• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Crossed Products and L-R Smash Products of Multiplier Hopf Algebras

    2014-07-31 22:37:08ZHAOLihuiWANGCaihong

    ZHAO Li-hui,WANG Cai-hong

    (1.School of Mathematics and Statistics,Henan University of Science and Technology,Luoyang 471023, China;Department of Mathematics,Zhejiang University,Hangzhou 310027,China;2.College of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo 454000,China)

    Generalized Crossed Products and L-R Smash Products of Multiplier Hopf Algebras

    ZHAO Li-hui1,WANG Cai-hong2

    (1.School of Mathematics and Statistics,Henan University of Science and Technology,Luoyang 471023, China;Department of Mathematics,Zhejiang University,Hangzhou 310027,China;2.College of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo 454000,China)

    In this paper we generalize the notions of crossed products and L-R smash products in the context of multiplier Hopf algebras.We use comodule algebras to def i ne generalized diagonal crossed products,L-R smash products,two-sided smash products and two-sided crossed products and prove that they are all associative algebras.Then we show the isomorphic relations of them.

    multiplier Hopf algebra;diagonal crossed product;L-R smash product;twosided smash product;two-sided crossed product

    §1.Introduction

    Multiplier Hopf algebras were introduced by A Van Daele in[12]as natural generalizations of Hopf algebras.The motivating example is the dual of an inf i nite dimensional group algebra with the comultiplication def i ned as dual to the product in the group.Dif f erent from a Hopf algebra,the underlying algebra of a multiplier Hopf algebra is no longer assumed to have an identity and the comultiplication is modif i ed.It has been argued in several papers(see[7,13]) why such a generalization is important.

    Actions and coactions on algebras are an important part of the theory of Hopf algebras, and they have been extended to multiplier Hopf algebras.Using them one can construct many kinds of non-trivial algebra structures on tensor products.

    Diagonal crossed products over quasi-Hopf algebras were f i rst introduced by S Majid in[10] in the form of implicit Tannaka-Krein reconstruction procedure and studied later by F Hausser and F Nill in[9].The notion of L-R smash product was introduced and studied in a series of [1-4],based on the theory of deformation quantization.Applying the coactions of multiplier Hopf algebra,in this paper we def i ne more general versions of diagonal crossed products,LR smash products,two-sided smash products and two-sided crossed products and study their relations.

    In the following we recall some def i nitions of multiplier Hopf algebras.

    Let A be an algebra with or without identity.We denote by M(A)the multiplier algebra of A.If the product in A is non-degenerate,that is,if ab=0 for all b implies a=0 and ab=0 for all a implies b=0,then there is a natural embedding from A into M(A).And it is easy to see that if A has an identity then the product is automatically non-degenerate and A=M(A).

    A comultiplication on A is a homomorphism Δ:A→M(A?A)such that Δ(a)(1?b)and (a?1)Δ(b)are elements of A?A for all a,b∈A and Δ is coassociative in the following sense

    for all a,b,c∈A.

    A pair(A,Δ)in which A is an algebra with a non-degenerate product and Δ is a comultiplication on A,is called a multiplier Hopf algebra if the linear maps T1,T2:A?A→A?A, def i ned by

    are bijective.We say that(A,Δ)is regular if(A,Δ)is again a multiplier Hopf algebra where Δ0is the opposite comultiplication.In a regular multiplier Hopf algebra the antipode is invertible and from A to A instead of the multiplier algebra M(A),see[13].

    A vector space R is a left A-module if there is a bilinear map A?R→R de fi ned by a?x■→a·x satisfying(aa0)·x=a·(a0·x)for all a,a0∈A and x∈R.Moreover,if AR=R then the left A-module R is called unital.It is similar to de fi ne a(unital)right A-module. Throughout this paper we work with a multiplier Hopf algebra A and unital modules over a fi xed fi eld k.The Sweedler notation for regular multiplier Hopf algebras is used in several papers such as[7]and[14].So in this paper we will also use it if the comultiplication of a multiplier Hopf algebra is“well-covered”which∑ is a new concept introduced in[7].But here we will write the comultiplication Δ(a)(1b)=a1a2b for a,b∈A.

    §2.Generalized Crossed Products and L-R Smash Products

    We f i rstly give the def i nitions of a bimodule algebra and a bicomodule algebra.

    Def i nition 1Let A be a regular multiplier Hopf algebra.An algebra R is called an A-bimodule algebra,if for all a,b∈A,x,x0∈R the following conditions hold

    (1)R is a unital left A-module and unital right A-module such that(a·x)·b=a·(x·b);

    (2)a·(xx0)=∑(a1·x)(a2·x0)and(xx0)·a=∑(x·a1)(x0·a2).

