• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    16-QAM調(diào)制的雙偏振100-Gb/s碼分復(fù)用-正交頻分復(fù)用信號(hào)的產(chǎn)生和傳輸

    2014-08-16 08:28:10郭昌建戴龍玲黃凌晨劉柳
    關(guān)鍵詞:頻分中瑞偏振

    郭昌建,戴龍玲,黃凌晨,劉柳*

    (1.華南師范大學(xué)光及電磁波研究中心,廣州510006;2.浙江大學(xué)中瑞聯(lián)合光子研究中心,光及電磁波研究中心,杭州310058)

    1 Introduction

    As the demand for bandwidth continues to grow,short reach optical fiber systems operating at100 Gb/s will be required to increase the channel capacity.Optical orthogonal frequency division multiplexing(OFDM)[1]has attracted lots of interest due to its high spectral efficiency and robustness towards inter-symbol interference(ISI)caused by chromatic dispersion(CD)and polarization mode dispersion(PMD)[2-3].Experimental demonstrations have been reported for 100-Gb/s optical OFDM transmission using polarization-division-multiplexed higher order I/Qmodulation,coherent detection and digital signal processing[4-9].However,for short reach applications such as optical access networks and data-center networks,the cost for optical I/Qmodulation and coherent detection might be an issue[9].A more cost-effective solution would be to use intensity modulation with direct detection(IM-DD).

    Recently,a multicarrier code-division multiplexing(MC-CDM)over fiber system based on spatial coding and subcarrier multiplexing(SCM)was investigated in our previous works[10-11].The proposed MCCDM over fiber system has the following advantages[11]:Higher power budget due to coding gain,the potential of enhanced physical layer security since each user is assigned with a dedicated code,and flexible network management.Furthermore,the proposed MCCDM over fiber system can be naturally integrated with the OFDM concept by using an inverse fast Fourier transform(IFFT)operation after CDM coding,and using an FFT operation before decoding.The resulted CDM-OFDM over fiber system offers an additional degree of freedom compared with conventional optical OFDM systems,since each data symbol is spread over several subcarriers according to the assigned code in frequency domain.Therefore,the total capacity of the channel can be adjusted dynamically by changing the number of users/codes,without the need for altering the hardware infrastructure.

    In this paper,itwas experimentally demonstrated about the generation and detection of a 100-Gb/s CDM-OFDM signal using polarization-division multiplexing(PDM),intensity modulation,optical vestigial sideband(VSB)filtering[12]and pre-amplified direct detection.An arbitrary waveform generator with a sample rate of 25 GS/s is used to generate the real valued CDM-OFDM signals.Polarization-division multiplexing is done by using a pair of polarization beam splitter and a variable optical delay line.Transmission over 24.4 km of standard single mode fiber(SSMF)is also demonstrated.The introduction of optical VSB filtering and its impact on the system performance after 24.4 km SSMF transmission ware numerically investigated.The results show that,without optical VSB filtering,the CDM-OFDM signals have a larger chromatic dispersion tolerance and higher receiver sensitivity than conventional OFDM signals.Furthermore,when fully loaded,the CDM-OFDM signal has a similar BER performance as that of a conventional OFDM signal,both in back-toback configuration and after 24.4 km of SSMF transmission.The BER performance of the optical CDM-OFDM signals versus the number of active users is also investigated.

