• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterizing C6+P2-graphic Sequences

    2014-07-31 22:37:22HULili

    HU Li-li

    (Department of Mathematics and Information Science,Zhangzhou Teacher’s College,Zhangzhou 363000 China)

    Characterizing C6+P2-graphic Sequences

    HU Li-li

    (Department of Mathematics and Information Science,Zhangzhou Teacher’s College,Zhangzhou 363000 China)

    For a given graph H,a graphic sequence π=(d1,d2,···,dn)is said to be potentially H-graphic if π has a realization containing H as a subgraph.In this paper,we characterize the potentially C6+P2-graphic sequences where C6+P2denotes the graph obtained from C6by adding two adjacent edges to the three pairwise nonadjacent vertices of C6.Moreover,we use the characterization to determine the value of σ(C6+P2,n).

    graph;degree sequence;potentially C6+P2-graphic sequences

    §1.Introduction

    We consider f i nite simple graphs.Any undef i ned notation follows that of Bondy and Murty[1].The set of all non-increasing nonnegative integer sequence π=(d1,d2,···,dn)is denoted by NSn.A sequence π∈NSnis said to be graphic if it is the degree sequence of a simple graph G of order n;such a graph G is referred to as a realization of π.Let GSndenote the set of all graphic sequences in NSn.Let Ckand Pkdenote a cycle on k vertices and a path on k+1 vertices,respectively.Let σ(π)be the sum of all the terms of π.A graphic sequence π is said to be potentially H-graphic if it has a realization G containing H as a subgraph. Let G?H denote the graph obtained from G by removing the edges set E(H),where H is a subgraph of G.In the degree sequence,rtmeans r repeats t times.

    For a given graph H,Gould,Jacobson and Lehel[2]considered the following problem:determine the smallest even integer σ(H,n)such that every n-term positive graphic sequence π=(d1,d2,···,dn)with σ(π)≥σ(H,n)is potentially H-graphic.For many kinds of graph H,the problem of determining the smallest degree sum that yields potentially H-graphic sequences has been solved,see also review articles[6,8].

    In the research of degree sequence,a harder question is to characterize the potentially H-graphic sequences without zero terms.Yin and Chen[9]characterized the potentially K2,4-graphic sequences.Yin et al[10]characterized the potentially K6-graphic sequences.Hu and Lai[4]characterized the potentially K3,3and K6?C6-graphic sequences.In this paper,we characterize the potentially C6+P2-graphic sequences where C6+P2denotes the graph obtained from C6by adding two adjacent edges to the three pairwise nonadjacent vertices of C6. Moreover,we use the characterization to determine the value of σ(C6+P2,n).

    §2.Preliminaries

    Let π=(d1,···,dn)∈NSn,1≤k≤n.Let

    For a nonincreasing nonnegative integer sequence π=(d1,d2,···,dn),we write m(π)and h(π)to denote the largest positive term of π and the smallest positive term of π,respectively. We need the following results.

    Theorem 2.1[2]If π=(d1,d2,···,dn)is a graphic sequence with a realization G containing H as a subgraph,then there exists a realization G0of π containing H as a subgraph so that the vertices of H have the largest degrees of π.

    Theorem 2.2[7]If π=(d1,d2,···,dn)is a sequence of nonnegative integers with 1≤m(π)≤2,h(π)=1 and even σ(π),then π is graphic.

    Lemma 2.3[3]If π=(d1,d2,···,dn)is a nonincreasing sequence of positive integers with even σ(π),n≥4,d1≤3 and π/=(33,1),(32,12),then π is graphic. Lemma 2.4[5]π is graphic if and only if π0is graphic. The following corollary is obvious.

    Corollary 2.5Let H be a simple graph.If π0is potentially H-graphic,then π is potentially H-graphic.

    §3.Main Theorems

    Theorem 3.1Let n≥6,π=(d1,d2,···,dn)∈GSn.Then π is potentially C6+P2-graphic if and only if the following conditions hold

    (1)d1≥4,d3≥3 and d6≥2;

    (2)d1=n?1 implies d4≥3;

    (3)π=(d1,d2,d3,2i,1n?3?i)implies d1+d2+d3≤n+i+3;in particular,if d3=3,then d1+d2≤n+i?2;

    (4)π/=(n?t,k,32,2k?2?t,1n?k+t?2),where t+4≤k≤n?1 and 1≤t≤k?4;

    (5)π/=(44,22),(4,32,24),(4,32,25).

