• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bicriteria Scheduling on a Series-Batching Machine to Minimize Makespan and Total Weighted Completion Time with Equal Length Job

    2014-07-31 22:37:22HEChengLINHaoDOUJunmeiMUYundong

    HE Cheng,LIN Hao,DOU Jun-mei,MU Yun-dong

    (School of Science,Henan University of Technology,Zhengzhou 450001,China)

    Bicriteria Scheduling on a Series-Batching Machine to Minimize Makespan and Total Weighted Completion Time with Equal Length Job

    HE Cheng,LIN Hao,DOU Jun-mei,MU Yun-dong

    (School of Science,Henan University of Technology,Zhengzhou 450001,China)

    It is known that the problem of minimizing total weighted completion time on a series-batching machine is NP-hard.We consider a series-batching bicriteria scheduling problem of minimizing makespan and total weighted completion time with equal length job simultaneously.A batching machine can handle up to b jobs in a batch,where b is called the batch capacity of the machine.We study the unbounded model with b≥n,where n denotes the number of jobs.A dynamic programming algorithm is proposed to solve the unbounded model,which can f i nd all Pareto optimal schedules in O(n3)time.

    bicriteria scheduling;series-batching;makespan;total weighted completion time;Pareto optimal schedules

    §1.Introduction

    Multicriteria scheduling problems have been extensively studied in the last decade[8].The basic motivation of this direction is that decision-makers usually pursue several performance criteria simultaneously in product quality evaluations.On the other hand,scheduling on batching machines is also an appealing direction in recent years[3].This kind of problems have a wide range of applications in manufacturing and computer systems.Much study has been done inthese two directions[1,3,810].In this paper,we consider a bicriteria scheduling problem with two objective functions:makespan Cmaxand total weighted completion timewjCjand with the condition that the processing times of all jobs are equal.The goal is to fi nd all Pareto optimal schedules in polynomial time.Here,the machine environment is“series-batching”,which means that the jobs processed jointly form a batch with a constant setup time s and with a processing time being the sum of the processing times of its jobs.Following thethree- fi eld notation of[4], this model may be denoted by 1|s-batch,pj=p,b≥n|F(Cmax,),where“s-batch”refers to the series-batching and F represents an unknown composition objective function in simultaneous optimization.Moreover,a batching machine can handle up to b jobs in a batch, where b is called the batch capacity of the machine.We study the unbounded model with b≥n.

    A minimum makespan Cmaxusually implies a high utilization of the machine(s)and the total weighted completion time usually denotes the total holding,inventory costs. Our model can be applied when decision-makers pursue a high utilization of the machine and a minimum inventory costs simultaneously in series-batching production.

    Some related results in the literature is as follows.For the bicriteria scheduling problem,Hoogeveen[9]showed that the problem of minimizing two maximum cost criteria,that is 1||F(fmax,∑),is solvable in O(n4)time.For the batch scheduling problem 1|s-batch,pj= p,b≥n|wjCj,Albers and Brucker[1]presented an O(nlogn)algorithm and proved that j=1∑-1|s-batch,b≥n|wjCjis NP-hard.In our previous work[57]we investigated parallel-batching problem 1|p-batch,b≥n|F(Lmax,Cmax)and series-batching problems 1|s-batch,b≥n|F(Lmax, Cmax)and 1|s-batch,b≥n or b<n|F(),respectively.In this paper we consider3a new combination of criteria CmaxandThe main result is to present an O(n) time algorithm for fi nding all Pareto optimal schedules of problem 1|s-batch,pj=p,b≥

    The paper is organized as follows.In Section 2 we state some preliminaries.Section 3 is dedicated to the main result,an O(n3)algorithm for the problem.Section 4 gives a short summary.We shall follow the terminology and notation of[2].

    §2.Preliminaries

    Suppose that we are given n independent jobs with the identical processing time p,denoted by J1,J2,···,Jn.Job Jjhas a weight wj(j=1,···,n).They are to be scheduled on a single batching machine that is continuously available from time zero onwards and that can handle at most b jobs in a batch.Given a schedule σ,Cj(σ)and Cmax(σ)=1m≤ja≤xnCj(σ)denote the completion time of job Jjin σ and the maximum completion time(makespan)of jobs in σ.The total weighted completion time

    For problems of minimizing a regular objective function without job’s release dates,theremust be an optimal schedule in which the batches are processed contiguously from time zero onwards.Throughout the paper,we restrict our attention to the schedules with this property. Thus,a schedule σ is a sequence of batches σ=(B1,B2,···,Bl),where each batch Bris a set of jobs(r=1,···,l).We denote the number of batches in σ by|σ|=l.Before processing each batch,there is a setup time s(a given positive constant).The processing time of batch Briscompletion time of job Jj∈Br(1≤r≤l)is Cj(σ)=C(Br).When there is no ambiguity,we abbreviate Cj(σ)to Cj.