    2 Experimental setup

    Figure 1 shows the experimental setup of the CDM-OFDM over fiber system.In this experiment,the OFDM signals are generated by an arbitrary waveform generator(Micram AWG-34G).For each of the M users transmitted,16-QAM modulation was used for signal mapping.The modulated complex data symbols xi,i=1,2,…,M,were then spread over N(N=256≥M)subcarriers using Walsh codes.The spectrum spreading(coding)process can be expressed as where x=[x1,x2,…,xM]Tis the vector of data symbols,y=[y1,y2,…,yN]Tis the vector of coded signals,and H is the Walsh code matrix of size N ×M(M≤N).Note that for a code length of N,a set of N Walsh codes can be generated,among which M codes were selected random ly for coding.The coded signal vector y was then placed to the 2nd-257thsubcarriers for a 544-point IFFT operation.The 1st,258th-272ndsubcarriers were zero padded.In order that the OFDM signals after IFFT can be real-valued,the complex conjugates of the 1st-272ndsubcarriers were placed to the 273th-544thsubcarriers,respectively.After IFFT,the signals were parallel-to-serial converted,and then sent to a digital to analog convertor(DAC)with a resolution of6 bits and a sample rate of25 GS/s.The net line rate is94.12 Gb/s.The electrical signals after the DAC were then amplified(SHF 807)and sent to a Mach-Zehnder modulator(Fujitsu FTM7938)for double side-band(DSB)up-conversion.A DFB laser with a centerwavelength of1 549.9 nm were used here as the light source.For each transmitted CDM-OFDM frame,the first symbol was for timing synchronization,the next30 symbols were used as training symbols for channel estimation,and the last 1 000 symbols were effective payloads.It should be noted that since chromatic dispersion only causes frequency selective power fading rather than phase rotation for different frequency components when DSB up-conversion is used,the subcarriers of the received CDM-OFDM signals after photo detection will still remain aligned.Therefore,no Cyclic Prefix(CP)was used in this experiment.Optical VSB filtering was then applied to the modulated signals by using a bandwidth and wavelength tunable optical band pass filter(OBPF).The optical signals were then split into two paths using a polarizing beam splitter(PBS),delayed with respect to each other with an optical delay line placed on one path,and then combined using a polarizing beam combiner(PBC)for polariza-tion-division multiplexing(PDM).Polarization controllers(PC)were used to align X and Y polarization.The PDM optical signals were then sent in 24.4 km of standard single mode fiber(SSMF).At the receiver,a variable optical attenuator(VOA)was used to change the received optical power prior to a pre-amplified receiver which consists of an erbium doped fiber amplifier(EDFA)with a noise figure of about 4.3 dB(Amonics AEDFA-PA-30)and an optical band pass filter(OBPF)with 0.8 nm bandwidth.The optical power of the received signals was measured to be-4 dBm.The pre-amplified optical signals were then polarization demultiplexed using a PC and a PBS and sent to two photo detectors(PD)with a bandwidth of 43 GHz.In practical applications,polarization demultiplexing can be realized by automatic polarization tracking techniques[13].The electrical signals after PD were sampled by a 100 GS/s real time oscilloscope(Tektronix DPO73324D)and processed off-line.The off-line DSP procedures include timing synchronization,channel estimation,serial-to-parallel conversion,F(xiàn)FT,dispreading(decoding),demodulation,and error counting.

    Figure 1 Experimental setup

    3 Results and discussion

    First,the impact of the VSB filtering on the system performance via simulation was investigated.Both single-polarized CDM-OFDM and OFDM signals were considered.For each run,100 symbols of payloads were tested.The results were then averaged over 100 runs.The resolutions for the DAC and ADC were set to 5 and 6 bits,respectively,according to the effective number of bits(ENOB)of current state-of-the-art DAC/ADC devices[14-15].The optical BPF used here was modeled using a 4-th order super-Gaussian filter with a 3-dB bandwidth of 100 GHz.The center frequency of the optical BPF was adjusted so that amini mum BER can be obtained.Other simulation parameters were the same as that used in our experiment.As for the case without VSB filtering,the receiver sensitivity at FEC limit(BER=3.8E-3)as a function of the fiber length was investigated,as shown in Figure 2A.One can see that the CDM-OFDM signals have a better receiver sensitivity that OFDM signals,especially when the fiber length is larger than 15 km.An improvement of about 6 dB can be obtained by using CDM-OFDM signals compared with conventional OFDM signals after being transmitted through 24 km of SSMF.This improvement can also be observed in the simulated as well as the measured curves in Figure 2D.Figure 2B shows the BER as a function of the center frequency of the optical BPF relative to the optical carrier.The received optical power before the pre-amplifier was set to-12 dBm.One can see that for both CDM-OFDM and OFDM signals,the minimum BER can be obtained when the center frequency of the BPF was tuned by 53 GHz away from the carrier frequency.The optical spectra of the signals before and after VSB filtering are shown in Figure 2B.The inset of Figure 2C shows the complete spectrum profile of the BPF.The BER performance of both CDM-OFDM and OFDM signals after 24.4 km of SSMF transmission as a function of the received optical power before the pre-amplifier is shown in Figure 2D.Both measured and simulated curves are given.The center frequency of the BPF used for VSB filtering was set to 57 GHz relative to the optical carrier according to Figure 2B.Conclusions can be drawn from Figure 2A and Figure 2D that:1)when no VSB filtering is used,CDM-OFDM signals have a better BER performance compared with OFDM signals after fiber transmission.This can be partially attributed to the frequency diversity gained by using spectrum spreading;2)By using VSB filtering,significant improvement on the BER performance can be obtained for both CDM-OFDM and OFDM signals,since VSB filtering helps to reduce the frequency selective power fading of the DSB modulated signals induced by chromatic dispersion;3)The BER performance of the CDMOFDM and OFDM signals with optical VSB filtering is roughly the same,except when the received optical power ismore than-10 dBm,where the CDM-OFDM signals exhibits an error floor.The reason for such an error floor may be attributed to the VSB filtering and excessive quantization noise,which causes unorthogonality between CDM users,resulting in additional multiple access interference(MAI).