    ProofFirst we show the necessity.Assume that π=(d1,d2,···,dn)is potentially C6+P2-graphic.(1)and(5)are obvious.Let G be a realization of π which contains C6+P2and let v∈V(G)with degree d(v)=d1.Then G?v1contains P4.Thus,G?v1contains at least three vertices with degree at least 2.Therefore,d1=n?1 implies d4≥3.Hence,(2)holds.If π=(d1,d2,d3,2i,1n?3?i)is potentially C6+P2-graphic,then according to Theorem 2.1,there exists a realization G of π containing C6+P2as a subgraph so that the vertices of C6+P2have the largest degrees of π.Therefore,the sequence π1=(d1?4,d2?3,d3?3,2i?3,1n?3?i) obtained from G?(C6+P2)is graphic.It follows d1?4+d2?3+d3?3≤2+2(i?3)+n?3?i, i.e.,d1+d2+d3≤n+i+3.In particular,if d3=3,then d1?4+d2?3≤2(i?3)+n?3?i, i.e.,d1+d2≤n+i?2.Hence,(3)holds.If π=(n?t,k,32,2k?2?t,1n?k+t?2)is potentially C6+P2-graphic,then according to Theorem 2.1,there exists a realization G of π containing C6+P2as a subgraph so that the vertices of C6+P2have the largest degrees of π.Therefore, the sequence π2=(n?t?4,k?3,1,2k?4?t,1n?2?k+t)obtained from G?(C6+P2)must be graphic.It follows n?t?4+k?3+1≤2+2(k?4?t)+(n?2?k+t),i.e.,0≤?2,a contradiction.Hence,(4)holds.

    Now we prove the sufficiency.Suppose π=(d1,d2,···,dn)∈GSnsatis fi es the conditions (1)~(5).Our proof is by induction on n.We fi rst prove the base case where n=6.Since π/=(44,22),(52,32,22),then π is one of the following:(56),(54,42),(53,42,3),(53,33),(52,44), (52,43,2),(52,42,32),(52,4,32,2),(52,34),(5,44,3),(5,43,3,2),(5,42,33),(5,42,3,22), (5,4,33,2),(5,35),(5,33,22),(46),(45,2),(44,32),(43,32,2),(43,23),(42,34),(42,32,22), (4,34,2),(4,32,23).It is easy to check that all of these are potentially C6+P2-graphic.Now suppose that the sufficiency holds for n?1(n≥7),we will show that π is potentially C6+P2-graphic in terms of the following cases.

    Case 1dn≥4.It is easy to check that π0=,···,satis fi es(1)~(5).Thus, by the induction hypothesis,π0is potentially C6+P2-graphic,and hence so is π. Case 2dn=3.Consider π0=(,···,)where≥3 and≥2.Clearly, π0satis fi es(2),(3),(5).If π0also satis fi es(1)and(4),then by the induction hypothesis,π0is potentially C6+P2-graphic and hence so is π.

    If π0does not satisfy(1),then=3,so d1=4.It follows π=(4k,3n?k)where 1≤k≤3. Now we show that π is potentially C6+P2-graphic.

    If k=1,then π=(4,3n?1)where n is odd.It is easy to see that(4,36)and(4,38)are potentially C6+P2-graphic.Let G1be a realization of(4,36)which contains C6+P2.If n≥11,then π1=(3n?7)is graphic by Lemma 2.3.Let G2be a realization of π1,then G1∪G2is a realization of(4,3n?1).Thus,π=(4,3n?1)is potentially C6+P2-graphic.With the same argument,one can easily show that(42,3n?2)and(43,3n?3)are also potentiallyC6+P2-graphic.

    If π0does not satisfy(4),then π0is just(52,32,22).Hence π=(62,32,23)which contradicts dn=3.

    Case 3dn=2.Consider π0=(),where≥3 and≥2.If π0satis fi es(1)~(5),then by the induction hypothesis,π0is potentially C6+P2-graphic and hence so is π.

    If π0does not satisfy(1),there are three subcases

    Subcase 3.2d01=d03=3.In this case,π=(42,3k,2n?2?k)where k≥1 and k is even or π=(4,3k,2n?1?k),where k≥3 and k is even.Now we show that these sequences are potentially C6+P2-graphic.

    For the sequence π=(42,3k,2n?2?k),when k=2,π=(42,32,2n?4).It suffices to show π1=(2n?6,12)is graphic.By σ(π1)being even and Theorem 2.2,π1is graphic.If k=4, then π=(42,34,2n?6).It is easy to check that(42,34)is potentially C6+P2-graphic.Let G1be a realization of(42,34)which contains C6+P2.One can easily show that that(42,34,2) and(42,34,22)are potentially C6+P2-graphic.If n≥9,then G1∪Cn?6is a realization of (42,34,2n?6).In other words,(42,34,2n?6)is potentially C6+P2-graphic.We now consider k≥6.In this case,let π2=(42,34),π3=(3k?4,2n?2?k).If n≥10,then π3is graphic by Lemma 2.3.Let G2be a realization of π3,then G1∪G2is a realization of π.If n≤9,then π=(42,36,2)which is potentially C6+P2-graphic.Thus,π=(42,3k,2n?2?k)is potentially C6+P2-graphic.With the same argument as above,one can show that(4,3k,2n?1?k)is also potentially C6+P2-graphic.