    In the scenario of bicriteria scheduling,we always use a composition objective function F(f(σ),g(σ))to combine two performance criteria f(σ)and g(σ),where F is assumed to be nondecreasing in both arguments.In particular,when F is an unknown function,this formulation represents the general case of simultaneous optimization.In this paper,the criteria f(σ)and g(σ)under consideration are two regular objective functions:makespan Cmax(σ)and total weighted completion time

    With each schedule σ we associate a the status of twocriteria in R2.In the sequel,we use the terms schedule and point interchangeably.We can solve the bicriteria problem in polynomial time provided that we are able to identify all of the so-called Pareto optimal schedules in polynomial time.

    Def i nition 2.1A feasible schedule σ is Pareto optimal,or nondominated,with respect to the performance criteria CmaxwjCjif there is no feasible schedule π such that both C

    max(π)≤Cmax(σ)andwjCj(σ),where at least one of the inequalities is strict.

    Let f,g be two criteria of the problem.A general way of f i nding the set of Pareto optimal points is the so-called ε-constraint approach as follows.Given a Pareto optimal point(x1,y1), say it is obtained by the hierarchical optimization,we may produce the second Pareto optimal point(x2,y2),where y2is obtained by minimizing g subject to the constraint f<x1and x2is obtained by minimizing f subject to the constraint g≤y2.This is a basic procedure in multicriteria optimization[8].

    §3.Polynomial-time Algorithm

    It is well known that the classical problem 1|s-batch,p=p,b≥n|can be solved

    jby the LW(the largest weight fi rst)rule[1].So we may re-index the jobs so that w1≥w2≥···≥wnin advance.We may call this the LW-property.Further,this property still holds for our bicriteria model:

    Lemma 3.1For problem 1|s-batch,p=p,b≥n|F(,each Paretojoptimal schedule satis fi es the LW-property.

    ProofAssume that there is a Pareto optimal schedule σ=(B1,···,Br,···,Bq,···,Bl), where 1≤r<q≤l,with Jk∈Br,Jj∈Bq,but wk<wj.Consider now the schedule σ0=(B1,···,(Br∪{Jj}){Jk},···,(Bq∪{Jk}){Jj},···,Bl)that is obtained from σ by interchanging jobs Jkand Jj.Since pk=pj=p,we have Cx(σ)=Cx(σ0)(x/=k,j)and Ck(σ)= Cj(σ0)and Cj(σ)=Ck(σ0).However wk<wjand Cj(σ)>Ck(σ),so Cmax(σ)=Cmax(σ0)andcontradicting the Pareto optimality of σ.

    Lemma 3.1 shows that a Pareto optimal schedule can be specif i ed by the jobs that start each batch,since the complete schedule can be formed by the LW-rule.We refer to such a schedule as LW-batch schedule.

    Note that the makespan of schedule σ is mainly dependent on the number l of batches.So we have the following.

    Lemma 3.2For any schedule σ with l batches,Cmax(σ)=ls+np.

    Therefore,in order to f i nd all Pareto optimal schedules of the problem 1|s-batch,pj=We solve this problem by a dynamic programming algorithm,called DP algorithm in short.

    Let Fl(j)be the minimumwiCiof any LW-batch schedule σ with l batches of jobs J1,J2,···,Jj(j≥l),and Wkj=wi(0≤k≤j?1<j≤n).Then the recursion equation is

    In fact,let Bl={Jk+1,···,Jj}be the last batch.Then each job in this batch has the same completion time ls+jp,and so their total weighted completion time is(ls+jp)Wkj.Moreover, the minimum total weighted completion time of the fi rst l?1 batches is Fl?1(k).Therefore the optimal value Fl(j)of l batches is the minimum of Fl?1(k)+(ls+jp)Wkjover all k with l?1≤k<j.On the other hand,let kl(j)be the value of k attaining the minimum of(1)(for given l and j).If there is a tie,we always choose kl(j)as large as possible.The values kl(j) are called optimal decision functions.

    It is clear that the initial conditions of the recursive process are as follows

    In a routine procedureofDPalgorithm,wehavetocomputethe optimalityfunctionsF1(j),F2(j), ···,Fn(j)and the decision functions k1(j),k2(j),···,kn(j)successively.

    Let ?(j,k):=Fl?1(k)+(ls+jp)Wkj(l?1≤k<j)for fi xed l.It is increasing for j when k is fi xed,while ?(j,k)?Fl?1(k)is decreasing when j is fi xed.Note that Fl(j)=?(j,k)= ?(j,kl(j)).We have the following basic properties.

    Lemma 3.3kl(j)≤kl(j+1)≤j.

