国产在线精品亚洲第一网站| 99久久国产精品久久久| 我要搜黄色片| 国内揄拍国产精品人妻在线| 国产黄片美女视频| xxx96com| 亚洲男人的天堂狠狠| 久久这里只有精品19| 久9热在线精品视频| 国产不卡一卡二| 久久久久久人人人人人| 在线观看免费视频日本深夜| 亚洲av五月六月丁香网| 日本三级黄在线观看| 在线观看免费午夜福利视频| 黄片大片在线免费观看| 亚洲片人在线观看| 日本黄大片高清| 搡老熟女国产l中国老女人| 真实男女啪啪啪动态图| 国产精品女同一区二区软件 | 最近视频中文字幕2019在线8| 国产精品国产高清国产av| 国产激情久久老熟女| 黄色片一级片一级黄色片| 亚洲成人精品中文字幕电影| 日韩欧美国产在线观看| 男人和女人高潮做爰伦理| 视频区欧美日本亚洲| 亚洲 国产 在线| 亚洲成人久久性| 一级毛片精品| 在线播放国产精品三级| 亚洲avbb在线观看| 色综合欧美亚洲国产小说| 狂野欧美白嫩少妇大欣赏| 毛片女人毛片| 一本久久中文字幕| 久久久久久久精品吃奶| 成人av一区二区三区在线看| 超碰成人久久| 国产精品永久免费网站| 91在线精品国自产拍蜜月 | 亚洲欧美精品综合一区二区三区| 真实男女啪啪啪动态图| 在线免费观看不下载黄p国产 | 亚洲专区中文字幕在线| 色老头精品视频在线观看| 国产 一区 欧美 日韩| 亚洲狠狠婷婷综合久久图片| 大型黄色视频在线免费观看| 免费一级毛片在线播放高清视频| 国产单亲对白刺激| 午夜福利在线观看吧| 国产亚洲欧美在线一区二区| 久久精品国产亚洲av香蕉五月| 精品电影一区二区在线| 熟女电影av网| 日韩国内少妇激情av| 人人妻人人看人人澡| 亚洲欧洲精品一区二区精品久久久| 亚洲成a人片在线一区二区| 亚洲黑人精品在线| 国产私拍福利视频在线观看| 变态另类成人亚洲欧美熟女| 亚洲色图av天堂| 757午夜福利合集在线观看| 天天一区二区日本电影三级| 亚洲欧美日韩东京热| 午夜成年电影在线免费观看| 精品一区二区三区视频在线 | 天天躁狠狠躁夜夜躁狠狠躁| 欧美又色又爽又黄视频| 99视频精品全部免费 在线 | 制服丝袜大香蕉在线| 一夜夜www| 国产精品女同一区二区软件 | 久久久久久国产a免费观看| 国产精品av视频在线免费观看| 国产亚洲精品综合一区在线观看| 精品无人区乱码1区二区| 老鸭窝网址在线观看| 亚洲熟妇熟女久久| 国内少妇人妻偷人精品xxx网站 | av视频在线观看入口| 日韩欧美一区二区三区在线观看| 99久久精品热视频| 日韩欧美一区二区三区在线观看| 18禁国产床啪视频网站| 精品乱码久久久久久99久播| 美女黄网站色视频| 国产精品av视频在线免费观看| 精品人妻1区二区| 一级毛片高清免费大全| 亚洲国产精品久久男人天堂| 国产成人影院久久av| 嫩草影院精品99| 亚洲熟妇熟女久久| 99热只有精品国产| 在线永久观看黄色视频| 精华霜和精华液先用哪个| 波多野结衣高清无吗| 日本免费一区二区三区高清不卡| 此物有八面人人有两片| 1000部很黄的大片| 999精品在线视频| 国产精品国产高清国产av| 日本成人三级电影网站| 国产亚洲精品av在线| 亚洲国产精品久久男人天堂| 美女高潮的动态| 欧美日韩一级在线毛片| 久久久久九九精品影院| 国产亚洲精品久久久com| 两性夫妻黄色片| av女优亚洲男人天堂 | 国产精品 欧美亚洲| 国产精品 国内视频| 日本 欧美在线| 中国美女看黄片| 美女cb高潮喷水在线观看 | 中文字幕最新亚洲高清| 国产高清三级在线| 天堂av国产一区二区熟女人妻| 91九色精品人成在线观看| 国产精品99久久久久久久久| 