    Figure 2 (A)Simulated receiver sensitivity at FEC limit(BER=3.8E-3)vs.the fiber length.(B)Simulated BER as a function of the center frequency of the VSB filter.(C)Optical spectrum of the CDM-OFDM signals before and after VSB filtering.(D)BER vs.received optical power of CDM-OFDM and OFDM signals before and after VSB filtering

    Second,the coding gain of the CDM-OFDM over fiber system with optical VSB filtering was investigated.Figure 3 shows the simulated(blue lines)and measured(red lines)BER and results versus the number of active users.For the experimental results,the received optical power was set to-6 dBm for both back-to-back and 24.4 km transmission cases;as for the simulated results,the received optical power was set to-12 dBm.One can see from Figure 3 that as the number of active users decreases,the BER drops drastically.Therefore,the system capacity can be dynamically arranged by changing the number of active users according to the channel SNR,with out modifying the system architecture.

    Figure 3 (A)Simulated(blue lines)and Measured(red lines)BER vs.number of active users in the back-to-back configuration(rectangular dots)and after 24.4 km transmission(circular dots).(B)Constellations of the received 16-QAM CDMOFDM signals after decoding

    Finally,the BER performance of the full loaded 100 Gb/s CDM-OFDM signals with optical VSB filtering in both back-to-back and 24.4 km SSMF transmission cases were researched using the experiment setup described above.The performance comparation of the single polarization CDM-OFDM over fiber system with that of the conventional directed detection optical OFDM system is shown in Figure 4A.The parameters used for both systems are the same.The measured optical spectra of the received CDM-OFDM signals after VSB filtering are depicted in the inset Figure 4A.One can see that for both back-to-back and 24.4 km transmission cases,the BER performance with and without CDM coding are roughly the same due to the employment of VSB filtering,with a less than 0.3 dB penalty at FEC limit when CDM coding is used.The measured results have a good agreement with the simulated curves shown in Figure 2D,in that the CDM-OFDM signals have a larger error floor compared with OFDM signals.

    The BER results for polarization-division multiplexed(PDM)CDM-OFDM over fiber systems are shown in Figure 4B.It can be seen that in the back-toback configuration,at the FEC limit,the received optical power is-17.4 dBm for single polarization signals(blue circular dotted lines),and-14.3 dBm for dual polarization signals(red circular dotted lines).A power penalty of about3.1 dB is observed.After 24.4 km SSMF transmission,the power penalty of the dual polarization signals(red rectangular dotted lines)at FEC limit are around 3.8 dB,compared with that of single polarization signals(blue rectangular dotted lines).It can also be observed that compared with the BER of back-to-back cases,both single and dual polarization CDM-OFDM signals after 24.4 km SSMF transmission have a penalty of around 4.8 dB at FEC limit.The loss margin for the PDM CDM-OFDM signals after 24.4 km of SSMF transmission is around 5.4 dB,as themaximum optical power obtained in the receiver is-4 dBm.

    4 Conclusion

    It was investigated and for the first time experimentally demonstrated a CDM-OFDM over fiber system based onmulti-carrier code-division-multiplexing(MCCDM)and direct detection which supports the transmission of 16-QAM modulated,100-Gb/s PDM CDMOFDM signals over 24.4 km of SSMF.It was shown through simulation as well as experiment that without optical VSB filtering,CDM-OFDM signals exhibit a larger chromatic dispersion tolerance than conventional OFDM signals.Therefore,optical CDM-OFDM is a more favorable scheme compared with optical OFDM in short reach applications.When optical VSB filtering is applied,the CDM-OFDM signal has a similar BER performance as that of a conventional OFDM signal,both in back-to-back configuration and after 24.4 km of SSMF transmission.The coding gain of the CDMOFDM signals was also investigated.

    [1]Shieh W,Djordjevic I.OFDM for optical communications[M].Pittsburgh:Academic Press,2009.

    [2]Lowery A J,Armstrong J.Orthogonal-frequency-division multiplexing for optical dispersion compensation[C]∥Optical fiber communication conference. California,USA,2007.

    [3]Coura D JC,Silva JA L,Segatto M E V.A band-width scalable OFDM passive optical network for future access network[J].Photonic Network Communications,2009,18(3):409-416.

    [4]Schmidt B J,Zan Z,Du L B,et al.100 Gbit/s transi mssion using single-band direct-detection optical OFDM[C]∥Optical fiber communication conference.California,USA,2009.

    [5]Giddings R P,Jin X Q,Hugues-Salas E,et al.Experimental demonstration of a record high 11.25Gb/s realtime optical OFDM transceiver supporting 25 km SMF end-to-end transmission in simple IMDD systems[J].Optics Express,2010,18(6):5541-5555.