    If π0does not satisfy(2),then=n?2 and d=2.In this case,π=(n?1,33,2n?4).Since the residual sequence π10=(23,1n?4)obtain from π1by deleting the term n?1 is potentially P4graphic,thus π=(n?1,33,2n?4)is potentially C6+P2-graphic.

    If π0does not satisfy(3),then π0=(2n?4)and>2n?2.Thus, d1+d2+d3=+2>2n,a contradiction.Moreover,if π0=(,3,2n?4)and>2n?5,then d1+d2=d+2>2n?3,a contradiction.Thus,π0satis fi es(3).

    If π0does not satisfy(4),then π0=(n+t?3,n?1?t,32,2n?5).Since≤n?2,we have t=1,i.e.,π0=((n?2)2,32,2n?5).It follows π=((n?1)2,32,2n?4),which contradicts condition(4).Thus,π0satis fi es(4).

    If π0does not satisfy(5),then π0=(44,22),(4,32,24),(4,32,25).Therefore,π is one of the following(52,42,23),(5,4,3,25),(43,25),(5,4,3,26),(43,26).It is easy to see that all of these are potentially C6+P2-graphic.

    Case 4dn=1.Consider π0=(,···,d0n?1),where≥3 and≥2.If π0satis fi es (1)~(5),then by the induction hypothesis,π0is potentially C6+P2-graphic and hence so is π.

    If π0does not satisfy(1),then=3.It follows d1=4,d2=d3=3,so π= (4,3k,2t,1n?1?k?t)where k≥2,k+t≥5,n?1?k?t≥1.We are going to show that π is potentially C6+P2-graphic.If k=2,then π=(4,32,2t,1n?3?t).Let π1=(2t?3,1n?3?t). By σ(π1)being even and Theorem 2.2,π1is graphic.Let G1be a realization of π1,then C6+P2∪G1is a realization of π=(4,32,2t,1n?3?t).Similarly,one can easily show that π=(4,3k,2t,1n?1?k?t)is potentially C6+P2-graphic for the cases k=3,4,5.When k≥6,let π2=(4,36),π3=(3k?6,2t,1n?1?k?t).Let G2be a realization of(4,36)which contains C6+P2. If n≥11 and π3/=(33,1),(32,12),then π3is graphic by Lemma 2.3.Let G3be a realization of π3,then G2∪G3is a realization of π.If π3=(33,1)or(32,12),then π=(4,39,1)or(4,38,12). If n≤10,then π is one of the following:(4,36,12),(4,36,2,12),(4,37,1),(4,37,2,1).It is easy to check that all of these are potentially C6+P2-graphic.Thus,π=(4,3k,2t,1n?1?k?t) is potentially C6+P2-graphic.

    If π0does not satisfy(2),then=n?2 and=2.In this case,either d1=n?1, d4=2 or d1=d2=n?2,d4=2.But the former contradicts condition(2).For the latter, we have π=((n?2)2,d3,2i,1n?3?i).By π satis fi es(3),2(n?2)+d3≤n+i?3,i.e., i≥n?1+d3≥n+2,a contradiction.Hence,π0satis fi es(2).

    If π0does not satisfy(3),then π0=(1n?4?i)and>n+i+2.Thus, d1+d2+d3=+1>n+i+3,a contradiction.Moreover,If π0=3,2i,1n?4?i) and>n+i?3,then d1+d2=+1>n+i?2,a contradiction.Thus,π0satis fi es(3).

    If π0does not satisfy(4),then π0=(n?1?t,k,32,2k?2?t,1n?k+t?3).If n?1?t>k+1, then π=(n?t,k,32,2k?2?t,1n?k+t?2),which contradicts condition(4).If n?1?t=k+1, then π0=(n?1?t,n?2?t,32,2n?2t?4,12t?1).Thus,π=(n?t,n?2?t,32,2n?2t?4,12t) or((n?1?t)2,32,2n?2t?4,12t),which contradicts condition(4).Thus,π0satis fi es(4).

    If π0does not satisfy(5),then π0=(44,22),(4,32,24),(4,32,25).Therefore,π is one of the following

    It is easy to see that all of these are potentially C6+P2-graphic.

    §4.Application

    In this section,we will use the above theorem to fi nd exact value of σ(C6+P2,n).

    CorollaryIf n≥6,then σ(C6+P2,n)=4n?2.