    ProofSuppose to the contrary that kl(j)>kl(j+1)=r.By the optimality of kl(j), we have ?(j,kl(j))=l?m1≤ikn<j?(j,k)≤?(j,r).Furthermore,?(j+1,kl(j))??(j+1,r)= Fl?1(kl(j))?Fl?1(r)?[ls+(j+1)p]Wr,kl(j)=?(j,kl(j))??(j,r)?pWr,kl(j)<0.Hence ?(j+1,kl(j))<?(j+1,kl(j+1)),contradicting the optimality of kl(j+1).This completes the proof.

    By this property,in order to compute the minimum of(1),the variable k can be taken from kl(j?1)to j?1(rather than starting from scratch).Moreover,we want to know the condition of kl(j)=kl(j+1).

    Lemma 3.4Let r=kl(j)and for r<k≤j,let α(r,k)Then kl(j)=kl(j+1)if and only if j+1

    Proof kl(j)=kl(j+1)if and only if ?(j+1,k)≥?(j+1,r)for any r<k≤j and this is in turn equivalent to

    i.e.,

    that is,j+1≤α(r,k).Therefore we have j+1≤α(r,k)by the arbitrariness of k.The proof is complete.

    If this condition holds,we can save the computation of kl(j+1)at round j+1.Likewise, we can consider the round j+2.So we have the following subroutine for each stage l,for which Fl?1(j)(l?1≤j≤n)are known.

    Procedure lComputation of Fl(j)

    Step 0Let Fl(j)=+∞for j≤l?1 and Fl(l)=Fl?1(l?1)+(ls+lp)wl,kl(l)=l?1. Let j=l+1.

    Step 1(Round j)Let r:=kl(j?1),k:=r,α(r):=+∞.

    (1.2)If α(r,k)<α(r),then set α(r):=α(r,k).If j≥α(r),then set r:=k,α(r):=+∞.

    (1.3)If k<j?1,then go back to(1.1);otherwise k=j?1,then set Fl(j):=Fl?1(r)+ (ls+jp)Wrj,kl(j):=r.

    Step 2(Concatenation)If j=n,then stop.Otherwise set j:=j+1,α(r):= min{α(r),α(r,j?1)},if j≥α(r),then set r:=r+1,k:=r,α(r):=+∞and go to(1.1).If j<α(r),then kl(j)=kl(j?1)and go back to the beginning of Step 2.

    Note that the computation of Step 1 is α(r)=+(ls+jp)Wkj}.The goal of Step 2 is to decide whether kl(j)keeps the same value in the next round(and so the computation of the next round can saved).

    Lemma 3.5Procedure l correctly solves problem 1|s-batch,b≥n,2wiCiin O(n)time for the worst case.

    ProofThe correctness of Procedure l is based on the recursion equation(1)and lemmas 3.3~3.4.Let r1<r2<···<rhbe the di ff erent values of kl(j)and let nibe the multiple number of ri(i=1,2,···,h).Then n1+n2+···+nh≤n.We call the set of steps that kl(j) keep the same value rithe“stage i”.In each stage,when kl(j)changes from rito ri+1,the computation of Step 1 takes at most O(n)time.Besides,the decision of kl(j)=kl(j+1)at each point ritakes O(ni)time in Step 2.Therefore the overall running time is O(n2).This completes the proof.

    By using the above Procedure l we obtain the optimality function Fl(n),i.e.,the minimumCj(σ)subject to|σ|=l and the corresponding optimal schedules(l=1,2,···,n).Let=∑and C(l)max=ls+np.Then we have a set of n points

    (if there is a tie,choose m as small as possible).Then Qmis also a Pareto optimal point, which dominates all Qlwith m<l≤n.Hence all Pareto optimal points are included in {Q1,Q2,···,Qm}.In order to fi nd all Pareto optimal points,we can check these m points one by one.So we have the following procedure.

    Selection Procedure

    Step 0List the candidates of Pareto optimal points{Q1,Q2,···,Qm},where= min{:1≤l≤n}.

    Step 1Q1is chosen.Let i1=1,l=1,k=1 and y=

    Step 2If l=m,then go to Step 4,else set l:=l+1.

    Step 4Return the Pareto optimal points{Qi1,Qi2,···,Qik}with i1=1 and ik=m.

    By combining the above procedures together,we have the entire algorithm as follows.

    Pareto Optimization Algorithm

    Step 0(Initiation)Let F1(j)=(s+jp)W0jfor j=1,2,···,n.Let l=2.

    Step 1Carry out the Procedure l.

    Step 2(Backtrack)Determine the optimal scheduleof l batches by means of the decision function kl(j):the last batch is{kl(n)+1,···,n},the second last batch is{kl?1(kl(n))+ 1,···,kl(n)},and so on.

    Step 3If l<n,then set l:=l+1 and go back to Step 1;otherwise l=n,return all optimal scheduleswith di ff erent numbers of batches.

    Step 4Carry out the Selection Procedure and produce all Pareto optimal points{Qi1,Qi2, ···,Qik}and the corresponding Pareto optimal schedules

    To illustrate this algorithm,we describe the following numerical example.