    [6]Shieh W,Athaudage C.Coherent optical orthogonal frequency division multiplexing[J].Electronics Letters,2006,42(10):587-588.

    [7]Jansen SL,Morita I,Schenk TCW,etal.121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1 000 km of SSMF[J].Journal of Lightwave Technology,2009,27(3):177-188.

    [8]Shieh W,Yang Q,Ma Y.107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing[J].Optics Express,2008,16(9):6378-6386.

    [9]Karar A S,Cartledge JC.Generation and detection of a 112-Gb/s dual polarization signal using a directly modulated laser and half-cycle 16-QAM Nyquist-subcarrier-modulation[C]∥European conference and exhibition on optical communication.Amsterdam,Netherlands,2012.

    [10]Guo C,Luo C,He S.Electrically processed OCDMA system based on spatial coding and subcarrier multiplexing[C]∥Photonics in switching.Monterey,California,USA,2010.

    [11]Guo C,Huang L,He S.Demonstration of 1 Gb/s×15-user CDM over WDM-PON using electrical spatial coding and subcarrier multiplexing[J].Photonics Technology Letters,2011,23(14):953-955.

    [12]Kim H,Gnauck A H.10Gbit/s177 km transmission over conventional singlemode fiber using a vestigial side-band modulation format[J].Electronics Letters,2001,37(25):1533-1534.

    [13]Cai J,Sinkin O V,Davidson CR,et al.40 Gb/s transmission using polarization division multiplexing(PDM)RZ-DBPSK with automatic polarization tracking[C]∥Optical fiber communication conference/National fiber optic engineers conference.San Diego,California,USA,2008.

    [14]Greshishchev YM,Pollex D,Wang SC,etal.A 56GS/S 6b DAC in 65nm CMOSwith 256 ×6b memory[C]∥Solid-state circuits conference digest of technical papers(ISSCC).San Francisco,USA,2011.

    [15]Ferenci D,Grozing M,Berroth M,etal.A 25 GHz analog demultiplexer with a novel track and hold circuit for a 50 GS/s A/D-conversion system in InPDHBT Technology[C]∥Microwave symposium digest(MTT).Montreal,QC,Canada,2012.