    ProofFirst we claim that for n≥6,σ(C6+P2,n)≥4n?2.Take π1=((n?1)2,32,2n?4), then σ(π1)=4n?4 and it is easy to see that π1is not potentially C6+P2-graphic by Theorem 3.1.Thus,σ(C6+P2,n)≥4n?4+2=4n?2.

    Now we show that σ(C6+P2,n)≤4n?2.Let π be an n-term(n≥6)graphic sequence with σ(π)≥4n?2,we only need to show that π is potentially C6+P2-graphic.

    If d1≤3,then σ(π)≤3n<4n?2,a contradiction.Hence,d1≥4.

    If d3≤2,then σ(π)≤2(n?1)+2(n?2)=4n?6<4n?2,a contradiction.Hence,d3≥3.

    If d6=1,then σ(π)=d1+d2+d3+d4+d5+(n?5)≤20+2(n?5)=2n+10<4n?2, a contradiction.Hence,d6≥2.

    If d1=n?1 and d4≤2,then σ(π)≤n?1+d2+d3+2(n?3)≤n?1+4+n?3+2n?6= 4n?6<4n?2,a contradiction.

    Since σ(π)≥4n?2,then π is not one of the following

    (d1,d2,d3,2i,1n?3?i),(n?t,k,32,2k?2?t,1n?k+t?2),(44,22),(4,32,24),(4,32,25).

    Thus,π satisf i es the conditions(1)~(5)in Theorem 3.1.Therefore,π is potentially C6+P2-graphic.

    [1]BONDY J A,MURTY U S R.Graph Theory with Applications[M].Beijing:Science Press,1984.

    [2]GOULD R J,JACOBSON M S,LEHEL J.Potentially G-graphic degree sequences[J].Combinatorics,Graph Theory and Algorithms,1999,1:451-460.

    [3]HU Li-li,LAI Chun-hui.On potentially K5-Z4-graphic sequences[J].J of Zhangzhou Teacher’s College, 2009,22:10-12.

    [4]HU Li-li,LAI Chun-hui.On potentially 3-regular graph graphic sequences[J].Utilitas Mathematica,2009, 80:33-51.

    [5]KLEITMAN D J,WANG D L.Algorithm for constructing graphs and digraphs with given valences and factors[J].Discrete Math,1973,6:79-88.

    [6]LAI Chun-hui,HU Li-li.Potentially Km-G-graphical sequences:a survey[J].Czechoslovak Maths Journal, 2009,59:1059-1075.

    [7]LI Jiong-sheng,YIN Jian-hua.A variation of an extremal theorem due to Woodall[J].Southeast Asian Bulletin of Math,2001,25:427-434.

    [8]LI Jiong-sheng,YIN Jian-hua.Extremal graph theory and degree sequences[J].Adv Math,2004,33:273-283.

    [9]YIN Jian-hua,CHEN Gang.On potentially Kr1,r2,···,rm-graphic sequences[J].Utilitas Mathematica,2007, 72:149-161.

    [10]YIN Meng-xiao,YIN Jian-hua.On potentially H-graphic sequences[J].Czechoslovak Mathematical Journal, 2007,57:705-724.

    tion:05C07

    CLC number:O157.5Document code:A

    1002–0462(2014)02–0238–06

    date:2012-09-18

    Supported by the National Natural Science Foundation of China(11101358);Supported by the Project of Fujian Education Department(JA11165);Supported by the Project of Education Department of Fujian Province(JA12209);Supported by the Project of Zhangzhou Teacher’s College(SJ1104)

    Biography:HU Li-li(1982-),female,native of Zhangzhou,Fujian,a lecturer of Zhangzhou Teacher’s College, M.S.D.,engages in graph theory.