亚洲av五月六月丁香网| 99视频精品全部免费 在线 | 99riav亚洲国产免费| 亚洲av美国av| www.999成人在线观看| xxxwww97欧美| 国产成人福利小说| 九色成人免费人妻av| 欧美在线黄色| 草草在线视频免费看| 国产精品久久久av美女十八| 在线视频色国产色| 黄色女人牲交| 十八禁网站免费在线| 午夜福利免费观看在线| 欧美成人性av电影在线观看| 国产成人影院久久av| 天天躁日日操中文字幕| 噜噜噜噜噜久久久久久91| 国产精品久久久av美女十八| 99国产极品粉嫩在线观看| 黄色 视频免费看| 亚洲成人免费电影在线观看| 国语自产精品视频在线第100页| 国内精品一区二区在线观看| 在线十欧美十亚洲十日本专区| 日韩精品中文字幕看吧| 色老头精品视频在线观看| 亚洲色图av天堂| 夜夜看夜夜爽夜夜摸| 欧美+亚洲+日韩+国产| 色在线成人网| 久久亚洲精品不卡| 国产主播在线观看一区二区| 深夜精品福利| 国产亚洲欧美在线一区二区| 日本a在线网址| 日本免费a在线| 亚洲精品国产精品久久久不卡| 偷拍熟女少妇极品色| 亚洲五月天丁香| x7x7x7水蜜桃| 男插女下体视频免费在线播放| 很黄的视频免费| 国产成人欧美在线观看| 欧美一级a爱片免费观看看| av片东京热男人的天堂| 特大巨黑吊av在线直播| 国产aⅴ精品一区二区三区波| 怎么达到女性高潮| 国产成人欧美在线观看| 国产成人av教育| 给我免费播放毛片高清在线观看| 视频区欧美日本亚洲| 亚洲精品美女久久av网站| 国产免费av片在线观看野外av| 国产精品一及| 亚洲av电影在线进入| 国模一区二区三区四区视频 | 亚洲国产中文字幕在线视频| 少妇的丰满在线观看| 亚洲欧洲精品一区二区精品久久久| 久久热在线av| 国产午夜精品论理片| 午夜福利在线观看免费完整高清在 | 在线观看日韩欧美| 亚洲一区高清亚洲精品| 国产高清videossex| 黑人操中国人逼视频| 又黄又爽又免费观看的视频| 两个人看的免费小视频| 亚洲av中文字字幕乱码综合| 国产高清三级在线| 熟妇人妻久久中文字幕3abv| 国产激情偷乱视频一区二区| 亚洲 欧美一区二区三区| 亚洲中文日韩欧美视频| 亚洲午夜精品一区,二区,三区| 一区二区三区激情视频| av欧美777| 国产精品香港三级国产av潘金莲| 亚洲av免费在线观看| 欧美日韩乱码在线| 别揉我奶头~嗯~啊~动态视频| 国产激情久久老熟女| 可以在线观看毛片的网站| 日韩精品中文字幕看吧| 亚洲精品在线观看二区| avwww免费| 宅男免费午夜| 亚洲18禁久久av| 久久久国产精品麻豆| 18禁裸乳无遮挡免费网站照片| 午夜免费激情av| av片东京热男人的天堂| 日本三级黄在线观看| 成人一区二区视频在线观看| 免费看光身美女| 国产亚洲av高清不卡| 国产野战对白在线观看| 国产私拍福利视频在线观看| 波多野结衣高清作品| 成在线人永久免费视频| 麻豆av在线久日| 色综合欧美亚洲国产小说| 日本与韩国留学比较| 在线观看免费视频日本深夜| 老熟妇乱子伦视频在线观看| 波多野结衣高清无吗| 男女床上黄色一级片免费看| 国产精品 国内视频| 亚洲一区高清亚洲精品| 免费在线观看日本一区| 成人永久免费在线观看视频| 九九在线视频观看精品| 麻豆久久精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 一二三四社区在线视频社区8| 国产精品久久视频播放| 真人一进一出gif抽搐免费| 熟女少妇亚洲综合色aaa.