• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Influences of Basis Set Effect on the Structure, Energy and Non-covalent Interactions of the SiOSi Linkage in DFT Calculations

    2014-08-24 09:36:14HUANGNanaXUJinzhouXUZheng

    HUANG Nana, XU Jinzhou, XU Zheng

    (Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University,Hangzhou 311121, China)

    1 Introduction

    Siloxane polymers as a kind of organic-inorganic material show quite special structural and chemical properties compared to the normal organic compounds.The SiOSi linkages were considered to play the key role in determining the unique properties of siloxane polymers.It has been pointed out recently that the variation of the Si—O—Si angle in siloxane compounds can tune their basicity from highly hydrophobic system to hydrophilic system[1-3].This has great potential in the design of new siloxane materials with properties distinct from those of known silicones.Knowledge of its molecular properties including structure, chemical nature and non-bonded interactions may give an insight into the interpretation of the special properties of the materials bearing this SiOSi linkage.

    Owing to the especial low linearization energy of the SiOSi angle (~0.37 kcal/mol), high precision in energy are normally needed for theoretical methods to give a reasonable description of the equilibrium structure of compounds including the SiOSi linkage.Although the effect of basis set to structural and energetic properties of disiloxane have already been tested by earlier studies[4-6], a systematic view about the convergence of the commonly available triple-ζ basis set (6-311G) and double-ζ basis set (6-31G) in combinations with various polarization space and diffuse function to disiloxane’s non-covalent binding energy is still unavailable.

    As part of our ongoing interest in evaluating and comparing the chemical nature and the strength of the possible non-covalent interactions involved by compounds containing SiOSi and SiOC linkage, at the present work we firstly seek to determine to what extent will the geometric parameters and non-covalent interactions of siloxane bridge be depend on the basis sets.This may help us to choose the right combination for further works.

    2 Computational Details

    Calculations were carried out using Gaussian 09 suite of program[7].Disiloxane (H3SiOSiH3), which are the smallest molecules including the siloxane bridge, were selected as our model compounds.Among the three conformers of disiloxane (Figure 1), the double staggered C2vconformation (Css), which has been proved to be the most stable one compared to the staggered and eclipsed (Cse) and the doubly eclipsed (Cee) conformation,[8] was fully optimized using various combinations.The binding energy for hydrogen bond complex was calculated as in equation (1), in which EABis the energy of 1∶1 hydrogen bond complex of disiloxane (A) and water (B), EAand EBare the energy of disiloxane and water respectively.The zero-point energies (ZPE) and the basis set superposition error (BSSE)[9]for the complex have also been provided.Here, the binding energies that include ZPE correction are labeled as ΔEZPEand that include both ZPE and BSSE are labeled as ΔEZPE+BSSE.

    ΔE=EAB-(EA+EB).

    (1)

    Fig.1 The three conformers of disiloxane

    3 Results and Discussion

    3.1GeometryThe most popular hybrid density functional method B3LYP was selected to evaluate the dependence of disiloxane structure to the basis set effect.This may help us to find the right basis set that can provide good compromise between the accuracy and computational cost.In the present work, the double-split-valence basis set (6-31G) and the triple-split-valence basis set (6-311G) with and without diffuse function on hydrogen and non-hydrogen atom with increasing polarization space have been tested.The specific basis sets tested were listed in Table 1.

    Tab.1 Gaussian basis sets tested in the present work

    As is well-known, to evaluate the performance of theoretical methods to compound containing SiOSi linkage, the key point is whether the method could give a good description of the short Si—O bond length, the large Si—O—Si bond angle and the low linearization energy of SiOSi bridge.It has been well established that the equilibrium conformation of disiloxane is bent, although the specific Si—O—Si angle predicted by different experimental methods is slightly different from each other[8, 10-12] ranging from 145° to 151.2°.The experimentally obtained Si—O—Si angle (151.2°)(10) and Si—O bond length (1.634?)(12) is provided in Figure 2 as the standard.These data have also been used as the benchmark geometric values of disiloxane by Zhang et.al.to evaluate the performance of 14 density functional to the silicaceous material system[13].In addition to that the data obtained by the widely used Dunning’s basis sets aug-cc-pVTZ and aug-cc-pVQZ were also provided for the easy comparison with previous published results about disiloxane and related compound.