    Example 1Let A be a multiplier Hopf algebra,E be a left A-module algebra and D be a right A-module algebra.Then E?D is an A-bimodule algebra such that

    for all a∈A,e∈E and d∈D.

    Before we def i ne a bicomodule algebra of a multiplier Hopf algebra,we need to recall the def i nition of a coaction in multiplier Hopf algebras[15].

    Def i nition 2Let A be a multiplier Hopf algebra,and R an algebra with a non-degenerate product.An injective homomorphism Γ:R→M(A?R)is a left coaction of A on R if the following conditions hold

    (i)Γ(R)(A?1)?A?R,(A?1)Γ(R)?A?R; (ii)(idA?Γ)Γ=(ΔA?idR)Γ.

    At the same time,R is called a left A-comodule algebra.

    Note 1(1)For any a∈A,x∈R,there exists an element e∈A such that ea=a and Γ(x)(a?1)=Γ(x)(e?1)(a?1).By the formula Γ(x)(e?1)∈A?R,we can write Γ(x)(e?1)=∑x?1?x0and

    Similarly,(a?1)Γ(x)=∑ax?1?x0.

    (2)The right hand side of condition(ii)makes sense,because ΔAis non-degenerate.Def i ning

    for all x,y∈R,a,b∈A,we have(idA?Γ)Γ(x)∈M(A?A?R).

    (3)The notations of a right coaction of A on R and a right A-comodule algebra can be def i ned which is denoted byˉΓ:R→M(R?A),ˉΓ(x)=∑x(0)?x(1).

    Def i nition 3Let A be a multiplier Hopf algebra and R an algebra.Assume that R is a left A-comodule algebra and also a right A-comodule algebra.Then R is an A-bicomodule algebra if

    for all x∈R,a,a0∈A.

    Example 2Let(A,Δ)be a multiplier Hopf algebra,Q be a left A-comodule algebra and P be a right A-comodule algebra.Then Q?P is an A-bicomodule algebra.

    ProofIf ΓQis the left coaction of Q andˉΓPis the right coaction of Q,we can construct the maps ΓQ?P:Q?P→M(A?(Q?P))andˉΓQ?P:Q?P→M((Q?P)?A)such that

    for all a∈A,q,q0∈Q and p,p0∈P.Therefore it is easy to see that

    and

    By the def i nition of a bicomodule algebra we prove the result.

    Using bimodule algebras and bicomodule algebras,we will show the def i nitions of generalized crossed products and L-R smash products in multiplier Hopf algebras.

    ?Generalized Diagonal Crossed Product

    Let(A,Δ)be a regular multiplier Hopf algebra,B be an A-bimodule algebra and C be an A-bicomodule algebra.We def i ne

    for all b,b0∈B and c,c0∈C.

    Note 2The above formula is well-def i ned since left and right modules of B are unital.

    Def i nition 4Let(A,Δ)be a regular multiplier Hopf algebra,B be an A-bimodule algebra and C be an A-bicomodule algebra.Then B?C with above multiplication is called a generalized diagonal crossed product which is denoted by B??C.Moreover,B??C is called a diagonal crossed product if C=A and the coactions are given by Δ.

    ?Generalized L-R Smash Product

    Let(A,Δ)be a multiplier Hopf algebra,B be an A-bimodule algebra and C be an A-bicomodule algebra.For any b,b0∈B and c,c0∈C we give the multiplication on B?C as

    Note 3(1)The above formula is well-def i ned since left and right modules of B are unital. (2)If(A,Δ)be a regular multiplier Hopf algebra and C=A in which the coactions are given by Δ,the above structure is exactly an ordinary L-R smash product of B?A.

    Def i nition 5Let(A,Δ)be a multiplier Hopf algebra,B be an A-bimodule algebra and C be an A-bicomodule algebra.Then B?C with above multiplication is called a generalized L-R smash product which is denoted by.If both B and C have an identity,then 1is an identity of.A generalized L-R smash product becomes a generalized smash product which is denoted byif the right A-module B or the right A-comodule C is trivial.

    ?Two-sided Generalized Smash Product

    Let(A,Δ)be a multiplier Hopf algebra.Suppose that E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule algebra.For any e,e0∈E,d,d0∈D and c,c0∈C we def i ne a multiplication on ECD giving by

    Proposition 1The above multiplication on E?C?D is associative.