| 久久精品国产综合久久久| 999精品在线视频| 久久99热这里只有精品18| 免费看美女性在线毛片视频| 亚洲成人久久爱视频| 99热这里只有是精品50| 国产成+人综合+亚洲专区| 日本免费一区二区三区高清不卡| 精品国产三级普通话版| 亚洲成人精品中文字幕电影| 国产蜜桃级精品一区二区三区| 99久久精品热视频| 亚洲av美国av| 制服丝袜大香蕉在线| 久久久久久久精品吃奶| 又大又爽又粗| 国产激情久久老熟女| 中文字幕av在线有码专区| 女同久久另类99精品国产91| 搡老岳熟女国产| 综合色av麻豆| 操出白浆在线播放| 亚洲在线自拍视频| 亚洲专区国产一区二区| 99re在线观看精品视频| 久久精品综合一区二区三区| 国产精品,欧美在线| 18禁国产床啪视频网站| 日韩欧美免费精品| 免费观看人在逋| 麻豆国产av国片精品| 中出人妻视频一区二区| 国产伦精品一区二区三区四那| av福利片在线观看| 亚洲国产精品sss在线观看| 国产午夜精品久久久久久| 中亚洲国语对白在线视频| 亚洲欧美精品综合久久99| 国产激情欧美一区二区| 小说图片视频综合网站| 国产成人系列免费观看| 深夜精品福利| 精品久久久久久久末码| 亚洲一区高清亚洲精品| 99热精品在线国产| 午夜福利在线观看免费完整高清在 | 亚洲精品456在线播放app | 特大巨黑吊av在线直播| 亚洲 欧美一区二区三区| 一个人看的www免费观看视频| 国产真人三级小视频在线观看| 久久中文字幕人妻熟女| 精品一区二区三区视频在线 | 欧美色欧美亚洲另类二区| 啦啦啦观看免费观看视频高清| 麻豆成人av在线观看| 久久精品aⅴ一区二区三区四区| 欧美激情在线99| 91麻豆av在线| 色老头精品视频在线观看| 国产成人系列免费观看| 久久久久久大精品| 91久久精品国产一区二区成人 | 国产午夜精品久久久久久| 欧美乱妇无乱码| 美女扒开内裤让男人捅视频| 亚洲第一电影网av| 又黄又爽又免费观看的视频| 身体一侧抽搐| 国产一区二区在线观看日韩 | 国产精品99久久99久久久不卡| 啦啦啦免费观看视频1| 精品免费久久久久久久清纯| 性欧美人与动物交配| 日本熟妇午夜| 中文字幕人成人乱码亚洲影| 亚洲欧美日韩卡通动漫| 美女扒开内裤让男人捅视频| 一本综合久久免费| 好男人电影高清在线观看| 日韩三级视频一区二区三区| av女优亚洲男人天堂 | 亚洲乱码一区二区免费版| 天堂√8在线中文| 国产亚洲av嫩草精品影院| 成人18禁在线播放| 一个人看的www免费观看视频| 五月伊人婷婷丁香| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 欧美高清成人免费视频www| 精品电影一区二区在线| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 亚洲精品在线美女| 变态另类丝袜制服| 亚洲人与动物交配视频| 一本综合久久免费| 国产又色又爽无遮挡免费看| 久久天躁狠狠躁夜夜2o2o| 亚洲天堂国产精品一区在线| 久久精品91蜜桃| 免费av毛片视频| 亚洲七黄色美女视频| 美女 人体艺术 gogo| 99热这里只有是精品50| 国产视频一区二区在线看| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 成人18禁在线播放| 精品国产超薄肉色丝袜足j| 久久久水蜜桃国产精品网| 亚洲五月婷婷丁香| 亚洲在线观看片| 97碰自拍视频| 91av网站免费观看| 蜜桃久久精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 欧美一区二区精品小视频在线| 