    Figure 2 depicted the optimized ∠SiOSi angle (A), Si—O bond distance (B) obtained at B3LYP/6-31G, 6-31+G, 6-311G, and 6-311+G with increasing polarization function.As can be seen that, upon extension of the polarization space from (d,p) to (3df,p), large perturbations in the equilibrium Si—O—Si angle and Si—O bond distance were observed for all the four sets of basis sets.Basis sets scheme such as 6-31+G(d,p), 6-311G(d,p) and 6-311+G(d,p) can’t give a good description of SiOSi angle.They tend to give a linear conformation as a minimum.Although the equilibrium SiOSi angle 151.1° predicted by the smaller basis set 6-31G(d,p) is quite close to the standard 151.2°, the predicted Si—O bond length is apparently overestimated.When polarization space is extended to (2d,p), the equilibrium SiOSi angle is obviously underestimated for all the four set of basis set schemes with a value of around 141.5°.The geometry parameters of disiloxane tend to be convergence when the polarization space is greater than (2df,p), indicating that the use of basis set with polarization space smaller than (2df,p) was not adequate.

    Fig.2 Optimized Si—O—Si bond angle (A) and Si—O bond distance (B) of disiloxane H3SiOSiH3 calculated at B3LYP method in conjugation with increasing basis set from 6-31G(d,p) to 6-311++G(3df,3pd) and aug-cc-pVQZ

    Secondarily, it can also be seen that, after the scale of polarization space reaching the convergence point, the inclusion of diffuse function on non-hydrogen atom was found to cause a systematic decrease in SiOSi angle for about 2.8~3.1° and an increase in Si—O bond length for about 0.001~0.002?, while the inclusion of diffuse function on hydrogen atom makes nearly no difference.So the inclusion of diffuse function on non-hydrogen atom is enough.It can also be seen that the shift of basis set type from double-split-valent to triple-split-valence basis set under the same polarization space will cause a systematically decrease of 5.8~6.1° in the SiOSi angle and an increase of 0.002~0.003? in the Si—O bond length.

    It has been reported that the variation of the polarization function on oxygen has only a minor influence on the molecular properties of disiloxane[14].To determine the economic basis set combination, we have tried to decrease the basis set on oxygen with the basis set for Si and H was kept to 6-311++G(3df,p) level.The influence of the polarization function on oxygen to the SiOSi angle and Si—O bond distance of the optimized disiloxane geometry have been give in Figure 3.The performance of the smallest basis set 6-31G(d,p) was found to be excellent.So in sum, basis set scheme with 6-311+G(3df,p) for Si atom and 6-31G(d,p) for oxygen atom is a good combination for predicting geometric properties of siloxane SiOSi linkage.

    Fig.3 Effect of polarization functions in 6-31G, 6-31+G, 6-31++G, 6-311G and 6-311+G on oxygen to Si—O—Si angle (A) and Si—O bond length (B) of disiloxane calculated at B3LYP with the basis sets for Si and H atom were kept to 6-311+G(3df,p)

    3.2LinearizationenergyThe sensitivity of potential energy surface of the SiOSi angle to the polarization space has been tested by a relaxed potential energy surface scan of H3SiOSiH3with the SiOSi angle was fixed between 120° and 180° within 5° intervals under B3LYP/6-311+G scheme.The PES calculated with the B3LYP/6-311+G scheme in combination with various polarization spaces are shown in Figure 4 (A).The barrier for linearization of the SiOSi group was found to correlate with the equilibrium SiOSi angle.For basis sets, such as 6-311+G(2d,p) and 6-311+G(3d,p), that predict low SiOSi angle (~141°), the linearization barrier will be slightly higher (about 0.9 kcal/mol), however the deformation energy for SiOSi angle from equilibrium structure to smaller angle such as 120° is relatively low (about 2 kcal/mol).For basis sets that predict relative large equilibrium SiOSi angle, such as 6-311+G(d,p) and 6-311+G(df,p), the deformation energy for SiOSi angle from equilibrium to 120° is 6 kcal/mol and 4 kcal/mol, which is apparently greater than that obtained with aug-cc-pVQZ (3 kcal/mol).The result indicates that the flexibility of siloxane predicted by these basis set is greatly decreased.The potential energy surface of SiOSi angle predicted by basis sets including 6-311+G(2df,p), 6-311+G(3df,p) and 6-311+G(3df,3p) is quite close that obtained by aug-cc-pVQZ.Thus choose the right basis set is very important to give a reasonable description of the flexibility of siloxane compounds and 6-311+G(3df,p) is a good candidate basis set for siloxane system.

    The effect of diffuse functions on non hydrogen heavy atom (oxygen and silicon atoms) in both the double-split-valence and triple-split-valence basis set to the PES of the SiOSi angle has also been tested with the polarization space was fixed at (3df,p) and the results were shown in Figure 4 (B).It can be seen that inclusion of diffuse function on non-hydrogen bond will lead to a slightly decrease within 0.5 kcal/mol while the ∠SiOSi is narrowed from the equilibrium point to 120°, while the effect of the diffuse function on hydrogen atom is completely neglectable.