    ProofBy direct calculations we obtain

    for all e,e0∈E,d,d0∈D and c,c0∈C.

    Def i nition 6Let(A,Δ)be a multiplier Hopf algebra.Suppose that E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule algebra.Then E?C?Dwith the above multiplication is called a two-sided generalized smash product,which is denoted by ECD.Moreover,ECD is called a two-sided smash product if A is a regular multiplier Hopf algebra and C=A.If E,C and D all have an identity,1E1C1Dis an identity of ECD.

    ?Generalized Two-sided Crossed Product

    Let(A,Δ)be a multiplier Hopf algebra.Suppose that B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra.We def i ne a multiplication on PBQ giving by

    where p,p0∈P,q,q0∈Q and b,b0∈B.

    Proposition 2The above multiplication on P?B?Q is associative.

    ProofUsing the def i nition we obtain

    for all p,p0,p00∈P,q,q0,q00∈Q and b,b0,b00∈B.

    Def i nition 7Let(A,Δ)be a multiplier Hopf algebra.Suppose that B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra.Then P?B?Q with the above multiplication is called a generalized two-sided crossed product,which is denoted by P■B■Q.Similarly,1P■1B■1Qis an identity of P■B■Q if P,Q and B all have an identity.

    §3.Isomorphisms

    In this section we will consider the isomorphic relations between the generalized crossed products and L-R smash products which we def i ned in Section 2.

    Proposition 3Let(A,Δ)be a regular multiplier Hopf algebra.

    (1)If E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule algebra,then??C~=as algebras.

    (2)If B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra,then B(QP)~=PBQ as algebras.

    ProofWe def i ne the linear maps

    for all e∈E,d∈D,c∈C and b∈B,q∈Q,p∈P.By the def i nitions of g and g0and the multiplications of crossed products we get

    for all e,e0∈E,d,d0∈D and c,c0∈C and

    for all b,b0∈B,q,q0∈Q and p,p0∈P.Furthermore,remark that the antipode of A is invertible since A is regular.Hence g and g0are invertible and the inverse maps are given respectively by

    So g and g0are algebra isomorphisms.

    Proposition 4Let(A,Δ)be a multiplier Hopf algebra.

    (1)If E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule

    (2)If B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-

    ProofBy Example 1 and Example 2,E?D is an A-bimodule algebra and Q?P is

    where e∈E,d∈D,c∈C and b∈B,q∈Q,p∈P.It is clear that f and f0are bijective. Using the multiplications of generalized L-R smash products and two-sided crossed products respectively,we have

    for all e,e0∈E,d,d0∈D and c,c0∈C and

    for all b,b0∈B,q,q0∈Q and p,p0∈P.Therefore f and f0are algebra isomorphisms.

    By Proposition 3 and Proposition 4 we obtain the following properties.

    Corollary 2Let(A,Δ)be a regular multiplier Hopf algebra.

    (1)If E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule

    (2)If B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra,then Bˉ■(Q?P)~=B??(Q?P)as algebras.

    Corollary 3Let(A,Δ)be a regular multiplier Hopf algebra.Suppose that E is a left A-module algebra,D is a right A-module algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra.Then

    [1]BIELIAVSKY P,BONNEAU P,MAEDA Y.Universal deformation formulae,symplectic Lie groups and symmetric spaces[J].2003,Math QA/0308189.

    [2]BIELIAVSKY P,BONNEAU P,MAEDA Y.Universal deformation formulae for three-dimensional solvable Lie groups[J].2003,Math QA/0308188.

    [3]BONNEAU P,GERSTENHABER M,GEAQUINTO A,et al.Quantum groups and deformation quantization:explicit approaches and implicit aspects[J].J Math Phys,2004,45:3703-3741.

    [4]BONNEAU P,STERNHEIMER D.Topological Hopf Algebras,Quantum Qroups and Deformation Quantization,in“Hopf Algebras in Noncommutative Geometry and Physics”,Lecture Notes in Pure and Appl Math[C].New York:Marcel Dekker,2005,239:55-70.

    [5]DELVAUX L.Semi-direct products of multiplier Hopf algebras:smash products[J].Comm Alg,2002,30(12): 5961-5977.

    [6]DELVAUX L.Twisted tensor product of multiplier Hopf(*-)algebras[J].J Alg,2003,269:285-316.

    [7]DRABANT B,VAN D A,ZHANG Yin-huo.Actions of multiplier hopf algebras[J].Comm Alg,1999,27(9): 4117-4127.