    猜你喜歡
    頻分中瑞偏振
    基于正交頻分復(fù)用-多進(jìn)制正交幅度調(diào)制的DC-DC變換器能量信息一體化技術(shù)
    偏振糾纏雙光子態(tài)的糾纏特性分析
    電子制作(2019年12期)2019-07-16 08:45:20
    基于LabVIEW的偏振調(diào)制激光測(cè)距測(cè)量控制系統(tǒng)
    瑞士建筑大師出席 首屆中瑞建筑對(duì)話
    從“中瑞對(duì)話”中尋求發(fā)展機(jī)遇
    中瑞農(nóng)場(chǎng)土地利用及主要驅(qū)動(dòng)力因素分析
    城市地理(2017年8期)2017-11-02 13:28:27
    淺析中瑞飲食文化差異
    偏振旋轉(zhuǎn)效應(yīng)在全光緩存器中的應(yīng)用與實(shí)現(xiàn)
    直接檢測(cè)的光正交頻分復(fù)用信號(hào)光纖傳輸系統(tǒng)實(shí)驗(yàn)研究
    正交頻分復(fù)用系統(tǒng)中的載波頻偏估計(jì)方案
    国产美女午夜福利| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品sss在线观看| 99久久99久久久精品蜜桃| 成人一区二区视频在线观看| 久久午夜亚洲精品久久| 男女下面进入的视频免费午夜| h日本视频在线播放| 亚洲av第一区精品v没综合| 三级国产精品欧美在线观看 | 两人在一起打扑克的视频| 在线永久观看黄色视频| 亚洲欧洲精品一区二区精品久久久| 久久精品综合一区二区三区| 亚洲成人久久性| 国产成人欧美在线观看| 欧美黑人巨大hd| 久久欧美精品欧美久久欧美| 国产精品永久免费网站| 性色av乱码一区二区三区2| 国产视频一区二区在线看| 国产成+人综合+亚洲专区| 美女高潮的动态| 黄片大片在线免费观看| 国产高清激情床上av| 亚洲国产看品久久| 熟女电影av网| 一本综合久久免费| 看免费av毛片| 国产激情久久老熟女| 观看美女的网站| 亚洲美女黄片视频| 亚洲中文日韩欧美视频| 欧美中文综合在线视频| tocl精华| 亚洲精品久久国产高清桃花| 99热只有精品国产| av中文乱码字幕在线| 亚洲 欧美 日韩 在线 免费| 国产精品乱码一区二三区的特点| 男女那种视频在线观看| 校园春色视频在线观看| 麻豆成人午夜福利视频| 国产亚洲精品久久久com| 狠狠狠狠99中文字幕| 深夜精品福利| 欧美在线黄色| 亚洲中文字幕一区二区三区有码在线看 | 精品人妻1区二区| 亚洲国产高清在线一区二区三| 国产伦一二天堂av在线观看| 香蕉国产在线看| 老汉色av国产亚洲站长工具| 亚洲真实伦在线观看| 亚洲欧美日韩东京热| 精品一区二区三区四区五区乱码| 久久亚洲精品不卡| 99久久久亚洲精品蜜臀av| 欧美绝顶高潮抽搐喷水| 久久热在线av| 国产精品久久电影中文字幕| 成人鲁丝片一二三区免费| 91在线精品国自产拍蜜月 | 一进一出抽搐动态| 听说在线观看完整版免费高清| 伊人久久大香线蕉亚洲五| 国产成人精品久久二区二区免费| 国内精品久久久久久久电影| 国产乱人伦免费视频| 午夜精品久久久久久毛片777| 五月玫瑰六月丁香| 麻豆成人av在线观看| 中文在线观看免费www的网站| 国模一区二区三区四区视频 | 激情在线观看视频在线高清| www.熟女人妻精品国产| 国产精品女同一区二区软件 | 久久久久国内视频| 深夜精品福利| 不卡一级毛片| 亚洲天堂国产精品一区在线| 国产亚洲精品久久久com| 在线永久观看黄色视频| 欧美不卡视频在线免费观看| 校园春色视频在线观看| 一个人免费在线观看电影 | 亚洲狠狠婷婷综合久久图片| 两个人的视频大全免费| 国产精品爽爽va在线观看网站| 亚洲av成人精品一区久久| 最近最新免费中文字幕在线| 亚洲精品色激情综合| 成年版毛片免费区| 亚洲av片天天在线观看| 久久午夜亚洲精品久久| 草草在线视频免费看| 男女那种视频在线观看| 一夜夜www| 国产不卡一卡二| 成人国产综合亚洲| 久久久久性生活片| 国模一区二区三区四区视频 | 国产一区二区三区视频了| 麻豆国产97在线/欧美| 欧美日韩精品网址| 特大巨黑吊av在线直播| www日本黄色视频网| 麻豆成人av在线观看| 日韩欧美国产在线观看| 熟女人妻精品中文字幕| 久久精品综合一区二区三区| 黄色日韩在线| 99在线人妻在线中文字幕| 日韩欧美三级三区| 一个人观看的视频www高清免费观看 | 男女午夜视频在线观看| 色综合亚洲欧美另类图片| 午夜福利高清视频| 国产欧美日韩一区二区三| 久久久久九九精品影院| 99热这里只有精品一区 | 国产午夜福利久久久久久| 亚洲av免费在线观看| 欧美性猛交╳xxx乱大交人| 性色avwww在线观看| 欧美中文日本在线观看视频| 天堂av国产一区二区熟女人妻| 欧美绝顶高潮抽搐喷水| 国产伦在线观看视频一区| 