    Fig.4 Effect of polarization functions (A) and diffuse function (B) on the Si—O—Si bending potential energy surface of disiloxane H3SiOSiH3 calculated at B3LYP in combination with different basis set scheme

    In addition to that the effect of decreasing polarization functions on oxygen to the Si—O—Si bending potential energy surface have also been tested using B3LYP method with the basis sets for Si and H atom were kept to 6-311+G(3df,p) and the results were shown in Figure 5.The polarize space (d,p) and (2df,p) were found to give PES quite similar to that obtained by the (3df,p) space.Taking result of (3df,p) as standard, the PES predicted by (df,p) is higher and that by (2d,p) and (3d,p) is lower than the standard.

    Fig.5 Effect of polarization functions in 6-311+G on oxygen to the Si—O—Si bending potential energy surface of disiloxane H3SiOSiH3 calculated at B3LYP method with the basis sets for Si and H atom were kept to 6-311+G(3df,p)

    3.3Non-covalentinteractionsThe 1∶1 complex (H3Si)2O…HOH was selected to test the weak hydrogen bonds involved by oxygen in disiloxane, where H2O acted as hydrogen bond donor.Although the nonlocal exchange-correlation functional B3LYP can give good results in predicting the structural and energetic properties of organic compounds, its performance in evaluating the weak interactions between hydrocarbon molecules was very poor[15].The PBE1PBE method, which has excellent performance in hydrogen bonds and weak interactions, was thus selected as the model method[16-17].The binding energies and hydrogen bond length for 1∶1 complex between H3SiOSiH3and H2O optimized at PBE1PBE method with 6-311++G in combination with various increasing polarization space is depicted in Figure 6.The distance between the oxygen atom of H3SiOSiH3and hydrogen atom of water were fully optimized without any constraints.It can be seen that binding energy and hydrogen bond length achieve convergence at 6-311+G(3df,p) with -1.25 kcal/mol.The binding energy predicted by basis set with small polarization space such as (d,p), (2d,p) and (df,p) tend to be overestimated by 0.4~0.8 kcal/mol.

    Fig.6 Binding energy with zero-point correction (ΔEZPE) and hydrogen bond length for H3SiOSiH3-H2O 1∶1 complex calculated at PBE1PBE method with 6-311+G in combination with various increasing polarization space

    Fig.7 Optimized structure of disiloxane and its 1∶1 complex with water calculated at PBE1PBE/6-311+G(3df,p) level of theory

    The optimized geometry of disiloxane monomer and the hydrogen bond complex calculated at PBE1PBE/6-311+G(3df,p) was given in Figure 7.Compared to the disiloxane monomer, the Si—O bond is elongated by 0.027? and the SiOSi angle is narrowed by 8.2° in the hydrogen bond complex.The results suggest that the participation of the oxygen atom to hydrogen bond is likely to cause electronic structure change of the SiOSi linkage.

    Relaxed potential energy surface scan for H3SiOSiH3-H2O 1∶1 complex were carried out at PBE1PBE/6-311+G(3df,p) level of theory with the SiOSi angle was fixed between 120° and 180° within 5° intervals.The corresponding binding energy (ΔE) of H3SiOSiH3-H2O 1∶1 complex including ZPE and ZPE+BSSE has been shown in Figure 8 A.When SiOSi angel was greater than 170°, no stationary point for the hydrogen bond complex were found.Interestingly, a gradual increase in the binding energy was observed from 0.0 kcal/mol to 1.6 kcal/mol when the SiOSi angle was narrowed from 170° to 120°.This is accompanied by a decrease of hydrogen bond length RO…Hdefined as the intermolecular distance between disiloxane oxygen and water hydrogen atom that is pointing to disiloxane oxygen atom.This is in consistent with the results of Grabowsky et.al.that H3SiOSiH3can form usual hydrogen bond with proton donor such as H3SiOH and H2O under small SiOSi angle.(1) Additionally, the inclusion of ZPE effect was found to cause a systematic decrease in binding energy for about 1.3 kcal/mol while the inclusion of BSSE effect is about 0.35 kcal/mol.The results indicate that ZPE is important to give a reasonable description of non-covalent interactions involved by siloxane compounds.

    Fig.8 Binding energy (including ΔE, ΔEZPE and ΔEZPE+BSSE) and hydrogen bond length (RO…H in ?) for H3SiOSiH3-H2O 1∶1 complex predicted by PBE1PBE/6-311+G(3df,p) method with the ∠SiOSi angle are fixed at different value between 120°-180°

    4 Conclusions

    A systematic analysis of the effects of the basis sets to the geometry, linearization barrier and weak non-bonded interaction of siloxane model compound disiloxane have been carried out.Basis set scheme 6-311+G(3df,p)/6-31G(d,p) (the first basis is for Si atom and the last set if for all other atoms) was found to be a good basis set scheme that can give the best compromise between accuracy and CPU time for both geometrical characterization and no-covalent interactions of the SiOSi linkage in siloxane.