    [8]DRABANT B,VAN DAELE A.Pairing and quantum double of multiplier Hopf algebras[J].Algebras and Representation Theory,2001,4:109-132.

    [9]HAUSS F,NILL F.Diagonal crossed products by duals of quasi-quantum groups[J].Rev Math Phys,1999, 11:553-629.

    [10]MAJID S.Quantum double for quasi-Hopf algebras[J].Lett Math Phys,1998,45:1-9.

    [11]PANAITE F,OYSTAEYEN F V.L-R-smash product for(quasi)Hopf algebras[J].J Alg,2007,309(1): 168-191.

    [12]VAN DAELE A.Multiplier Hopf algebras[J].Transactions of the American Mathematical Society,1994, 342(2):323-366.

    [13]VAN D A.An algebraic framework for group duality[J].Advances in Mahtematics,1998,140:323-366.

    [14]VAN D A,WANG Shuang-hong.The Larson-Sweeldler theorem for multiplier Hopf algebras[J].J Alg,2006, 296:75-95.

    [15]VAN D A,ZHANG Yin-huo.Calois theory for multiplier Hopf algebras with integrals[J].Algebras and Representation Theory,1999,2:83-106.

    [16]ZHAO Li-hui,LU Di-ming,FANG Xiao-li.L-R smash products of multiplier Hopf algebras[J].Appl Math, 2008,23B(1):83-90.

    tion:16W30,16S40

    CLC number:O151.21Document code:A

    1002–0462(2014)02–0283–09

    date:2012-12-19

    Supported by the Scientif i c Research Foundation for Doctoral Scientists of Henan University of Science and Technology(09001303);Supported by the National Natural Science Foundation of China(11101128)

    Biographies:ZHAO Li-hui(1979-),female,native of Luoyang,Henan,a lecturer of Henan University of Science and Technology,Ph.D.,engages in noncommutative algebra;WANG Cai-hong(1980-),female,native of Zhengzhou,Henan,a lecturer of Henan Polytechnic University,Ph.D.,engages in noncommutative algebra.