中文在线观看免费www的网站| 午夜久久久久精精品| 国产高清三级在线| 亚洲国产精品合色在线| 久久精品国产清高在天天线| 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 在线观看一区二区三区| 国产淫片久久久久久久久 | 搡老熟女国产l中国老女人| 一本精品99久久精品77| 亚洲午夜精品一区,二区,三区| 久久精品aⅴ一区二区三区四区| 亚洲乱码一区二区免费版| 999久久久精品免费观看国产| 精品一区二区三区av网在线观看| 亚洲熟女毛片儿| 国产精品日韩av在线免费观看| 又爽又黄无遮挡网站| 中文字幕av在线有码专区| 久久午夜综合久久蜜桃| 国产三级中文精品| 长腿黑丝高跟| 日本a在线网址| 99国产精品一区二区蜜桃av| 欧美黄色淫秽网站| 亚洲精品456在线播放app | 日本一二三区视频观看| 特大巨黑吊av在线直播| 又黄又爽又免费观看的视频| 日韩免费av在线播放| 91av网站免费观看| 午夜福利视频1000在线观看| 日韩大尺度精品在线看网址| 亚洲熟女毛片儿| 亚洲 国产 在线| 十八禁网站免费在线| 一个人观看的视频www高清免费观看 | 婷婷六月久久综合丁香| 岛国在线免费视频观看| 美女被艹到高潮喷水动态| 国产精品亚洲一级av第二区| 操出白浆在线播放| 中文字幕久久专区| 国产真人三级小视频在线观看| 又大又爽又粗| 亚洲专区字幕在线| 国产高清视频在线观看网站| 亚洲av电影不卡..在线观看| 日韩欧美 国产精品| 性色av乱码一区二区三区2| 久久午夜综合久久蜜桃| 最好的美女福利视频网| 五月伊人婷婷丁香| 在线观看美女被高潮喷水网站 | 精品国产亚洲在线| 精品久久久久久,| 成人无遮挡网站| 美女扒开内裤让男人捅视频| 中文字幕最新亚洲高清| 黄色 视频免费看| 亚洲18禁久久av| 国内毛片毛片毛片毛片毛片| 国产单亲对白刺激| 国产高潮美女av| 国产一区二区在线av高清观看| 一级毛片高清免费大全| 日本熟妇午夜| 久久久久久久午夜电影| 久久国产精品人妻蜜桃| 啦啦啦免费观看视频1| 欧美色视频一区免费| 香蕉久久夜色| 国产三级黄色录像| 国产aⅴ精品一区二区三区波| 久久久久久九九精品二区国产| 国产精品av久久久久免费| 日本在线视频免费播放| 少妇人妻一区二区三区视频| 国产成人一区二区三区免费视频网站| 全区人妻精品视频| 90打野战视频偷拍视频| 99热这里只有是精品50| 在线观看免费视频日本深夜| 天堂√8在线中文| 亚洲av电影不卡..在线观看| 欧美日本亚洲视频在线播放| 后天国语完整版免费观看| 天堂影院成人在线观看| 国产精品影院久久| 嫁个100分男人电影在线观看| 国产高清videossex| 亚洲真实伦在线观看| 久久精品国产清高在天天线| 欧美3d第一页| 国产成人精品久久二区二区免费| 无限看片的www在线观看| 天堂动漫精品| 人妻久久中文字幕网| 成人亚洲精品av一区二区| 亚洲色图av天堂| 1000部很黄的大片| 18禁黄网站禁片免费观看直播| 美女免费视频网站| 免费在线观看成人毛片| 中文资源天堂在线| 午夜日韩欧美国产| 欧美中文日本在线观看视频| 黄色视频,在线免费观看| 国产精品久久久久久人妻精品电影| www.www免费av| 精品欧美国产一区二区三| 色综合婷婷激情| 国产私拍福利视频在线观看| 日本黄色片子视频| 真人做人爱边吃奶动态| 国产一区二区在线观看日韩 | 国产欧美日韩精品亚洲av| 精品久久久久久久末码| 国产人伦9x9x在线观看| 在线观看66精品国产| 老汉色∧v一级毛片| 一个人免费在线观看电影 | 亚洲午夜理论影院| 国产男靠女视频免费网站| avwww免费| 免费av毛片视频| 91av网站免费观看| 欧美3d第一页| 国产精品乱码一区二三区的特点| 国产爱豆传媒在线观看| 国产精品一区二区三区四区久久| 精品熟女少妇八av免费久了| 日本三级黄在线观看| 国产精品99久久久久久久久| 日韩欧美精品v在线| 九九热线精品视视频播放| 国产精品精品国产色婷婷| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| 中文字幕人妻丝袜一区二区| 久9热在线精品视频| 观看美女的网站| 日本三级黄在线观看| 国产成人精品久久二区二区免费| 窝窝影院91人妻| 在线观看免费视频日本深夜| 亚洲精品在线美女| 国产精品九九99| 成人午夜高清在线视频| 国产精品美女特级片免费视频播放器 | www.