    精品久久久久久久久久免费视频 | 一区二区三区激情视频| 高清av免费在线| 女警被强在线播放| 69av精品久久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 在线看a的网站| 亚洲中文av在线| 丰满的人妻完整版| 亚洲av成人不卡在线观看播放网| 亚洲精品成人av观看孕妇| 咕卡用的链子| 成人亚洲精品av一区二区 | 悠悠久久av| 精品国产超薄肉色丝袜足j| 黑人巨大精品欧美一区二区mp4| 国产精品乱码一区二三区的特点 | 人妻丰满熟妇av一区二区三区| www.精华液| 大码成人一级视频| 十分钟在线观看高清视频www| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图 男人天堂 中文字幕| 亚洲人成电影观看| 亚洲久久久国产精品| 在线观看免费高清a一片| 国产片内射在线| 在线观看日韩欧美| 多毛熟女@视频| 18禁裸乳无遮挡免费网站照片 | 久久久久国内视频| 欧美在线一区亚洲| 国产有黄有色有爽视频| 欧美日本中文国产一区发布| 一进一出好大好爽视频| 国产真人三级小视频在线观看| 成人av一区二区三区在线看| 中文亚洲av片在线观看爽| 精品少妇一区二区三区视频日本电影| 欧美不卡视频在线免费观看 | 香蕉久久夜色| 欧美日韩国产mv在线观看视频| 色播在线永久视频| 国产成人免费无遮挡视频| 人妻丰满熟妇av一区二区三区| 男男h啪啪无遮挡| 久久久久久久久中文| 国产1区2区3区精品| 啦啦啦在线免费观看视频4| 国产精品一区二区免费欧美| 久久国产精品人妻蜜桃| xxx96com| 可以在线观看毛片的网站| 99精品在免费线老司机午夜| 在线观看免费高清a一片| 韩国av一区二区三区四区| 欧美日韩国产mv在线观看视频| 美女福利国产在线| 久久国产亚洲av麻豆专区| 男男h啪啪无遮挡| 热re99久久国产66热| 国产aⅴ精品一区二区三区波| 国产av一区在线观看免费| 成人18禁在线播放| 最近最新中文字幕大全电影3 | 国产精品乱码一区二三区的特点 | 精品国产国语对白av| 韩国av一区二区三区四区| 国产伦一二天堂av在线观看| 老司机深夜福利视频在线观看| 日韩国内少妇激情av| 精品福利观看| 亚洲三区欧美一区| 亚洲熟女毛片儿| 日本免费一区二区三区高清不卡 | 男女午夜视频在线观看| 精品久久久久久,| 亚洲精品一区av在线观看| 精品国产一区二区三区四区第35| 欧美午夜高清在线| 国产精品二区激情视频| 亚洲人成77777在线视频| 大型av网站在线播放| 欧美在线一区亚洲| 亚洲七黄色美女视频| 亚洲精华国产精华精| 大香蕉久久成人网| 国产极品粉嫩免费观看在线| 日本wwww免费看| 亚洲第一欧美日韩一区二区三区| 国产激情久久老熟女| 亚洲在线自拍视频| 日日夜夜操网爽| 国产成人免费无遮挡视频| 一级毛片精品| 丁香六月欧美| 午夜91福利影院| 久久国产精品影院| 三上悠亚av全集在线观看| 在线观看一区二区三区激情| av欧美777| 久久中文看片网| 亚洲av成人av| 露出奶头的视频| 亚洲精华国产精华精| 高清毛片免费观看视频网站 | 人妻丰满熟妇av一区二区三区| 日日夜夜操网爽| 9191精品国产免费久久| 久久久久国产精品人妻aⅴ院| 夜夜看夜夜爽夜夜摸 | 久久久久久大精品| av有码第一页| 黄色视频不卡| 久久99一区二区三区| 男女下面插进去视频免费观看| 91av网站免费观看| 超色免费av| 亚洲色图 男人天堂 中文字幕| 日本撒尿小便嘘嘘汇集6| 成人三级做爰电影| 搡老乐熟女国产| 最好的美女福利视频网| 老熟妇仑乱视频hdxx| 纯流量卡能插随身wifi吗| 国产av在哪里看| 啦啦啦免费观看视频1| 一a级毛片在线观看| 国产蜜桃级精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久久久99蜜臀| 五月开心婷婷网| 精品国产乱码久久久久久男人| 一级片免费观看大全| 丝袜人妻中文字幕| 一区二区三区精品91| 日本一区二区免费在线视频| 少妇的丰满在线观看| 国内久久婷婷六月综合欲色啪| 国产精品一区二区免费欧美| 久久 成人 亚洲| 欧美国产精品va在线观看不卡| 国产无遮挡羞羞视频在线观看| 国产野战对白在线观看| av欧美777| 黄色视频不卡| 性色av乱码一区二区三区2| 午夜福利在线观看吧| 久久精品亚洲av国产电影网| 一区二区三区精品91| 亚洲人成伊人成综合网2020| 久久久久国产一级毛片高清牌| 人人澡人人妻人| 国产亚洲精品一区二区www| 亚洲色图av天堂| 亚洲成人久久性| 