    黄片播放在线免费| 侵犯人妻中文字幕一二三四区| 免费人成视频x8x8入口观看| 亚洲国产毛片av蜜桃av| 欧美激情久久久久久爽电影 | 欧美中文日本在线观看视频| av在线天堂中文字幕 | 亚洲熟妇熟女久久| 在线视频色国产色| 亚洲精品成人av观看孕妇| 久久久久久久久免费视频了| 两人在一起打扑克的视频| 高清黄色对白视频在线免费看| 亚洲国产精品sss在线观看 | 亚洲欧美日韩另类电影网站| 丰满迷人的少妇在线观看| 亚洲欧美精品综合一区二区三区| 久99久视频精品免费| 久久久久久大精品| 19禁男女啪啪无遮挡网站| 人人妻,人人澡人人爽秒播| 曰老女人黄片| 亚洲男人的天堂狠狠| √禁漫天堂资源中文www| 淫妇啪啪啪对白视频| 久久久国产欧美日韩av| 9色porny在线观看| 国产亚洲欧美98| 97碰自拍视频| 国产在线精品亚洲第一网站| 女生性感内裤真人,穿戴方法视频| 欧美激情久久久久久爽电影 | 午夜免费激情av| 成人手机av| 99re在线观看精品视频| a级毛片黄视频| 亚洲av片天天在线观看| 久久久久国产精品人妻aⅴ院| 日韩国内少妇激情av| 色综合婷婷激情| 级片在线观看| 精品日产1卡2卡| 高清黄色对白视频在线免费看| 欧美激情极品国产一区二区三区| 亚洲成人免费av在线播放| 97人妻天天添夜夜摸| 久久久久久亚洲精品国产蜜桃av| 久久中文看片网| 水蜜桃什么品种好| 性少妇av在线| 男女下面插进去视频免费观看| 村上凉子中文字幕在线| 国产成+人综合+亚洲专区| 精品国产一区二区久久| 欧美激情高清一区二区三区| 纯流量卡能插随身wifi吗| 看黄色毛片网站| 狂野欧美激情性xxxx| 国产成人av教育| 午夜精品久久久久久毛片777| 视频在线观看一区二区三区| 视频区欧美日本亚洲| 男女下面进入的视频免费午夜 | 高清黄色对白视频在线免费看| 日本黄色日本黄色录像| 日本 av在线| 激情在线观看视频在线高清| 午夜日韩欧美国产| 国产高清国产精品国产三级| 精品久久久久久电影网| 国产亚洲精品久久久久5区| 亚洲激情在线av| 天天影视国产精品| 亚洲精品在线美女| av电影中文网址| 国产亚洲欧美98| 这个男人来自地球电影免费观看| 国产精品九九99| 国产成人系列免费观看| 国产精品亚洲一级av第二区| 91在线观看av| 亚洲男人的天堂狠狠| 一级作爱视频免费观看| 国产成人系列免费观看| xxxhd国产人妻xxx| 久久精品91无色码中文字幕| 丝袜在线中文字幕| 亚洲欧美日韩高清在线视频| 视频区欧美日本亚洲| 婷婷精品国产亚洲av在线| 妹子高潮喷水视频| 免费在线观看视频国产中文字幕亚洲| 夜夜躁狠狠躁天天躁| 两人在一起打扑克的视频| 亚洲人成电影观看| 性色av乱码一区二区三区2| 久久精品人人爽人人爽视色| 在线观看一区二区三区| 亚洲专区国产一区二区| 在线十欧美十亚洲十日本专区| 久久久久久久久久久久大奶| 亚洲人成77777在线视频| 黄色女人牲交| ponron亚洲| 婷婷精品国产亚洲av在线| 亚洲午夜精品一区,二区,三区| 一边摸一边抽搐一进一小说| 久久天堂一区二区三区四区| 亚洲自拍偷在线| 精品少妇一区二区三区视频日本电影| 女性被躁到高潮视频| 色婷婷av一区二区三区视频| 日本a在线网址| 天堂√8在线中文| 精品一区二区三卡| 老司机在亚洲福利影院| 久久久久精品国产欧美久久久| 丰满人妻熟妇乱又伦精品不卡| 欧美一级毛片孕妇| 欧美激情高清一区二区三区| av在线天堂中文字幕 | 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产99精品国产亚洲性色 | 99热国产这里只有精品6| 国产成人精品无人区| 国产黄a三级三级三级人| 久久精品aⅴ一区二区三区四区| 人人妻,人人澡人人爽秒播| 亚洲三区欧美一区| 身体一侧抽搐| 亚洲情色 制服丝袜| 日韩有码中文字幕| 深夜精品福利| 又黄又爽又免费观看的视频| 黄色丝袜av网址大全| 亚洲五月天丁香| 五月开心婷婷网| 久久久久国产精品人妻aⅴ院| 久久九九热精品免费| 久久国产精品男人的天堂亚洲| 亚洲三区欧美一区| 一级毛片精品| 丰满迷人的少妇在线观看| 满18在线观看网站| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区视频了| 精品国产乱子伦一区二区三区| 制服诱惑二区| 久久久精品欧美日韩精品| 国产精品国产av在线观看| 日本精品一区二区三区蜜桃| 午夜影院日韩av| 在线观看免费视频日本深夜| 曰老女人黄片| 久久久国产一区二区| 一边摸一边抽搐一进一小说| 国产精品爽爽va在线观看网站 | 