熟女人妻精品国产| 免费av不卡在线播放| 丰满人妻一区二区三区视频av | 一个人看的www免费观看视频| 淫秽高清视频在线观看| 国产伦精品一区二区三区四那| 99re在线观看精品视频| av女优亚洲男人天堂 | 欧美日韩一级在线毛片| 日本黄大片高清| 麻豆av在线久日| 亚洲av成人一区二区三| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕久久专区| 中文字幕人妻丝袜一区二区| 日本一本二区三区精品| 在线免费观看的www视频| 精品99又大又爽又粗少妇毛片 | 最新中文字幕久久久久 | 不卡一级毛片| 国产亚洲av嫩草精品影院| 精品福利观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲av嫩草精品影院| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 老司机深夜福利视频在线观看| 综合色av麻豆| 国产激情偷乱视频一区二区| 国产黄a三级三级三级人| 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| 无人区码免费观看不卡| 中文字幕av在线有码专区| АⅤ资源中文在线天堂| 黑人欧美特级aaaaaa片| 在线十欧美十亚洲十日本专区| 成人特级av手机在线观看| 狂野欧美激情性xxxx| 麻豆av在线久日| 欧美不卡视频在线免费观看| 一级毛片高清免费大全| 国内精品美女久久久久久| 中国美女看黄片| 免费看美女性在线毛片视频| 国产亚洲精品av在线| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 久久这里只有精品19| 国产高清视频在线播放一区| 日韩av在线大香蕉| 一个人看的www免费观看视频| 亚洲精品色激情综合| 中文字幕最新亚洲高清| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 亚洲午夜理论影院| 脱女人内裤的视频| 日韩欧美精品v在线| a在线观看视频网站| 老司机在亚洲福利影院| 国产成人福利小说| 亚洲av成人精品一区久久| 午夜免费成人在线视频| 天天添夜夜摸| 日本一本二区三区精品| ponron亚洲| 一级作爱视频免费观看| 欧美不卡视频在线免费观看| cao死你这个sao货| 九色国产91popny在线| 色综合亚洲欧美另类图片| 成人性生交大片免费视频hd| 欧美激情久久久久久爽电影| 91久久精品国产一区二区成人 | 午夜免费观看网址| 久久午夜综合久久蜜桃| 欧美黄色片欧美黄色片| 久久中文字幕人妻熟女| 午夜成年电影在线免费观看| 国产伦精品一区二区三区视频9 | 国产精品久久久人人做人人爽| 欧美成人性av电影在线观看| 又黄又爽又免费观看的视频| 最近最新免费中文字幕在线| 亚洲人成网站在线播放欧美日韩| 亚洲成av人片免费观看| 人妻夜夜爽99麻豆av| 老汉色av国产亚洲站长工具| 99热这里只有精品一区 | 国产精品日韩av在线免费观看| 一本精品99久久精品77| 亚洲美女黄片视频| 国产真实乱freesex| 日韩中文字幕欧美一区二区| 叶爱在线成人免费视频播放| 国产成人av激情在线播放| 99re在线观看精品视频| 亚洲人成伊人成综合网2020| 国产午夜福利久久久久久| 99久久无色码亚洲精品果冻| 日日夜夜操网爽| 国产91精品成人一区二区三区| 美女扒开内裤让男人捅视频| 国产三级在线视频| 国产成人aa在线观看| 又紧又爽又黄一区二区| 亚洲性夜色夜夜综合| 欧美最黄视频在线播放免费| 国产蜜桃级精品一区二区三区| 少妇的丰满在线观看| 午夜福利在线在线| 成人午夜高清在线视频| 欧美乱码精品一区二区三区| 床上黄色一级片| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 成人av在线播放网站| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 真人做人爱边吃奶动态| 亚洲18禁久久av| 精品久久久久久久久久久久久| 少妇丰满av| 国产69精品久久久久777片 | 久99久视频精品免费| 亚洲电影在线观看av| 国产精华一区二区三区| 大型黄色视频在线免费观看| 色视频www国产| 午夜福利18| 性欧美人与动物交配| 午夜福利欧美成人| 黄色丝袜av网址大全| 亚洲av免费在线观看| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密| 色综合婷婷激情| 极品教师在线免费播放| 少妇熟女aⅴ在线视频| 日韩av在线大香蕉| 亚洲熟女毛片儿| 麻豆成人午夜福利视频| 日韩欧美国产一区二区入口| 久久草成人影院| 97人妻精品一区二区三区麻豆| 亚洲欧美精品综合久久99| 婷婷六月久久综合丁香| 色尼玛亚洲综合影院| 1024香蕉在线观看| 免费一级毛片在线播放高清视频| 天天添夜夜摸| 欧美日韩精品网址| 亚洲欧美日韩高清专用| 99国产极品粉嫩在线观看| 精品久久蜜臀av无| 日韩欧美一区二区三区在线观看| 久久久久久人人人人人| 好男人在线观看高清免费视频| 好男人电影高清在线观看| 免费在线观看成人毛片| 男人舔女人下体高潮全视频| 日本一本二区三区精品| 国产精品爽爽va在线观看网站| 老司机深夜福利视频在线观看| 日本 欧美在线| 中文亚洲av片在线观看爽| 好男人在线观看高清免费视频| www.