    The inclusion of ZPE is needed to give a reasonable description of non-covalent binding energy while basis set superposition error (BSSE) is however neglectable.The PES of SiOSi angle is sensitive to the polarization space, while the effect of diffuse function on both hydrogen and non-hydrogen atom is small.

    [1] Grabowsky S, Beckmann J, Luger P.The nature of hydrogen bonding involving the siloxane group[J].Aust J Chem, 2012, 65(7):785-795.

    [2] Weinhold F, West R.The nature of the silicon-oxygen bond[J].Organometallics,2011, 30(21):5815-5824.

    [3] Grabowsky S, Hesse M F, Paulmann C,etal.How to make the ionic Si—O bond more covalent and the Si—O—Si linkage a better acceptor for hydrogen bonding[J].Inorg Chem,2009, 48(10):4384-4393.

    [4] B?r M R, Sauer J.Ab initio calculations of the structure and properties of disiloxane.The effect of electron correlation and basis set extension[J].Chem Phys Lett,1994,226(3):405-412.

    [5] Nicholas J B, Winans R E, Harrison R J,etal.An ab initio investigation of disiloxane using extended basis sets and electron correlation[J].J Phys Chem,1992,96(20):7958-7965.

    [6] Nicholas J B, Winans R E, Harrison R J,etal.Ab initio molecular orbital study of the effects of basis set size on the calculated structure and acidity of hydroxyl groups in framework molecular sieves[J].J Phys Chem,1992,96(25):10247-10257.

    [7] Frisch M, Trucks G W, Schlegel H B,etal.Gaussian 09, Revision A.02[CP].Gaussian Inc, Wallingford, CT 2009,270:271.

    [8] Carteret C, Labrosse A, Assfeld X.An ab initio and DFT study of structure and vibrational spectra of disiloxane H3SiOSiH3conformers-Comparison to experimental data[J].Spectrochim Acta,Part A,2007,67(5):1421-1429.

    [9] Boys S F, Bernardi F.Calculation of small molecular interactions by differences of separate total energies-some procedures with reduced errors[J].Mol Phys,1970,19(4):553-566.

    [10] Almenningen A, Traetteberg M, Hedberg K,etal.Molecular structure of disiloxane(SIH3)2O[J].Acta Crystallogr, Sect.B:Struct Sci,1963,17(9):2455-2460.

    [11] Durig J R, Flanagan M J, Kalasinsky V F.Determination of potential function governing low-frequency bending mode of disiloxane[J].J Chem Phys,1977,66(7):2775-2785.

    [12] Koput J, Wierzbicki A.The large-amplitued motions in quasi-symmetric top molecules with internal C3V rotors-interpretation of the low-frequency raman-spectrum of disiloxane[J].J Mol Spectrosc,1983,99(1):116-132.

    [13] Zhang Y, Li Z H, Truhlar D G.Computational requirements for simulating the structures and proton activity of silicaceous materials[J].J Chem Theory Comput,2007,3(2):593-604.

    [14] Grigoras S, Lane T H.Ab initio calculations of the effect of polarization functions on disiloxane[J].J Comput Chem,1987,8(1):84-93.

    [15] Sousa S F, Fernandes P A, Ramos M J.General performance of density functionals[J].J Phys Chem A,2007,111(42):10439-10452.

    [16] Rabuck A D, Scuseria G E.Performance of recently developed kinetic energy density functionals for the calculation of hydrogen binding strengths and hydrogen-bonded structures[J].Theor Chem Acc,2000,104(6):439-444.

    [17] Ireta J, Neugebauer J, Scheffler M.On the accuracy of DFT for describing hydrogen bonds:dependence on the bond directionality[J].J Phys Chem A,2004,108(26):5692-5698.