    ExampleSuppose that s=3,p1=p2=p3=p4=p5=p=1 and w1=7,w2= 4,w3=3,w4=3,w5=1.The implementation of the algorithm is as follows.At the initial step(l=1),=s+=8 and F1(1)=(s+p)w1=28,F1(2)=(s+2p)(w1+w2)= 55,F1(3)=84,F1(4)=119,F1(5)=144,i.e.,(144,8)is the fi rst Pareto-optimal point and the corresponding Pareto-optimal schedule is={(1,2,3,4,5)}.

    Therefore we see that(144,8)and(128,31)are all possible Pareto optimal points. Finally,we come to the conclusion of this section.Theorem 3.6All Pareto optimal schedules of problem 1|s-batch,pj=p,b≥n|F(Cmax, can be determined in O(n3)time.

    ProofFrom the Pareto Optimization Algorithm we get a sequence of points Qi1,Qi2, ···,Qik,withpossible Pareto optimal points.This is because each discarded point Qlis dominated by the previously chosen one.And the Selection Procedure takes O(n)time.Each Procedure l takes O(n2)time.In addition,compute all Wkr(0≤r<k≤n)and sort weights take O(n2)and O(nlogn)time,respectively.Therefore,the overall running time of fi nding all Pareto optimalpoints is O(n3).This completes the proof.

    From the proof we see that

    This is the basic feature that makes the problem easy to solve.

    §4.Concluding Remarks

    The multicriteria scheduling on batching machines is a signi fi cant topic in scheduling theory. In the foregoing se∑ctions we have studied an unbounded model of serial-batching scheduling with criteria Cmaxandand established an algorithm for fi nding all Pareto optimal schedules in polynomial time.In fact,by slight modi fi cation,our algorithm can extend the corresponding bounded model(b<n).In fact,we only need modifying l?1≤k<j is max{l?1,j?b}≤k≤min{j?1,(l?1)b}in equation(1).We have studied 1|s-batch,b≥n|F(Cmax,Lmax)in [6]and 1|s-batch,b≥n or b<n|Fin[7].More models with other criteria remain to further investigate.For example,the case of minimizing two maximum costs fmaxand gmaxsimultaneously,which is difficult to determine the number of Pareto optimal schedules,should be considered.

    [1]ALBERS S,BRUCKER P.The complexity of one-machine batching problems[J].Discrete Applied Mathematics,1993,47(2):87-107.

    [2]BRUCKER P.Scheduling Algorithms[M].Berlin:Springer,2001.

    [3]BRUCKER P,GLADKY A,HOOGEVEEN H,et al.Scheduling a batching machine[J].Journal of Scheduling,1998,1:31-54.

    [4]GRAHAM R L,LAWLER E L,LENSTRA J K,et al.Optimization and approximation in deterministic sequencing and scheduling:a survey[J].Annals of Discrete Mathematics,1979,5:287-326.

    [5]HE Cheng,LIN Yi-xun,YUAN Jin-jiang.Bicriteria scheduling on a batching machine to minimize maximum lateness and makespan[J].Theoretical Computer Science,2007,381:234-240.

    [6]HE Cheng,LIN Yi-xun,YUAN Jin-jiang.Bicriteria scheduling of minimizing maximum lateness and makespan on a serial-batching machine[J].Foundations of Computing and Decision Sciences,2008,33: 369-376.

    [7]HE Cheng,LIN Yi-xun,YUAN Jin-jiang.A DP algorighm for minimizing makespan and total completion time on a series-batching machine[J].Informations Processing Letters,2009,109:603-607.

    [8]HOOGEVEEN H.Multicriteria scheduling[J].European Journal of Operational Research,2005,167:592-623.

    [9]HOOGEVEEN H.Single-machine scheduling to minimize a function of two or three maximum cost criteria[J]. Journal of Algorithms,1996,21:415-433.

    [10]HOOGEVEEN J A,VAN de Velde S L.Minimizing total completion time and maximum cost simultaneously is solvable in polynomial time[J].Operation Research Letters,1995,17:205-208.

    tion:90B35

    CLC number:O221.6Document code:A

    1002–0462(2014)02–0159–08

    date:2012-05-31

    Supported by the National Natural Science Foundation of China(11201121,11101383); Supported by the China Scholarship Council(201309895008);Supported bythe 2013GGJS-079;Supported by the 2011B110008

    Biography:HE Cheng(1975-),female,native of Shangcheng,Henan,a lecturer of Henan University of Technology,Ph.D.,engages in the scheduling theory and its applications.