欧美日韩中文字幕国产精品一区二区三区| 99久久精品国产亚洲精品| 亚洲一区二区三区不卡视频| 亚洲国产精品sss在线观看| а√天堂www在线а√下载| 99久久精品国产亚洲精品| 韩国av一区二区三区四区| 97碰自拍视频| 一个人免费在线观看电影 | 国产激情久久老熟女| 91九色精品人成在线观看| 日本免费一区二区三区高清不卡| 中文字幕熟女人妻在线| 女人被狂操c到高潮| 一级毛片高清免费大全| 巨乳人妻的诱惑在线观看| 91在线精品国自产拍蜜月 | 在线免费观看不下载黄p国产 | 国产午夜精品论理片| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频| 欧美一级a爱片免费观看看| 成人国产一区最新在线观看| 综合色av麻豆| 校园春色视频在线观看| 成年女人看的毛片在线观看| 综合色av麻豆| 国产亚洲欧美98| 国产伦精品一区二区三区四那| 无遮挡黄片免费观看| 久久久精品欧美日韩精品| 亚洲欧美精品综合久久99| netflix在线观看网站| 亚洲乱码一区二区免费版| 中文字幕熟女人妻在线| 国内精品久久久久久久电影| 色综合婷婷激情| 在线观看一区二区三区| 日韩高清综合在线| 夜夜躁狠狠躁天天躁| 99国产极品粉嫩在线观看| 色播亚洲综合网| 99热精品在线国产| 丁香欧美五月| 亚洲五月天丁香| 亚洲 欧美一区二区三区| 国产三级在线视频| 国产成人影院久久av| 免费一级毛片在线播放高清视频| 午夜a级毛片| 1024手机看黄色片| 十八禁人妻一区二区| 久久香蕉国产精品| av视频在线观看入口| 欧美黄色淫秽网站| 无限看片的www在线观看| 国产黄a三级三级三级人| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 久久久久久国产a免费观看| 色av中文字幕| 国产爱豆传媒在线观看| 最近最新中文字幕大全免费视频| 99riav亚洲国产免费| 美女高潮的动态| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 在线免费观看不下载黄p国产 | 男女那种视频在线观看| 欧美+亚洲+日韩+国产| 久久亚洲真实| 一级毛片高清免费大全| 国内揄拍国产精品人妻在线| 别揉我奶头~嗯~啊~动态视频| 亚洲最大成人中文| 五月玫瑰六月丁香| 久久草成人影院| 男人舔奶头视频| 久久精品91无色码中文字幕| 亚洲av中文字字幕乱码综合| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| 不卡av一区二区三区| 亚洲av成人av| 亚洲男人的天堂狠狠| 日韩欧美 国产精品| 两个人视频免费观看高清| 一级毛片女人18水好多| 亚洲自拍偷在线| a在线观看视频网站| 久久精品亚洲精品国产色婷小说| 色综合亚洲欧美另类图片| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 视频区欧美日本亚洲| 法律面前人人平等表现在哪些方面| 18禁观看日本| 99久久无色码亚洲精品果冻| 99热精品在线国产| 国产精品香港三级国产av潘金莲| 精品熟女少妇八av免费久了| 全区人妻精品视频| 一夜夜www| 日韩欧美在线乱码| 国产av不卡久久| 久久久久国产一级毛片高清牌| 国产乱人视频| 国模一区二区三区四区视频 | 亚洲av免费在线观看| 午夜激情欧美在线| 亚洲 欧美 日韩 在线 免费| 香蕉丝袜av| 国产精品电影一区二区三区| 久久婷婷人人爽人人干人人爱| 国产亚洲欧美98| av在线蜜桃| 69av精品久久久久久| 