    亚洲图色成人| 亚洲av免费高清在线观看| 乱系列少妇在线播放| 久久草成人影院| 欧美高清成人免费视频www| 我的老师免费观看完整版| 亚洲一级一片aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 欧美极品一区二区三区四区| 特级一级黄色大片| 日本与韩国留学比较| 激情五月婷婷亚洲| 日韩 亚洲 欧美在线| 亚洲av成人精品一区久久| 最近中文字幕2019免费版| 国内揄拍国产精品人妻在线| 国产黄片视频在线免费观看| 亚洲成人一二三区av| 中文字幕av在线有码专区| 国产高潮美女av| 国产一区亚洲一区在线观看| 国产黄色小视频在线观看| 欧美性感艳星| 日日干狠狠操夜夜爽| 最后的刺客免费高清国语| av卡一久久| 大香蕉97超碰在线| 少妇人妻精品综合一区二区| 啦啦啦啦在线视频资源| 丝瓜视频免费看黄片| 精品久久久噜噜| 97超碰精品成人国产| 成人高潮视频无遮挡免费网站| 精品不卡国产一区二区三区| 纵有疾风起免费观看全集完整版 | 亚洲国产欧美在线一区| 国产精品日韩av在线免费观看| 婷婷色综合www| 狠狠精品人妻久久久久久综合| 欧美+日韩+精品| 国产亚洲5aaaaa淫片| 日本猛色少妇xxxxx猛交久久| 18禁裸乳无遮挡免费网站照片| 国产91av在线免费观看| 精品少妇黑人巨大在线播放| 免费高清在线观看视频在线观看| 国产成人精品婷婷| 欧美日韩国产mv在线观看视频 | 亚洲国产欧美人成| 男人和女人高潮做爰伦理| 又爽又黄a免费视频| 少妇高潮的动态图| 日韩欧美精品v在线| 狂野欧美激情性xxxx在线观看| 2021少妇久久久久久久久久久| 免费黄网站久久成人精品| 免费看光身美女| 深夜a级毛片| 久久久精品欧美日韩精品| 亚洲国产精品成人久久小说| 中文在线观看免费www的网站| 色综合色国产| 精华霜和精华液先用哪个| 美女xxoo啪啪120秒动态图| 狂野欧美白嫩少妇大欣赏| 亚洲在线自拍视频| 全区人妻精品视频| www.色视频.com| 91精品伊人久久大香线蕉| 如何舔出高潮| 日韩国内少妇激情av| 只有这里有精品99| 搡老乐熟女国产| 麻豆成人午夜福利视频| 国产色婷婷99| 大话2 男鬼变身卡| av又黄又爽大尺度在线免费看| 一本久久精品| 欧美 日韩 精品 国产| 欧美人与善性xxx| 亚洲精品,欧美精品| 国产亚洲最大av| 韩国av在线不卡| 午夜视频国产福利| 日韩一本色道免费dvd| 亚州av有码| 亚洲四区av| 免费少妇av软件| 日本-黄色视频高清免费观看| 国产 亚洲一区二区三区 | 午夜福利视频精品| 国产91av在线免费观看| .国产精品久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 能在线免费看毛片的网站| 久久久a久久爽久久v久久| 日本黄大片高清| 日本猛色少妇xxxxx猛交久久| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 久久韩国三级中文字幕| 在线观看人妻少妇| 1000部很黄的大片| 中国国产av一级| 国产一级毛片在线| 伦精品一区二区三区| 神马国产精品三级电影在线观看| 亚洲18禁久久av| 成人无遮挡网站| 国产黄色视频一区二区在线观看| 亚洲人成网站在线播| 国产 一区 欧美 日韩| 国产伦一二天堂av在线观看| 国产探花极品一区二区| 日韩欧美 国产精品| 欧美日韩精品成人综合77777| 爱豆传媒免费全集在线观看| 久久久精品欧美日韩精品| 毛片女人毛片| 久久草成人影院| 午夜视频国产福利| 国产精品久久久久久久电影| 亚洲成人中文字幕在线播放| 久久久久久国产a免费观看| 久久韩国三级中文字幕| 国产视频内射| 成年女人在线观看亚洲视频 | 精品一区二区三区人妻视频| 五月玫瑰六月丁香| 国产精品美女特级片免费视频播放器| 在线播放无遮挡| 国产一区二区在线观看日韩| 午夜免费激情av| 久久这里有精品视频免费| ponron亚洲| 天堂√8在线中文| 日本猛色少妇xxxxx猛交久久| 乱人视频在线观看| 国产亚洲精品久久久com| 国产中年淑女户外野战色| 亚洲不卡免费看| 久久久久久久久中文| av.在线天堂| 精华霜和精华液先用哪个| 淫秽高清视频在线观看| 男插女下体视频免费在线播放| 亚洲av电影不卡..