    亚洲四区av| 国产高清激情床上av| 国产麻豆成人av免费视频| 波野结衣二区三区在线| 99riav亚洲国产免费| 我的老师免费观看完整版| 久久久精品大字幕| 中文字幕久久专区| 国产欧美日韩精品一区二区| 国产色爽女视频免费观看| 精品日产1卡2卡| 人妻少妇偷人精品九色| 最近最新中文字幕大全电影3| netflix在线观看网站| 伊人久久精品亚洲午夜| 久久久久国内视频| 亚洲成a人片在线一区二区| 国产又黄又爽又无遮挡在线| 人妻制服诱惑在线中文字幕| 亚洲 国产 在线| 午夜福利欧美成人| 日本爱情动作片www.在线观看 | 国产精品久久视频播放| 亚洲人成伊人成综合网2020| 淫妇啪啪啪对白视频| 日韩国内少妇激情av| 三级国产精品欧美在线观看| 国产主播在线观看一区二区| 舔av片在线| 午夜福利视频1000在线观看| 久久精品国产鲁丝片午夜精品 | 国产精品爽爽va在线观看网站| 在线观看午夜福利视频| 精品人妻熟女av久视频| 国产aⅴ精品一区二区三区波| 成人国产综合亚洲| 国产高清激情床上av| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 欧美日本视频| 无遮挡黄片免费观看| 成人特级av手机在线观看| 一本一本综合久久| 直男gayav资源| 欧美激情久久久久久爽电影| 亚洲精品日韩av片在线观看| 岛国在线免费视频观看| 欧美日韩亚洲国产一区二区在线观看| 婷婷亚洲欧美| 99久久精品热视频| 性色avwww在线观看| 一卡2卡三卡四卡精品乱码亚洲| 韩国av一区二区三区四区| 在线观看av片永久免费下载| 亚洲精品色激情综合| 一边摸一边抽搐一进一小说| 中文在线观看免费www的网站| 又黄又爽又免费观看的视频| 男女做爰动态图高潮gif福利片| 日本爱情动作片www.在线观看 | 在线播放无遮挡| 日韩欧美 国产精品| 久久久久久久久久黄片| 国内精品宾馆在线| 国产在线男女| 久久欧美精品欧美久久欧美| 亚洲精品国产成人久久av| 精品一区二区三区视频在线| 啦啦啦观看免费观看视频高清| 亚洲经典国产精华液单| 99热只有精品国产| 亚洲国产色片| 色综合婷婷激情| 国产爱豆传媒在线观看| 国产av不卡久久| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 免费观看在线日韩| 亚洲精品色激情综合| 午夜老司机福利剧场| 欧洲精品卡2卡3卡4卡5卡区| .国产精品久久| 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 夜夜看夜夜爽夜夜摸| 哪里可以看免费的av片| 舔av片在线| 岛国在线免费视频观看| 午夜福利视频1000在线观看| 成年女人毛片免费观看观看9| 精品日产1卡2卡| 中文在线观看免费www的网站| 欧美一级a爱片免费观看看| 看片在线看免费视频| 日本熟妇午夜| 在线a可以看的网站| 日韩欧美 国产精品| 少妇被粗大猛烈的视频| 午夜a级毛片| 日本色播在线视频| 日本 av在线| 国产精品免费一区二区三区在线| 欧美精品国产亚洲| 色哟哟·www| 一级毛片久久久久久久久女| 国产高清有码在线观看视频| 男女之事视频高清在线观看| 女人十人毛片免费观看3o分钟| 99riav亚洲国产免费| 一进一出抽搐动态| 91麻豆av在线| 老师上课跳d突然被开到最大视频| 成人美女网站在线观看视频| 一区二区三区激情视频| 88av欧美| 无人区码免费观看不卡| 成人永久免费在线观看视频| 亚洲精品成人久久久久久| 亚洲黑人精品在线| 久久久久久久亚洲中文字幕| 欧美又色又爽又黄视频| 国产精品久久久久久av不卡| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 在线观看美女被高潮喷水网站| 极品教师在线视频| 国产精品久久久久久久电影| 噜噜噜噜噜久久久久久91| 麻豆av噜噜一区二区三区| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 成人性生交大片免费视频hd| 欧美色欧美亚洲另类二区| 伊人久久精品亚洲午夜| 精品久久久久久久久亚洲 | 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av| 久久久色成人| 欧美+日韩+精品| www日本黄色视频网| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 免费观看在线日韩| 日韩欧美免费精品| 