免费看a级黄色片| 宅男免费午夜| av在线天堂中文字幕 | 十分钟在线观看高清视频www| 级片在线观看| 久久精品亚洲熟妇少妇任你| 亚洲一区二区三区色噜噜 | 丝袜美腿诱惑在线| 久久久久久久精品吃奶| 桃红色精品国产亚洲av| 欧美日韩福利视频一区二区| 中文字幕色久视频| 脱女人内裤的视频| 亚洲va日本ⅴa欧美va伊人久久| 麻豆久久精品国产亚洲av | 热99re8久久精品国产| 欧美中文综合在线视频| 久久久久久久久免费视频了| 亚洲av成人一区二区三| 一级黄色大片毛片| 嫩草影视91久久| 国产91精品成人一区二区三区| 国产成人精品久久二区二区91| 精品午夜福利视频在线观看一区| 又黄又爽又免费观看的视频| 久久久久亚洲av毛片大全| 国产欧美日韩一区二区三| 丝袜美腿诱惑在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久国产一区二区| 9191精品国产免费久久| 亚洲欧美日韩另类电影网站| 好男人电影高清在线观看| 国产蜜桃级精品一区二区三区| 国产成人精品在线电影| 国产精华一区二区三区| 桃色一区二区三区在线观看| 制服人妻中文乱码| 一本综合久久免费| 亚洲一区二区三区色噜噜 | 少妇裸体淫交视频免费看高清 | 国产三级黄色录像| 高清黄色对白视频在线免费看| 午夜精品久久久久久毛片777| 精品欧美一区二区三区在线| 国产激情欧美一区二区| av免费在线观看网站| av中文乱码字幕在线| 亚洲av美国av| 一夜夜www| 国产麻豆69| 人人妻人人添人人爽欧美一区卜| 国产伦一二天堂av在线观看| 国产成人欧美| 午夜福利一区二区在线看| 亚洲性夜色夜夜综合| 久久精品成人免费网站| aaaaa片日本免费| 久久影院123| 老司机深夜福利视频在线观看| 波多野结衣高清无吗| 人人妻人人爽人人添夜夜欢视频| 大型av网站在线播放| 狂野欧美激情性xxxx| av天堂久久9| 免费在线观看视频国产中文字幕亚洲| 国产99白浆流出| 国产不卡一卡二| 成人亚洲精品一区在线观看| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 久久久久久久久中文| av天堂在线播放| 淫秽高清视频在线观看| 亚洲成a人片在线一区二区| 亚洲精品粉嫩美女一区| 极品教师在线免费播放| 黄片大片在线免费观看| 国产亚洲欧美精品永久| 国产亚洲精品综合一区在线观看 | 黄网站色视频无遮挡免费观看| 免费少妇av软件| 视频区欧美日本亚洲| 热re99久久精品国产66热6| 男女下面进入的视频免费午夜 | 青草久久国产| 中出人妻视频一区二区| 久久国产亚洲av麻豆专区| 亚洲精品中文字幕在线视频| 欧美午夜高清在线| 在线看a的网站| 欧美丝袜亚洲另类 | 老司机在亚洲福利影院| 亚洲一区二区三区色噜噜 | 久久性视频一级片| 久久伊人香网站| 757午夜福利合集在线观看| 18禁观看日本| 天堂动漫精品| 久久天躁狠狠躁夜夜2o2o| 人妻久久中文字幕网| 久久精品亚洲精品国产色婷小说| 久久久久亚洲av毛片大全| 十八禁网站免费在线| 久久久久久久久久久久大奶| 欧美中文日本在线观看视频| 丁香六月欧美| 亚洲中文字幕日韩| 午夜免费观看网址| 免费看十八禁软件| www.熟女人妻精品国产| 久久精品亚洲熟妇少妇任你| 欧美日本亚洲视频在线播放| 女性生殖器流出的白浆| 久久午夜亚洲精品久久| 黄片播放在线免费| 在线观看66精品国产| 啦啦啦免费观看视频1| 亚洲国产精品一区二区三区在线| 亚洲一区高清亚洲精品| 亚洲一区二区三区不卡视频| 好男人电影高清在线观看| 视频区欧美日本亚洲| 国产极品粉嫩免费观看在线| 黄色a级毛片大全视频| 亚洲欧美激情在线| 男女做爰动态图高潮gif福利片 | 999精品在线视频| 精品人妻在线不人妻| 久久人妻福利社区极品人妻图片| www.www免费av| 国产激情久久老熟女| 女性被躁到高潮视频| 国产精品久久久av美女十八| 国产精品自产拍在线观看55亚洲| 无人区码免费观看不卡| 一级毛片女人18水好多| 久久久久久免费高清国产稀缺| 午夜a级毛片| 国产av精品麻豆| 人人妻人人澡人人看| 丝袜美足系列| 韩国精品一区二区三区| 99热只有精品国产| 1024视频免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 午夜激情av网站| 午夜福利一区二区在线看| 免费搜索国产男女视频| 十分钟在线观看高清视频www| 亚洲一区二区三区不卡视频| 久久久久亚洲av毛片大全| 国内毛片毛片毛片毛片毛片| 国产亚洲欧美98| 精品卡一卡二卡四卡免费| 亚洲 国产 