在线观看| 日韩欧美一区视频在线观看 | 国产精品av视频在线免费观看| 成人漫画全彩无遮挡| 最近2019中文字幕mv第一页| 老师上课跳d突然被开到最大视频| 人人妻人人澡人人爽人人夜夜 | 日本欧美国产在线视频| 中文字幕av在线有码专区| 日韩中字成人| 亚洲精品国产av成人精品| 99久久人妻综合| 日韩视频在线欧美| 少妇的逼好多水| 五月天丁香电影| 国产精品美女特级片免费视频播放器| 看黄色毛片网站| 日韩av在线免费看完整版不卡| 狂野欧美激情性xxxx在线观看| 欧美xxxx性猛交bbbb| 午夜精品一区二区三区免费看| 国产午夜福利久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 嫩草影院精品99| 干丝袜人妻中文字幕| 日韩成人伦理影院| 亚洲精品自拍成人| 天堂√8在线中文| av国产久精品久网站免费入址| 韩国av在线不卡| 可以在线观看毛片的网站| 人体艺术视频欧美日本| 久久6这里有精品| 韩国av在线不卡| 日韩一区二区视频免费看| 一级毛片黄色毛片免费观看视频| av免费观看日本| 亚洲内射少妇av| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 国产av码专区亚洲av| 精品久久久久久电影网| 少妇裸体淫交视频免费看高清| 水蜜桃什么品种好| 国产精品麻豆人妻色哟哟久久 | 亚洲精品影视一区二区三区av| 能在线免费观看的黄片| 成人综合一区亚洲| 免费av不卡在线播放| 中文欧美无线码| 高清av免费在线| 婷婷色综合www| 亚洲人成网站在线播| 国产毛片a区久久久久| 亚洲欧美日韩无卡精品| 国产精品三级大全| 成人性生交大片免费视频hd| 亚洲av成人精品一区久久| 国产老妇女一区| 精品久久久久久电影网| 欧美成人一区二区免费高清观看| 亚洲精品一区蜜桃| 白带黄色成豆腐渣| 日韩大片免费观看网站| 国产单亲对白刺激| 永久网站在线| 69av精品久久久久久| 日韩电影二区| 精品国产三级普通话版| 在线免费观看不下载黄p国产| 黄色日韩在线| 最近视频中文字幕2019在线8| 中文字幕人妻熟人妻熟丝袜美| 久久99精品国语久久久| 禁无遮挡网站| 免费大片黄手机在线观看| 床上黄色一级片| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 18禁在线无遮挡免费观看视频| 国产在线男女| 美女黄网站色视频| 国产精品蜜桃在线观看| 日韩av不卡免费在线播放| 欧美成人一区二区免费高清观看| 麻豆成人av视频| 777米奇影视久久| 特大巨黑吊av在线直播| 久久久亚洲精品成人影院| 国产精品久久久久久av不卡| 欧美日本视频| 国产精品一及| 国产亚洲精品久久久com| 18+在线观看网站| 精品久久久久久久久亚洲| 久久精品久久精品一区二区三区| 成年女人在线观看亚洲视频 | 一区二区三区免费毛片| 高清视频免费观看一区二区 | 可以在线观看毛片的网站| 亚洲精品乱码久久久久久按摩| av在线天堂中文字幕| 晚上一个人看的免费电影| 亚洲电影在线观看av| 日日干狠狠操夜夜爽| 国产在线男女| 国产欧美另类精品又又久久亚洲欧美| 欧美极品一区二区三区四区| 日产精品乱码卡一卡2卡三| 国内精品宾馆在线| 亚洲经典国产精华液单| 免费大片18禁| 80岁老熟妇乱子伦牲交| 黑人高潮一二区| 欧美极品一区二区三区四区| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 国产高清不卡午夜福利| 最近中文字幕高清免费大全6| 天堂av国产一区二区熟女人妻| 久久久成人免费电影| 亚洲精品中文字幕在线视频 | 精品欧美国产一区二区三| 看十八女毛片水多多多| 综合色丁香网| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 精品久久久久久久久久久久久| 少妇人妻一区二区三区视频| 非洲黑人性xxxx精品又粗又长| 午夜福利在线观看免费完整高清在| 色播亚洲综合网| 国产精品不卡视频一区二区| 国产黄a三级三级三级人| 高清在线视频一区二区三区| 黄片wwwwww| 日韩一区二区三区影片| 国产爱豆传媒在线观看| 日本欧美国产在线视频| 国产老妇女一区| 久久6这里有精品| 久久久久免费精品人妻一区二区| 亚洲内射少妇av| 国产 一区 欧美 日韩| 又大又黄又爽视频免费| 免费看日本二区| 亚洲精品日韩在线中文字幕| 国产淫片久久久久久久久| 国产av码专区亚洲av| 亚洲aⅴ乱码一区二区在线播放| 欧美日本视频| 综合色av麻豆| 秋霞伦理黄片| 一级片'在线观看视频| 中文在线观看免费www的网站| 男人舔女人下体高潮全视频| 国产精品久久久久久久久免| 街头女战士在线观看网站| 日韩 亚洲 欧美在线| 日本黄大片高清| 