自偷自拍.com| 国产精品亚洲av一区麻豆| 国产主播在线观看一区二区| 人妻丰满熟妇av一区二区三区| 哪里可以看免费的av片| 国产亚洲精品av在线| 亚洲欧美日韩卡通动漫| 熟女电影av网| x7x7x7水蜜桃| 97碰自拍视频| 免费在线观看成人毛片| 国产三级中文精品| 热99re8久久精品国产| 人妻夜夜爽99麻豆av| 两个人视频免费观看高清| 亚洲av中文字字幕乱码综合| 99精品欧美一区二区三区四区| 免费看日本二区| 亚洲乱码一区二区免费版| 午夜精品在线福利| 999精品在线视频| tocl精华| 亚洲一区二区三区色噜噜| 免费搜索国产男女视频| 精品一区二区三区av网在线观看| 久久中文看片网| 制服人妻中文乱码| 1024香蕉在线观看| 欧美大码av| 日韩 欧美 亚洲 中文字幕| 老熟妇仑乱视频hdxx| 日韩av在线大香蕉| 久久国产精品影院| 丝袜人妻中文字幕| 丁香六月欧美| 露出奶头的视频| 亚洲av片天天在线观看| 美女午夜性视频免费| 欧美乱妇无乱码| 日本撒尿小便嘘嘘汇集6| 日韩精品中文字幕看吧| 啦啦啦免费观看视频1| 亚洲色图 男人天堂 中文字幕| 国产午夜福利久久久久久| 露出奶头的视频| 午夜亚洲福利在线播放| 精品免费久久久久久久清纯| 美女被艹到高潮喷水动态| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 国产一区二区三区视频了| 一夜夜www| 亚洲欧美日韩东京热| 女生性感内裤真人,穿戴方法视频| 在线观看舔阴道视频| 九色成人免费人妻av| 日本熟妇午夜| 亚洲av熟女| 国产极品精品免费视频能看的| e午夜精品久久久久久久| 精品国产亚洲在线| 国产69精品久久久久777片 | 男人的好看免费观看在线视频| 国产高清videossex| 国产一区二区在线av高清观看| 制服人妻中文乱码| 极品教师在线免费播放| 中文字幕高清在线视频| 国产精品 国内视频| 人人妻人人看人人澡| 免费高清视频大片| 亚洲 欧美一区二区三区| 午夜影院日韩av| 久久人妻av系列| 国产精品久久久人人做人人爽| 欧美色欧美亚洲另类二区| 在线永久观看黄色视频| 成人18禁在线播放| 97超视频在线观看视频| 久久久久久久久免费视频了| 国产黄a三级三级三级人| 久久久久国产精品人妻aⅴ院| 国产高清有码在线观看视频| 欧美激情久久久久久爽电影| 久99久视频精品免费| 中文资源天堂在线| 亚洲国产精品成人综合色| 国产爱豆传媒在线观看| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 亚洲av成人精品一区久久| 观看美女的网站| 国产99白浆流出| 99在线视频只有这里精品首页| 啦啦啦免费观看视频1| 天堂网av新在线| 长腿黑丝高跟| 老司机在亚洲福利影院| 久久久久久久精品吃奶| 国产乱人视频| 久久久久精品国产欧美久久久| 国产精品,欧美在线| 国内精品久久久久精免费| 亚洲精品色激情综合| 日本熟妇午夜| 99久久无色码亚洲精品果冻| 亚洲av成人不卡在线观看播放网| 18禁黄网站禁片午夜丰满| 热99在线观看视频| 99久久精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 亚洲精品一卡2卡三卡4卡5卡| 亚洲黑人精品在线| 精品电影一区二区在线| 法律面前人人平等表现在哪些方面| 热99在线观看视频| 欧美高清成人免费视频www| 久久久久久久午夜电影| 小说图片视频综合网站| 首页视频小说图片口味搜索| 欧美av亚洲av综合av国产av| 欧美最黄视频在线播放免费| 天天躁日日操中文字幕| 亚洲中文字幕日韩| 久久久国产成人精品二区| 久久婷婷人人爽人人干人人爱| 高清在线国产一区| 日韩欧美免费精品| 欧美乱色亚洲激情| 亚洲欧美日韩高清专用| 热99在线观看视频| xxx96com| 亚洲aⅴ乱码一区二区在线播放| 日本黄大片高清| 操出白浆在线播放| 91麻豆精品激情在线观看国产| 级片在线观看| 免费大片18禁| 国产高清视频在线播放一区| 法律面前人人平等表现在哪些方面| 亚洲美女视频黄频| 国产亚洲精品一区二区www| 国产亚洲av嫩草精品影院| 麻豆久久精品国产亚洲av| 亚洲国产精品久久男人天堂| 最近视频中文字幕2019在线8| 欧美乱码精品一区二区三区| 真人一进一出gif抽搐免费| 国产一区在线观看成人免费| av黄色大香蕉| 91在线精品国自产拍蜜月 | 国产精品久久视频播放| 一级黄色大片毛片| 成年女人毛片免费观看观看9| 成年女人永久免费观看视频| 久久精品亚洲精品国产色婷小说| 亚洲人成电影免费在线| 热99在线观看视频| 国产精品一区二区免费欧美| 综合色av麻豆| 人妻丰满熟妇av一区二区三区| 亚洲精华国产精华精| 亚洲午夜精品一区,二区,三区| 久久久久性生活片| 哪里可以看免费的av片| 波多野结衣巨乳人妻|