观看免费一级毛片| 男女啪啪激烈高潮av片| 欧美日韩乱码在线| av黄色大香蕉| 两个人的视频大全免费| 亚洲最大成人av| 老司机午夜福利在线观看视频| 黄色日韩在线| 欧美日韩中文字幕国产精品一区二区三区| 成熟少妇高潮喷水视频| 欧美日韩综合久久久久久 | 99久久成人亚洲精品观看| 黄色日韩在线| 久久精品综合一区二区三区| 亚洲精品456在线播放app | 乱系列少妇在线播放| 亚洲无线观看免费| 国产高清激情床上av| 久久国内精品自在自线图片| 内射极品少妇av片p| 热99在线观看视频| 久久久色成人| 黄色配什么色好看| 亚洲国产欧美人成| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 最近中文字幕高清免费大全6 | 色在线成人网| 啪啪无遮挡十八禁网站| 可以在线观看毛片的网站| 国产精品无大码| 欧美黑人巨大hd| 亚洲av成人精品一区久久| 国产精品久久久久久亚洲av鲁大| a在线观看视频网站| 国产精品野战在线观看| 日韩欧美一区二区三区在线观看| 久久久国产成人免费| 91在线观看av| 欧美黑人欧美精品刺激| 成熟少妇高潮喷水视频| 大型黄色视频在线免费观看| 一区二区三区免费毛片| 亚洲av中文字字幕乱码综合| 婷婷六月久久综合丁香| 精品一区二区三区视频在线| 精品福利观看| 天堂动漫精品| 亚洲男人的天堂狠狠| 国产一级毛片七仙女欲春2| 亚洲av日韩精品久久久久久密| 色av中文字幕| 久久欧美精品欧美久久欧美| 免费观看的影片在线观看| 国产精品人妻久久久久久| 午夜a级毛片| 亚洲欧美日韩高清在线视频| 我的老师免费观看完整版| 欧美一区二区亚洲| 精品久久久噜噜| 国产男靠女视频免费网站| 最近最新免费中文字幕在线| 伦精品一区二区三区| 我的女老师完整版在线观看| 极品教师在线视频| 成人国产一区最新在线观看| 午夜免费激情av| 日韩欧美在线乱码| 天堂动漫精品| 日韩欧美在线二视频| 国产精品综合久久久久久久免费| 嫩草影院入口| 亚洲无线观看免费| 国产av不卡久久| 特大巨黑吊av在线直播| 国产高潮美女av| 校园人妻丝袜中文字幕| a级一级毛片免费在线观看| 日韩中字成人| 免费在线观看成人毛片| 亚洲专区国产一区二区| 欧美性猛交黑人性爽| 亚洲avbb在线观看| 国产男靠女视频免费网站| 国产成人影院久久av| 在线播放无遮挡| 高清日韩中文字幕在线| 欧美极品一区二区三区四区| 神马国产精品三级电影在线观看| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 久久精品国产99精品国产亚洲性色| 日韩中文字幕欧美一区二区| 亚洲av一区综合| 国产久久久一区二区三区| 天天一区二区日本电影三级| 日韩一本色道免费dvd| 88av欧美| 国产精品久久视频播放| 国内久久婷婷六月综合欲色啪| 日韩精品中文字幕看吧| 亚洲国产精品sss在线观看| 久久久久久国产a免费观看| 真人一进一出gif抽搐免费| 国产色婷婷99| 国产一级毛片七仙女欲春2| 国产精品一区二区三区四区久久| 禁无遮挡网站| 99久久成人亚洲精品观看| 精品不卡国产一区二区三区| 91麻豆精品激情在线观看国产| 99riav亚洲国产免费| 免费黄网站久久成人精品| 麻豆成人av在线观看| 有码 亚洲区| 国内久久婷婷六月综合欲色啪| 午夜免费成人在线视频| 精品人妻熟女av久视频| 亚洲中文字幕一区二区三区有码在线看| 一个人免费在线观看电影| 久久精品国产鲁丝片午夜精品 | 床上黄色一级片| 午夜福利欧美成人| av在线天堂中文字幕| 国产精华一区二区三区| 最近最新中文字幕大全电影3| 日本黄色视频三级网站网址| 国产男人的电影天堂91| 久久国内精品自在自线图片| 亚洲av成人精品一区久久| 日本-黄色视频高清免费观看| 国产成年人精品一区二区| 男插女下体视频免费在线播放| 国产成人一区二区在线| 此物有八面人人有两片| 观看美女的网站| 精品99又大又爽又粗少妇毛片 | 国产黄a三级三级三级人| 能在线免费观看的黄片| netflix在线观看网站| 久久婷婷人人爽人人干人人爱| 春色校园在线视频观看| 精品久久久久久久久久免费视频| 国产精品电影一区二区三区| 中国美白少妇内射xxxbb| 国产一区二区在线观看日韩| a在线观看视频网站| 91在线观看av| 草草在线视频免费看| 国产精华一区二区三区| 搞女人的毛片| 一进一出好大好爽视频| 最后的刺客免费高清国语| 成人一区二区视频在线观看| 欧美又色又爽又黄视频| 校园人妻丝袜中文字幕| 淫妇啪啪啪对白视频| 