亚洲va在线va天堂va国产| 免费无遮挡裸体视频| 一夜夜www| 久久久久免费精品人妻一区二区| 淫秽高清视频在线观看| a级一级毛片免费在线观看| 国产男人的电影天堂91| 国产一区有黄有色的免费视频 | 国产精品久久久久久久久免| 中文欧美无线码| 一级黄片播放器| 国内少妇人妻偷人精品xxx网站| 国产亚洲av嫩草精品影院| 免费av不卡在线播放| 日韩av在线大香蕉| 国产精品一区二区三区四区免费观看| 免费观看性生交大片5| av在线亚洲专区| 久久久久久久午夜电影| 99久国产av精品| 国内精品美女久久久久久| 午夜亚洲福利在线播放| 91狼人影院| 成人特级av手机在线观看| 成人一区二区视频在线观看| 777米奇影视久久| 真实男女啪啪啪动态图| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 综合色丁香网| 欧美高清性xxxxhd video| 免费观看a级毛片全部| 亚洲一区高清亚洲精品| 国产午夜精品久久久久久一区二区三区| 亚洲精品成人av观看孕妇| 国产永久视频网站| 成人av在线播放网站| 永久网站在线| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站 | 国产伦在线观看视频一区| 最近视频中文字幕2019在线8| 久久久久久久久中文| 色综合站精品国产| 国产成人午夜福利电影在线观看| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 男女国产视频网站| 亚洲精华国产精华液的使用体验| 乱人视频在线观看| 欧美人与善性xxx| 欧美一区二区亚洲| 99re6热这里在线精品视频| 免费大片18禁| 国产一区二区三区综合在线观看 | 亚洲av电影在线观看一区二区三区 | 黄色一级大片看看| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 一个人观看的视频www高清免费观看| 少妇高潮的动态图| 好男人视频免费观看在线| 夫妻性生交免费视频一级片| 一区二区三区乱码不卡18| 99视频精品全部免费 在线| 午夜福利在线观看吧| av天堂中文字幕网| 国产在视频线精品| 日本-黄色视频高清免费观看| 大香蕉97超碰在线| 免费av不卡在线播放| 日韩成人av中文字幕在线观看| 成人综合一区亚洲| 久久精品国产自在天天线| 国产美女午夜福利| 久久精品国产亚洲av涩爱| 精品一区二区免费观看| 能在线免费观看的黄片| 久久久久国产网址| 国产男人的电影天堂91| 又爽又黄无遮挡网站| 成年女人看的毛片在线观看| 91久久精品国产一区二区三区| 日本三级黄在线观看| 在线观看av片永久免费下载| 久久97久久精品| 午夜免费观看性视频| 免费观看a级毛片全部| 中文乱码字字幕精品一区二区三区 | 亚洲欧美日韩无卡精品| 国产亚洲精品久久久com| 国内精品一区二区在线观看| 国产成人福利小说| 日日啪夜夜爽| 高清日韩中文字幕在线| 国产免费又黄又爽又色| 丰满乱子伦码专区| 99re6热这里在线精品视频| 两个人视频免费观看高清| 免费无遮挡裸体视频| 国模一区二区三区四区视频| 国内精品美女久久久久久| 能在线免费观看的黄片| 人人妻人人澡欧美一区二区| 亚洲av不卡在线观看| 日本wwww免费看| 观看免费一级毛片| 麻豆国产97在线/欧美| 青春草视频在线免费观看| 色综合站精品国产| 熟妇人妻久久中文字幕3abv| av卡一久久| 欧美日韩一区二区视频在线观看视频在线 | 精品久久国产蜜桃| 成人美女网站在线观看视频| 99久久精品热视频| 99热全是精品| 插逼视频在线观看| 国产国拍精品亚洲av在线观看| 国产精品国产三级国产专区5o| 大话2 男鬼变身卡| 国产av国产精品国产| 80岁老熟妇乱子伦牲交| 亚洲综合色惰| 啦啦啦啦在线视频资源| 我的老师免费观看完整版| 国产精品久久久久久av不卡| 91精品一卡2卡3卡4卡| 国产男人的电影天堂91| 亚洲精品456在线播放app| 男的添女的下面高潮视频| 六月丁香七月| 尾随美女入室| 丰满乱子伦码专区| 极品少妇高潮喷水抽搐| av免费观看日本| 亚洲人与动物交配视频| 国产老妇女一区| 亚洲最大成人av| 特大巨黑吊av在线直播| 日本黄大片高清| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av一区综合| 久久精品熟女亚洲av麻豆精品 | 一级毛片我不卡| 亚洲av二区三区四区| 国产av国产精品国产| 高清视频免费观看一区二区 | 国产又色又爽无遮挡免| 