欧美人与性动交α欧美精品济南到| 宅男免费午夜| 老司机靠b影院| 水蜜桃什么品种好| 日日夜夜操网爽| av片东京热男人的天堂| 99国产精品一区二区蜜桃av| 成人亚洲精品一区在线观看| 久久天堂一区二区三区四区| 国产欧美日韩一区二区三区在线| 久久久久精品国产欧美久久久| 国产激情久久老熟女| 制服人妻中文乱码| 热re99久久国产66热| 热re99久久国产66热| 啦啦啦在线免费观看视频4| 国产精品久久久久成人av| 激情在线观看视频在线高清| 国产亚洲精品一区二区www| 最近最新中文字幕大全免费视频| 无人区码免费观看不卡| 色精品久久人妻99蜜桃| 99久久精品国产亚洲精品| 久99久视频精品免费| 一个人观看的视频www高清免费观看 | 一边摸一边抽搐一进一出视频| 伦理电影免费视频| 人人妻人人爽人人添夜夜欢视频| 日韩欧美一区二区三区在线观看| 丰满的人妻完整版| 国产一区二区激情短视频| 久久久精品欧美日韩精品| 亚洲精华国产精华精| 大香蕉久久成人网| 大香蕉久久成人网| 女人被狂操c到高潮| www.熟女人妻精品国产| 免费在线观看日本一区| 又黄又爽又免费观看的视频| ponron亚洲| 午夜福利一区二区在线看| 露出奶头的视频| 久9热在线精品视频| 国产国语露脸激情在线看| 很黄的视频免费| 女人被狂操c到高潮| 久久久久精品国产欧美久久久| 亚洲av成人一区二区三| 天堂俺去俺来也www色官网| 每晚都被弄得嗷嗷叫到高潮| 男女做爰动态图高潮gif福利片 | 欧美国产精品va在线观看不卡| 亚洲午夜精品一区,二区,三区| 悠悠久久av| 国产高清激情床上av| 90打野战视频偷拍视频| 99riav亚洲国产免费| 精品午夜福利视频在线观看一区| 精品高清国产在线一区| 老司机在亚洲福利影院| 亚洲国产欧美日韩在线播放| 水蜜桃什么品种好| 水蜜桃什么品种好| 黄网站色视频无遮挡免费观看| 九色亚洲精品在线播放| 精品一区二区三区视频在线观看免费 | 成人亚洲精品av一区二区 | 亚洲片人在线观看| 极品教师在线免费播放| 久久性视频一级片| 亚洲一区高清亚洲精品| 久久久久精品国产欧美久久久| 香蕉久久夜色| 不卡一级毛片| 黄色女人牲交| 中文字幕另类日韩欧美亚洲嫩草| 99在线视频只有这里精品首页| 亚洲欧美激情综合另类| 国产欧美日韩一区二区精品| 亚洲人成电影观看| 黄色片一级片一级黄色片| 桃色一区二区三区在线观看| 在线观看免费午夜福利视频| 亚洲avbb在线观看| 村上凉子中文字幕在线| 少妇粗大呻吟视频| 好看av亚洲va欧美ⅴa在| 午夜日韩欧美国产| 亚洲色图综合在线观看| 精品久久久久久成人av| 久久久国产成人精品二区 | 亚洲av第一区精品v没综合| 国产有黄有色有爽视频| 欧美激情极品国产一区二区三区| 一级a爱片免费观看的视频| 久久国产精品男人的天堂亚洲| 亚洲精品一区av在线观看| 丝袜在线中文字幕| 国产99白浆流出| 亚洲人成网站在线播放欧美日韩| 香蕉久久夜色| 香蕉久久夜色| 色老头精品视频在线观看| 97人妻天天添夜夜摸| 国产精品免费视频内射| 午夜两性在线视频| 国产精品免费视频内射| 成人av一区二区三区在线看| 亚洲成人久久性| 中文亚洲av片在线观看爽| 久久久久亚洲av毛片大全| 精品久久久久久,| 新久久久久国产一级毛片| 男女下面进入的视频免费午夜 | 在线永久观看黄色视频| 大陆偷拍与自拍| 两性夫妻黄色片| 老司机午夜福利在线观看视频| 欧美久久黑人一区二区| 国产亚洲精品综合一区在线观看 | 男女下面进入的视频免费午夜 | 亚洲,欧美精品.| 黑丝袜美女国产一区| a在线观看视频网站| 精品福利永久在线观看| 中亚洲国语对白在线视频| 中文字幕人妻丝袜制服| 久久中文字幕一级| 俄罗斯特黄特色一大片| 69av精品久久久久久| 亚洲国产精品一区二区三区在线| 久久中文字幕一级| 黑丝袜美女国产一区| 日韩欧美免费精品| 99热只有精品国产| 99热只有精品国产| 欧美+亚洲+日韩+国产| 午夜精品国产一区二区电影| 日韩精品免费视频一区二区三区| 精品国产一区二区三区四区第35| 国产又爽黄色视频| 午夜影院日韩av| 亚洲一区二区三区欧美精品| 69av精品久久久久久| 18美女黄网站色大片免费观看| 叶爱在线成人免费视频播放| 亚洲人成77777在线视频| 亚洲国产精品999在线| avwww免费| 黄色女人牲交| 黄色女人牲交| 午夜免费观看网址| 欧美老熟妇乱子伦牲交| 精品乱码久久久久久99久播| 美女高潮喷水抽搐中文字幕| 长腿黑丝高跟| 久久精品国产亚洲av香蕉五月| 欧美激情 高清一区二区三区| avwww免费| 1024香蕉在线观看| 在线永久观看黄色视频| 