可以在线观看毛片的网站| 热99在线观看视频| 亚洲人成电影免费在线| 国产精品一区二区三区四区免费观看 | 一夜夜www| 国产1区2区3区精品| 丰满人妻一区二区三区视频av | 最近视频中文字幕2019在线8| 久久久久久久久免费视频了| 一区福利在线观看| 最新在线观看一区二区三区| 悠悠久久av| 亚洲精品久久国产高清桃花| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕人妻丝袜一区二区| 国产av一区在线观看免费| 啦啦啦免费观看视频1| 给我免费播放毛片高清在线观看| 国产亚洲精品一区二区www| 久久中文看片网| 在线看三级毛片| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美日韩卡通动漫| 成人欧美大片| 国产av不卡久久| 天堂av国产一区二区熟女人妻| 国产三级黄色录像| 中文字幕久久专区| 欧美黑人欧美精品刺激| 亚洲第一欧美日韩一区二区三区| 国产99白浆流出| 国产黄色小视频在线观看| 怎么达到女性高潮| 18禁国产床啪视频网站| 99久国产av精品| 成人三级黄色视频| xxxwww97欧美| 男人舔女人的私密视频| 欧美色视频一区免费| 在线a可以看的网站| cao死你这个sao货| 两性午夜刺激爽爽歪歪视频在线观看| 色综合站精品国产| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 色av中文字幕| 国产真人三级小视频在线观看| 在线免费观看不下载黄p国产 | 国产精品综合久久久久久久免费| 亚洲五月婷婷丁香| 久久国产精品影院| 欧美zozozo另类| 99国产精品一区二区三区| 露出奶头的视频| 脱女人内裤的视频| 日本精品一区二区三区蜜桃| 日韩欧美国产在线观看| 久久这里只有精品中国| 欧美成人免费av一区二区三区| 国产三级在线视频| aaaaa片日本免费| 国内少妇人妻偷人精品xxx网站 | 欧美精品啪啪一区二区三区| 黄色视频,在线免费观看| 波多野结衣巨乳人妻| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 国产精品久久久av美女十八| av片东京热男人的天堂| 日韩精品青青久久久久久| 精品无人区乱码1区二区| 欧美又色又爽又黄视频| 18禁黄网站禁片午夜丰满| 日本免费一区二区三区高清不卡| 国产欧美日韩一区二区精品| 精品国产超薄肉色丝袜足j| 国模一区二区三区四区视频 | 日韩欧美免费精品| 99久久99久久久精品蜜桃| 欧美一区二区国产精品久久精品| 怎么达到女性高潮| www.999成人在线观看| 天堂网av新在线| 99热只有精品国产| 亚洲天堂国产精品一区在线| 欧美午夜高清在线| 九色国产91popny在线| 亚洲精品色激情综合| 久久人妻av系列| 中文字幕人妻丝袜一区二区| 国内精品久久久久精免费| АⅤ资源中文在线天堂| 日日夜夜操网爽| 国产欧美日韩精品亚洲av| 成人一区二区视频在线观看| 国产黄a三级三级三级人| 一级毛片精品| 视频区欧美日本亚洲| netflix在线观看网站| 国产精品女同一区二区软件 | 99久久国产精品久久久| 男人舔女人的私密视频| 男人的好看免费观看在线视频| 特级一级黄色大片| av在线天堂中文字幕| 国产伦在线观看视频一区| 国产伦人伦偷精品视频| 国内精品一区二区在线观看| 69av精品久久久久久| 婷婷精品国产亚洲av| 成人无遮挡网站| 一区二区三区激情视频| 两性夫妻黄色片| 大型黄色视频在线免费观看| 成年免费大片在线观看|