在线| 99国产精品免费福利视频| 国产精华一区二区三区| 国产高清国产精品国产三级| 一二三四在线观看免费中文在| 久热这里只有精品99| 日韩视频一区二区在线观看| 免费在线观看黄色视频的| 人人澡人人妻人| 黄网站色视频无遮挡免费观看| 午夜影院日韩av| 嫩草影院精品99| 国产97色在线日韩免费| 无限看片的www在线观看| 无遮挡黄片免费观看| 男女之事视频高清在线观看| 成人三级做爰电影| 欧美日韩瑟瑟在线播放| 国产不卡一卡二| 最近最新免费中文字幕在线| 国产高清国产精品国产三级| 亚洲欧美日韩另类电影网站| 宅男免费午夜| 一个人观看的视频www高清免费观看 | 十分钟在线观看高清视频www| 欧美日韩国产mv在线观看视频| 色在线成人网| 交换朋友夫妻互换小说| 成熟少妇高潮喷水视频| 欧美日韩瑟瑟在线播放| 午夜福利欧美成人| 久久99一区二区三区| 日韩欧美在线二视频| 黑人巨大精品欧美一区二区mp4| 国产精品久久久人人做人人爽| 日韩av在线大香蕉| 国产激情久久老熟女| 在线观看66精品国产| 国产av一区二区精品久久| 丝袜人妻中文字幕| 91大片在线观看| 国产一区二区三区视频了| 国产精品免费一区二区三区在线| 久久精品91无色码中文字幕| 欧美中文综合在线视频| 欧美性长视频在线观看| 久久狼人影院| cao死你这个sao货| 国产人伦9x9x在线观看| 亚洲精品中文字幕在线视频| 琪琪午夜伦伦电影理论片6080| 久久草成人影院| 午夜两性在线视频| 成年人免费黄色播放视频| 亚洲人成伊人成综合网2020| 一本大道久久a久久精品| 黄色女人牲交| 一级作爱视频免费观看| 看片在线看免费视频| 国产精品影院久久| 18禁美女被吸乳视频| 久久午夜综合久久蜜桃| 亚洲熟女毛片儿| 成人免费观看视频高清| 免费在线观看黄色视频的| 成人永久免费在线观看视频| 久久亚洲精品不卡| 18禁裸乳无遮挡免费网站照片 | 精品一区二区三区视频在线观看免费 | 久热这里只有精品99| 色精品久久人妻99蜜桃| 亚洲精品国产一区二区精华液| 咕卡用的链子| 成人精品一区二区免费| 99久久综合精品五月天人人| 国产色视频综合| 久久久精品欧美日韩精品| 日韩精品免费视频一区二区三区| 亚洲国产毛片av蜜桃av| 男女做爰动态图高潮gif福利片 | 国产成+人综合+亚洲专区| 亚洲少妇的诱惑av| av有码第一页| 久久久久国产一级毛片高清牌| 一边摸一边抽搐一进一出视频| 国产免费av片在线观看野外av| 国产熟女午夜一区二区三区| 韩国av一区二区三区四区| 一a级毛片在线观看| 久久九九热精品免费| 91在线观看av| 国产在线观看jvid| 又大又爽又粗| 在线国产一区二区在线| 一区福利在线观看| 免费看十八禁软件| 亚洲色图综合在线观看| 最好的美女福利视频网| 一级,二级,三级黄色视频| 亚洲精品久久午夜乱码| 三上悠亚av全集在线观看| 极品教师在线免费播放| av网站在线播放免费| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 中文欧美无线码| 一级毛片精品| 久久欧美精品欧美久久欧美| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区av网在线观看| 日韩欧美国产一区二区入口| 日本a在线网址| 色尼玛亚洲综合影院| 一边摸一边做爽爽视频免费| 欧美日韩中文字幕国产精品一区二区三区 | 不卡一级毛片| 国产精品av久久久久免费| 久久伊人香网站| 老汉色∧v一级毛片| 国产成人精品在线电影| 国产高清国产精品国产三级| 精品久久久久久,| 高清毛片免费观看视频网站 | 丝袜在线中文字幕| 天堂中文最新版在线下载| 国产日韩一区二区三区精品不卡| 日韩欧美国产一区二区入口| 国产精品 国内视频| 久久国产亚洲av麻豆专区| 一a级毛片在线观看| 欧美精品一区二区免费开放| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 欧美日韩一级在线毛片| 老熟妇乱子伦视频在线观看| 他把我摸到了高潮在线观看| 俄罗斯特黄特色一大片| 国产av精品麻豆| 久久热在线av| 久久国产乱子伦精品免费另类| 麻豆国产av国片精品| 久久久久国产精品人妻aⅴ院| 久久香蕉国产精品| 亚洲精品国产色婷婷电影| 国产av在哪里看| 男人的好看免费观看在线视频 | 欧美成人午夜精品| 久久精品国产清高在天天线| 性少妇av在线| 欧美日韩黄片免| 亚洲精品中文字幕一二三四区| 国产99久久九九免费精品| 两个人免费观看高清视频| 久久久国产成人免费| 激情在线观看视频在线高清| 宅男免费午夜| 