成人亚洲欧美一区二区av| 国产av不卡久久| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 午夜精品国产一区二区电影 | 三级男女做爰猛烈吃奶摸视频| 两个人视频免费观看高清| 久久久久久久久久成人| 一级二级三级毛片免费看| 欧美日本视频| 搡老妇女老女人老熟妇| 亚洲,欧美,日韩| 久久99热这里只频精品6学生| 大陆偷拍与自拍| 国产精品一区www在线观看| 91aial.com中文字幕在线观看| av线在线观看网站| 天堂√8在线中文| 亚洲性久久影院| 好男人视频免费观看在线| 国产高潮美女av| 免费看av在线观看网站| 最近最新中文字幕免费大全7| 国产在线男女| 国产免费视频播放在线视频 | 超碰97精品在线观看| 色综合亚洲欧美另类图片| 日韩一区二区视频免费看| 日本爱情动作片www.在线观看| 九九在线视频观看精品| 久久久久性生活片| 国产成人91sexporn| 99久久精品一区二区三区| 搡老妇女老女人老熟妇| 午夜福利在线观看免费完整高清在| 人妻系列 视频| 色5月婷婷丁香| 国产成人a∨麻豆精品| 成人毛片60女人毛片免费| 干丝袜人妻中文字幕| 高清日韩中文字幕在线| 亚洲欧美成人精品一区二区| 欧美xxxx黑人xx丫x性爽| 精品人妻偷拍中文字幕| 99热这里只有精品一区| 色哟哟·www| 久久久久国产网址| 精品一区二区三区视频在线| 哪个播放器可以免费观看大片| 十八禁国产超污无遮挡网站| 国产精品女同一区二区软件| 国产精品久久久久久久电影| 成年免费大片在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇熟女aⅴ在线视频| 亚洲四区av| 欧美日韩在线观看h| 国产色爽女视频免费观看| av在线天堂中文字幕| 国产老妇女一区| 韩国av在线不卡| 亚洲综合色惰| 欧美日本视频| 婷婷色综合www| 亚洲乱码一区二区免费版| 国产大屁股一区二区在线视频| 嫩草影院精品99| 欧美日韩综合久久久久久| 51国产日韩欧美| 国产伦精品一区二区三区视频9| 国产激情偷乱视频一区二区| 天天躁日日操中文字幕| 亚洲精品视频女| 精品亚洲乱码少妇综合久久| 国产高清国产精品国产三级 | 国产成人精品福利久久| 亚洲欧美中文字幕日韩二区| 成人国产麻豆网| 国产在线男女| 欧美成人一区二区免费高清观看| 汤姆久久久久久久影院中文字幕 | 少妇丰满av| 国产欧美日韩精品一区二区| 国产精品久久久久久av不卡| 亚洲精品视频女| 国产乱人偷精品视频| 搡老乐熟女国产| 熟女电影av网| 国产单亲对白刺激| 午夜激情久久久久久久| 欧美不卡视频在线免费观看| 三级毛片av免费| 精品久久久久久电影网| 日日摸夜夜添夜夜添av毛片| 久久国内精品自在自线图片| av免费观看日本| 成人欧美大片| 好男人视频免费观看在线| 国产精品国产三级专区第一集| 国产大屁股一区二区在线视频| 免费大片18禁| 人妻夜夜爽99麻豆av| 中文字幕免费在线视频6| 色综合站精品国产| 人体艺术视频欧美日本| 婷婷色av中文字幕| 精品久久久久久久久av| 白带黄色成豆腐渣| 非洲黑人性xxxx精品又粗又长| 亚洲av.av天堂| 欧美+日韩+精品| 精品一区二区三区视频在线| 亚洲av成人精品一二三区| 97超碰精品成人国产| 高清欧美精品videossex| av免费观看日本| 国产欧美日韩精品一区二区| av国产久精品久网站免费入址| 日本与韩国留学比较| 黄色欧美视频在线观看| 男女视频在线观看网站免费| 国产亚洲5aaaaa淫片| 成人美女网站在线观看视频| 一二三四中文在线观看免费高清| 亚洲av中文av极速乱| 真实男女啪啪啪动态图| 亚洲欧美日韩卡通动漫| 神马国产精品三级电影在线观看| 免费黄频网站在线观看国产| 两个人视频免费观看高清| 男女边摸边吃奶| 观看免费一级毛片| 久久6这里有精品| 国产黄色免费在线视频| 一级爰片在线观看| 国精品久久久久久国模美| 男人舔奶头视频| 一级爰片在线观看| 午夜福利视频精品| 亚洲乱码一区二区免费版| 免费人成在线观看视频色| 国模一区二区三区四区视频| 国产一区二区三区av在线| 秋霞伦理黄片| 国产在视频线精品| 国产不卡一卡二| 在线播放无遮挡| 国产片特级美女逼逼视频| 精品久久久久久电影网| 亚洲在久久综合| 最近的中文字幕免费完整| 亚洲精品乱久久久久久| 伦理电影大哥的女人| 成年免费大片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩精品一区二区| 啦啦啦中文免费视频观看日本|