国产一卡二卡三卡精品| 在线永久观看黄色视频| 久久天堂一区二区三区四区| 国产不卡一卡二| 男女做爰动态图高潮gif福利片 | a级片在线免费高清观看视频| 亚洲视频免费观看视频| 国产精品香港三级国产av潘金莲| 在线观看一区二区三区| av在线播放免费不卡| 99re在线观看精品视频| 国产高清激情床上av| 一进一出好大好爽视频| 岛国视频午夜一区免费看| 99在线人妻在线中文字幕| 久久久久久大精品| 欧美成人性av电影在线观看| 电影成人av| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一小说| 真人一进一出gif抽搐免费| 免费看十八禁软件| 中文字幕人妻熟女乱码| 色综合欧美亚洲国产小说| 黄片播放在线免费| 亚洲中文日韩欧美视频| 欧美乱码精品一区二区三区| 欧美 亚洲 国产 日韩一| 久久国产精品影院| 97碰自拍视频| 在线观看一区二区三区激情| 久久人人97超碰香蕉20202| 国产av在哪里看| 成人三级黄色视频| 国产精品日韩av在线免费观看 | 真人一进一出gif抽搐免费| 久久亚洲真实| 男女床上黄色一级片免费看| 久久香蕉国产精品| 叶爱在线成人免费视频播放| 中文字幕人妻丝袜制服| 久久久久久久精品吃奶| 欧美成狂野欧美在线观看| 精品国产一区二区久久| 久久草成人影院| 日韩欧美在线二视频| 久久这里只有精品19| 成人国语在线视频| 久久热在线av| 黄色a级毛片大全视频| 啦啦啦在线免费观看视频4| 久久久久国产精品人妻aⅴ院| 国产视频一区二区在线看| 黑人巨大精品欧美一区二区蜜桃| 天天影视国产精品| 亚洲,欧美精品.| 国产精品久久久人人做人人爽| 久久久水蜜桃国产精品网| 51午夜福利影视在线观看| 满18在线观看网站| 午夜免费激情av| 精品熟女少妇八av免费久了| 性少妇av在线| 在线播放国产精品三级| 亚洲精品av麻豆狂野| 97人妻天天添夜夜摸| 91在线观看av| 精品福利观看| 妹子高潮喷水视频| 亚洲成人精品中文字幕电影 | 国产亚洲欧美98| 精品欧美一区二区三区在线| 制服人妻中文乱码| 国产精品乱码一区二三区的特点 | 亚洲aⅴ乱码一区二区在线播放 | 欧美久久黑人一区二区| 国产在线精品亚洲第一网站| 国产免费男女视频| 欧美亚洲日本最大视频资源| 久久国产乱子伦精品免费另类| 日本五十路高清| 成年人免费黄色播放视频| 丝袜美腿诱惑在线| 欧美激情高清一区二区三区| 黄频高清免费视频| 国产黄色免费在线视频| 女人被狂操c到高潮| 国产精品 欧美亚洲| 怎么达到女性高潮| 国产一区二区三区视频了| 中文字幕人妻丝袜一区二区| 欧美另类亚洲清纯唯美| 亚洲精品中文字幕在线视频| 国产成人精品无人区| 国产1区2区3区精品| 欧美一区二区精品小视频在线| 香蕉丝袜av| 成人影院久久| 一进一出抽搐gif免费好疼 | 欧美成人免费av一区二区三区| 一级a爱视频在线免费观看| 成年人免费黄色播放视频| 99久久精品国产亚洲精品| 超碰成人久久| av欧美777| 久久久久九九精品影院| 亚洲精品av麻豆狂野| 又黄又爽又免费观看的视频| 久久婷婷成人综合色麻豆| 男女做爰动态图高潮gif福利片 | 免费高清视频大片| 久久99一区二区三区| 女警被强在线播放| 欧美另类亚洲清纯唯美| 国产成人免费无遮挡视频| 在线观看免费视频日本深夜| 精品一品国产午夜福利视频| 久久精品国产亚洲av高清一级| 男人的好看免费观看在线视频 | 一级片免费观看大全| 人妻久久中文字幕网| 精品国产国语对白av| 妹子高潮喷水视频| 国产av一区二区精品久久| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 一区二区三区国产精品乱码| 一边摸一边做爽爽视频免费| 波多野结衣av一区二区av| 90打野战视频偷拍视频| 99香蕉大伊视频| 校园春色视频在线观看| 欧美性长视频在线观看| 午夜免费成人在线视频| av在线播放免费不卡| 日韩欧美免费精品| 99热国产这里只有精品6| 久久 成人 亚洲| 日韩中文字幕欧美一区二区| 精品一品国产午夜福利视频| 国产伦人伦偷精品视频| 美女 人体艺术 gogo| 可以在线观看毛片的网站| 老汉色∧v一级毛片| 亚洲熟妇中文字幕五十中出 | 免费高清在线观看日韩| 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 激情视频va一区二区三区| 欧美黑人精品巨大| 亚洲精品中文字幕一二三四区| 国产精华一区二区三区| 国产激情久久老熟女| 欧美精品啪啪一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久人人做人人爽| 