又粗又爽又猛毛片免费看| 日本 欧美在线| 午夜久久久久精精品| 久久人人精品亚洲av| 国产成人影院久久av| 中文字幕高清在线视频| 搡女人真爽免费视频火全软件 | 99久久中文字幕三级久久日本| 国内精品宾馆在线| 国产午夜精品论理片| 亚洲av.av天堂| 亚洲成人久久爱视频| 日韩精品中文字幕看吧| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 国产三级中文精品| 免费人成视频x8x8入口观看| 窝窝影院91人妻| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲三级黄色毛片| 欧美bdsm另类| 国产美女午夜福利| 日韩,欧美,国产一区二区三区 | 88av欧美| 美女 人体艺术 gogo| 老司机深夜福利视频在线观看| 国产69精品久久久久777片| 久久久精品大字幕| 成人av一区二区三区在线看| 成人特级av手机在线观看| 国产成人av教育| 午夜免费男女啪啪视频观看 | 欧美区成人在线视频| 亚洲熟妇中文字幕五十中出| 国产视频内射| 亚洲色图av天堂| АⅤ资源中文在线天堂| 欧美色欧美亚洲另类二区| 国产黄片美女视频| 哪里可以看免费的av片| 又爽又黄无遮挡网站| 中文亚洲av片在线观看爽| 亚洲精品国产成人久久av| 精品久久久久久成人av| 免费在线观看影片大全网站| 最近中文字幕高清免费大全6 | 嫩草影视91久久| 欧美性感艳星| 在线播放国产精品三级| 亚洲无线观看免费| 99久久成人亚洲精品观看| 日本免费一区二区三区高清不卡| 成人特级av手机在线观看| 中文字幕免费在线视频6| 小说图片视频综合网站| 亚洲国产欧美人成| 亚洲国产精品久久男人天堂| 国产三级中文精品| 少妇猛男粗大的猛烈进出视频 | 国产白丝娇喘喷水9色精品| 97超视频在线观看视频| 欧美丝袜亚洲另类 | 精品久久久久久久末码| 窝窝影院91人妻| avwww免费| 人妻少妇偷人精品九色| 亚洲色图av天堂| 久久精品综合一区二区三区| 国产麻豆成人av免费视频| 美女被艹到高潮喷水动态| 91久久精品电影网| 12—13女人毛片做爰片一| 日本黄大片高清| 高清日韩中文字幕在线| 一边摸一边抽搐一进一小说| 女人被狂操c到高潮| 麻豆成人av在线观看| 最近视频中文字幕2019在线8| 天堂影院成人在线观看| 97碰自拍视频| 性插视频无遮挡在线免费观看| 午夜视频国产福利| 草草在线视频免费看| 午夜激情福利司机影院| 在线观看免费视频日本深夜| 欧美一区二区亚洲| 亚洲在线观看片| 久久精品久久久久久噜噜老黄 | 久久99热6这里只有精品| 一级黄色大片毛片| 舔av片在线| 在线播放无遮挡| av在线天堂中文字幕| 尾随美女入室| 一夜夜www| 少妇熟女aⅴ在线视频| 日本爱情动作片www.在线观看 | 少妇被粗大猛烈的视频| 欧美国产日韩亚洲一区| 国产精品国产三级国产av玫瑰| 国产 一区 欧美 日韩| 国产精品一及| 大又大粗又爽又黄少妇毛片口| 床上黄色一级片| 天堂av国产一区二区熟女人妻| a级毛片免费高清观看在线播放| 免费av观看视频| 听说在线观看完整版免费高清| 久久久久久久久中文| 色吧在线观看| 成人综合一区亚洲| 琪琪午夜伦伦电影理论片6080| 赤兔流量卡办理| 亚洲精品国产成人久久av| 国产精品不卡视频一区二区| 精品免费久久久久久久清纯| 亚洲经典国产精华液单| 毛片女人毛片| 日本免费一区二区三区高清不卡| 两人在一起打扑克的视频| 亚洲成人精品中文字幕电影| 亚洲av不卡在线观看| 草草在线视频免费看| 欧美极品一区二区三区四区| 免费在线观看影片大全网站| 日本 欧美在线| 搡老熟女国产l中国老女人| 亚洲熟妇熟女久久| 精品久久久久久久久久免费视频| 少妇的逼好多水| 国产激情偷乱视频一区二区| 一级毛片久久久久久久久女| 国产乱人伦免费视频| 99riav亚洲国产免费| 又紧又爽又黄一区二区| 成年人黄色毛片网站| 精品人妻偷拍中文字幕| 国产单亲对白刺激| 热99在线观看视频| 国产精品一区二区免费欧美| 精品久久国产蜜桃| 欧美人与善性xxx| 一区二区三区四区激情视频 | 在线观看舔阴道视频| 日本a在线网址| 欧美最新免费一区二区三区| 国内精品宾馆在线| 日日啪夜夜撸| 精品久久久久久成人av| 久久久久久久久久黄片| 国产av麻豆久久久久久久| 黄色视频,在线免费观看| 看免费成人av毛片| 国产成人影院久久av| 12—13女人毛片做爰片一| 国内精品久久久久久久电影| 亚洲最大成人av| 亚洲性久久影院| 久久久久久久精品吃奶| 