成年女人毛片免费观看观看9| 国产高清视频在线播放一区| 交换朋友夫妻互换小说| 日日夜夜操网爽| 男女下面进入的视频免费午夜 | 女人爽到高潮嗷嗷叫在线视频| 国产精品国产av在线观看| e午夜精品久久久久久久| 天堂俺去俺来也www色官网| 精品国产乱码久久久久久男人| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人精品中文字幕电影 | 黄色丝袜av网址大全| 精品人妻1区二区| 中文欧美无线码| 激情在线观看视频在线高清| 午夜福利免费观看在线| 久久午夜综合久久蜜桃| 日韩 欧美 亚洲 中文字幕| 免费在线观看黄色视频的| 亚洲人成网站在线播放欧美日韩| 久久人妻熟女aⅴ| 免费观看精品视频网站| 两个人免费观看高清视频| 国产区一区二久久| 国产欧美日韩一区二区三区在线| 夜夜爽天天搞| 久久精品亚洲精品国产色婷小说| 日本黄色日本黄色录像| svipshipincom国产片| 一级a爱片免费观看的视频| 欧美色视频一区免费| 国产乱人伦免费视频| 大陆偷拍与自拍| 高潮久久久久久久久久久不卡| 日韩精品免费视频一区二区三区| 性少妇av在线| 免费在线观看影片大全网站| 最近最新中文字幕大全免费视频| 亚洲精品久久午夜乱码| 国产免费av片在线观看野外av| 精品久久蜜臀av无| 一进一出抽搐gif免费好疼 | 国产伦一二天堂av在线观看| 国产欧美日韩精品亚洲av| 久久久久国产一级毛片高清牌| 无遮挡黄片免费观看| 久久这里只有精品19| 老汉色∧v一级毛片| 免费看十八禁软件| 又黄又粗又硬又大视频| 国产精品九九99| 国产在线精品亚洲第一网站| 99国产极品粉嫩在线观看| 女警被强在线播放| 久久婷婷成人综合色麻豆| 亚洲五月天丁香| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女 | 久久亚洲精品不卡| 97超级碰碰碰精品色视频在线观看| 女人被躁到高潮嗷嗷叫费观| 在线观看午夜福利视频| 美女国产高潮福利片在线看| 大陆偷拍与自拍| 真人做人爱边吃奶动态| 亚洲精品国产精品久久久不卡| 两个人看的免费小视频| 亚洲片人在线观看| 国产区一区二久久| av中文乱码字幕在线| 热99re8久久精品国产| 日韩欧美国产一区二区入口| 国产精品美女特级片免费视频播放器 | 色综合站精品国产| 精品国产乱子伦一区二区三区| 亚洲第一青青草原| 久久热在线av| 日韩欧美三级三区| 久久影院123| 亚洲激情在线av| svipshipincom国产片| 男人舔女人下体高潮全视频| 老司机福利观看| 搡老岳熟女国产| 女人精品久久久久毛片| 国产三级在线视频| 99热国产这里只有精品6| 精品电影一区二区在线| 波多野结衣一区麻豆| 亚洲精品国产区一区二| 国产熟女午夜一区二区三区| 不卡一级毛片| 青草久久国产| 国产亚洲精品久久久久久毛片| 丝袜人妻中文字幕| 精品少妇一区二区三区视频日本电影| 国产精品成人在线| 老汉色∧v一级毛片| 午夜免费激情av| 一边摸一边做爽爽视频免费| 高清毛片免费观看视频网站 | 美女午夜性视频免费| 亚洲国产中文字幕在线视频| 日本 av在线| 日韩欧美在线二视频| 国产av一区二区精品久久| 黑人猛操日本美女一级片| 国产主播在线观看一区二区| 高清在线国产一区| 亚洲片人在线观看| 免费av中文字幕在线| 宅男免费午夜| 99精品在免费线老司机午夜| videosex国产| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 久99久视频精品免费| 老汉色∧v一级毛片| 国产欧美日韩一区二区精品| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人看| 日本五十路高清| 99久久综合精品五月天人人| 一区福利在线观看| 国产精品 欧美亚洲| 精品乱码久久久久久99久播| 国产aⅴ精品一区二区三区波| 99精品欧美一区二区三区四区| 国产精品野战在线观看 | 人人澡人人妻人| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看 | 精品福利永久在线观看| 麻豆成人av在线观看| 真人一进一出gif抽搐免费| 999久久久国产精品视频| 久久这里只有精品19| 国产成人系列免费观看| 亚洲男人的天堂狠狠| 在线免费观看的www视频| 亚洲情色 制服丝袜| 亚洲精品粉嫩美女一区| 精品国产国语对白av| 黄色视频,在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品九九99| 久久久久久久久中文|