国产av精品麻豆| 精品无人区乱码1区二区| 在线播放国产精品三级| 老司机在亚洲福利影院| 精品一品国产午夜福利视频| 嫩草影院精品99| 99在线视频只有这里精品首页| 脱女人内裤的视频| 一区二区三区激情视频| 宅男免费午夜| 精品一区二区三区四区五区乱码| 色婷婷久久久亚洲欧美| 在线永久观看黄色视频| 满18在线观看网站| 精品熟女少妇八av免费久了| 亚洲精品久久成人aⅴ小说| 国产伦人伦偷精品视频| 18美女黄网站色大片免费观看| 成人三级做爰电影| 色综合婷婷激情| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 桃红色精品国产亚洲av| www.熟女人妻精品国产| 国产亚洲精品综合一区在线观看 | 欧美在线黄色| 亚洲一码二码三码区别大吗| 精品欧美一区二区三区在线| 亚洲午夜理论影院| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 麻豆国产av国片精品| 亚洲第一欧美日韩一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲成人精品中文字幕电影 | 老司机午夜十八禁免费视频| 国产人伦9x9x在线观看| 一边摸一边做爽爽视频免费| 婷婷六月久久综合丁香| 男女之事视频高清在线观看| 中文字幕色久视频| www日本在线高清视频| 波多野结衣av一区二区av| 国产欧美日韩综合在线一区二区| 成人特级黄色片久久久久久久| 91成人精品电影| 国产欧美日韩精品亚洲av| 欧美成人免费av一区二区三区| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 免费日韩欧美在线观看| 19禁男女啪啪无遮挡网站| 一级片'在线观看视频| 日韩精品青青久久久久久| 99香蕉大伊视频| 欧美精品亚洲一区二区| 俄罗斯特黄特色一大片| 人人妻人人添人人爽欧美一区卜| 一区二区日韩欧美中文字幕| 久久香蕉激情| 成人特级黄色片久久久久久久| 亚洲国产精品一区二区三区在线| 精品高清国产在线一区| 亚洲,欧美精品.| 色尼玛亚洲综合影院| 乱人伦中国视频| 国产色视频综合| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产国语对白av| 99在线人妻在线中文字幕| 黑人欧美特级aaaaaa片| 国产又爽黄色视频| 欧美丝袜亚洲另类 | 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| 在线免费观看的www视频| 夫妻午夜视频| 国产真人三级小视频在线观看| 国产亚洲欧美98| 日本五十路高清| 无人区码免费观看不卡| 久久久久久人人人人人| 成人黄色视频免费在线看| 成人特级黄色片久久久久久久| 亚洲精品中文字幕一二三四区| 久久精品国产综合久久久| 国产一区二区三区综合在线观看| 成人18禁高潮啪啪吃奶动态图| 国产蜜桃级精品一区二区三区| 99久久综合精品五月天人人| 亚洲成人免费av在线播放| 国产成人av教育| 天天躁夜夜躁狠狠躁躁| 日韩大码丰满熟妇| 少妇 在线观看| 1024视频免费在线观看| 九色亚洲精品在线播放| 日韩大码丰满熟妇| 一级黄色大片毛片| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 在线看a的网站| 一本大道久久a久久精品| 天堂动漫精品| 黄色怎么调成土黄色| 午夜福利,免费看| 9色porny在线观看| 天堂√8在线中文| 级片在线观看| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 国产xxxxx性猛交| 国产成人欧美在线观看| 日本五十路高清| 国产区一区二久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人精品二区 | 操出白浆在线播放| 亚洲 国产 在线| 很黄的视频免费| 国产三级在线视频| 精品国产一区二区久久| 神马国产精品三级电影在线观看 | 真人一进一出gif抽搐免费| 精品一区二区三区视频在线观看免费 | 亚洲av美国av| 精品一区二区三区av网在线观看| 欧美激情 高清一区二区三区| 亚洲情色 制服丝袜| 99国产精品免费福利视频| 丰满迷人的少妇在线观看| 欧美黄色片欧美黄色片| √禁漫天堂资源中文www| 99re在线观看精品视频| 国产成人啪精品午夜网站| 亚洲成人精品中文字幕电影 | 久久 成人 亚洲| 大陆偷拍与自拍| 欧美国产精品va在线观看不卡|