一区二区三区激情视频| 非洲黑人性xxxx精品又粗又长| 成人三级黄色视频| 国产av一区在线观看免费| 欧美精品国产亚洲| 搡老熟女国产l中国老女人| 女人十人毛片免费观看3o分钟| 国产老妇女一区| 日韩亚洲欧美综合| 最好的美女福利视频网| 别揉我奶头 嗯啊视频| 天堂动漫精品| av在线亚洲专区| 国产精品久久久久久av不卡| 国产免费一级a男人的天堂| x7x7x7水蜜桃| 欧美bdsm另类| 国内精品久久久久精免费| 淫秽高清视频在线观看| 黄色配什么色好看| 给我免费播放毛片高清在线观看| 亚洲精品在线观看二区| 日韩欧美在线二视频| 国产男人的电影天堂91| 久久久久免费精品人妻一区二区| 亚洲欧美日韩卡通动漫| 亚洲中文字幕一区二区三区有码在线看| 午夜激情欧美在线| 男女下面进入的视频免费午夜| 黄色丝袜av网址大全| 精品久久久久久久久av| 天天一区二区日本电影三级| 禁无遮挡网站| 自拍偷自拍亚洲精品老妇| 亚洲人成网站在线播| 免费不卡的大黄色大毛片视频在线观看 | xxxwww97欧美| avwww免费| 成人综合一区亚洲| 观看美女的网站| 99久久九九国产精品国产免费| 国产黄色小视频在线观看| 欧美日韩国产亚洲二区| 日韩国内少妇激情av| 久久久久久久久久黄片| 亚洲美女搞黄在线观看 | 午夜福利在线在线| 亚洲国产色片| 免费观看在线日韩| 成人无遮挡网站| 国语自产精品视频在线第100页| 日本爱情动作片www.在线观看 | 少妇高潮的动态图| 男女之事视频高清在线观看| 搞女人的毛片| 搡老妇女老女人老熟妇| 一个人看视频在线观看www免费| 少妇裸体淫交视频免费看高清| 欧美日韩国产亚洲二区| or卡值多少钱| 欧美日本视频| 欧美一区二区亚洲| 成人永久免费在线观看视频| 亚洲av一区综合| 亚洲va日本ⅴa欧美va伊人久久| 最近中文字幕高清免费大全6 | 日本 av在线| 国产精品久久电影中文字幕| 亚洲内射少妇av| 人妻制服诱惑在线中文字幕| 欧美色视频一区免费| 亚洲精品日韩av片在线观看| 亚洲欧美日韩高清在线视频| 男女之事视频高清在线观看| 国产一区二区三区视频了| 97超级碰碰碰精品色视频在线观看| av中文乱码字幕在线| 国产视频内射| 人人妻人人看人人澡| 亚洲真实伦在线观看| 可以在线观看的亚洲视频| 日本黄大片高清| 国产精华一区二区三区| 一级黄色大片毛片| 日韩欧美精品免费久久| 一区二区三区激情视频| 国内精品宾馆在线| 12—13女人毛片做爰片一| 国产精品一区www在线观看 | 日日干狠狠操夜夜爽| 亚洲最大成人中文| 男女视频在线观看网站免费| 亚洲av二区三区四区| 97热精品久久久久久| 成年女人看的毛片在线观看| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| aaaaa片日本免费| 亚洲美女黄片视频| 成人亚洲精品av一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久久久精品国产欧美久久久| 色吧在线观看| 亚洲三级黄色毛片| 国产精品日韩av在线免费观看| 内射极品少妇av片p| 亚洲欧美日韩高清专用| 男女下面进入的视频免费午夜| 真人做人爱边吃奶动态| videossex国产| 国产三级在线视频| 亚洲在线自拍视频| 亚洲欧美日韩卡通动漫| 中文字幕av成人在线电影| 日本在线视频免费播放| 听说在线观看完整版免费高清| 欧美三级亚洲精品| 特大巨黑吊av在线直播| 亚洲国产欧美人成| 在线a可以看的网站| 麻豆av噜噜一区二区三区| 天堂动漫精品| 免费无遮挡裸体视频| 韩国av在线不卡| 国产91精品成人一区二区三区| 久久久久久久久久成人| 精品一区二区三区视频在线| 精品国产三级普通话版| netflix在线观看网站| 国产亚洲精品久久久com| 日韩中字成人| 成人一区二区视频在线观看| 久久久精品欧美日韩精品| 黄色配什么色好看| 午夜福利在线在线| 免费观看的影片在线观看| 国产精品久久久久久久电影| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站| 可以在线观看的亚洲视频| 日日啪夜夜撸| 中亚洲国语对白在线视频| 日韩,欧美,国产一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 99视频精品全部免费 在线| 给我免费播放毛片高清在线观看| 日韩人妻高清精品专区| 国产精品久久久久久久久免| 我的女老师完整版在线观看| 国产欧美日韩精品一区二区| 免费观看人在逋|