• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Common Fixed Points for a Countable Family of Non-self Mappings in Cone Metric Spaces with the Convex Property

    2014-07-31 22:37:08PIAOYongjieLIChunhua

    PIAO Yong-jie,LI Chun-hua

    (College of Science,Yanbian University,Yanji 133002,China)

    Common Fixed Points for a Countable Family of Non-self Mappings in Cone Metric Spaces with the Convex Property

    PIAO Yong-jie,LI Chun-hua

    (College of Science,Yanbian University,Yanji 133002,China)

    A new common f i xed point result for a countable family of non-self mappings def i ned on a closed subset of a cone metric space with the convex property is obtained,and from which,a more general result is given.Our main results improve and generalize many known common f i xed point theorems.

    common f i xed point;the convex property;cone metric space

    §1.Introduction and Preliminaries

    Huang and Zhang[1]recently have introduced the concept of cone metric spaces,where the set of real number is replaced by an ordered Banach space,and they have established some fi xed point theorems for a contractive type mapping on a normal cone metric space. Subsequently,some other authors[27]have generalized the results of Huang and Zhang[1]and have studied the existence of common fi xed points of a fi nite family of self mappings satisfying a contractive type condition in the framework of normal or non-normal cone metric spaces.In [8],the authors discussed some common fi xed point problems of a pair of non-self mappings de fi ned on a nonempty closed subset of a non-normal cone metric space.On the other hand, the authors recently have discussed and obtained some unique existence theorems of common fi xed points for a countable family of mappings on 2-metric spaces or metrically convex metric spaces respectively,see[9-12].

    In this paper,we will give some common f i xed point theorems for a countable family of non-self mappings def i ned on a nonempty closed subset of a non-normal cone metric space with the convex property.

    Let E be a real Banach space.A subset P0of E is called a cone if and only if

    (i)P0is closed,nonempty and P0/={0};

    (ii)a,b∈?,a,b≥0 and x,y∈P0implies ax+by∈P0;

    (iii)P0∩(?P0)={0}.

    Given a cone P0?E,we def i ne a partial ordering≤on E with respective to P0by x≤y if and only if y?x∈P0.We will write x<y to indicate that x≤y but x/=y,while x?y will stand for y?x∈int P0(the interior of P0).

    The cone P0is called normal if there is a number L>0 such that for all x,y∈E,

    The least positive number satisfying the above is then called the normal constant of P0.

    Let X be a nonempty set.Suppose that the mapping d:X×X→E satisf i es

    (d1)0≤d(x,y)for all x,y∈X and d(x,y)=0 if and only if x=y;

    (d2)d(x,y)=d(y,x)for all x,y∈X;

    (d3)d(x,y)≤d(x,z)+d(z,y),for all x,z,y∈X.

    Then d is called a cone metric on X and(X,d)is called a cone metric space.

    Let(X,d)be a cone metric space.We say that{xn}?X is

    (e)Cauchy sequence if for every c∈E with 0?c,there is an N such that for all n,m>N, d(xm,xn)?c;

    (f)Convergent sequence if for every c∈E with 0?c,there is an N such that for all n>N such that d(xn,x)?c for some x∈E.In this case,we say that x is the limit of{xn}and

    A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

    A cone metric space X is said to have the convex property if for each nonempty closed subset C of X and each x∈C and y/∈C,there exists a point z∈?C such that

    A metric space is said to be metrically convex[1314],if for any x,y∈with x/=y,there exists a point z∈X such that d(x,z)+d(z,y)=d(x,y).

    Lemma 1[14]If K is a nonempty closed subset of a complete metrically convex space, then for any x∈K and y/∈K,there exists a point z∈?K such that

    The above Lemma 1 shows that a complete metrically convex space is the example of a cone metric spaces with the convex property.

    Lemma 2[8]Let(X,d)be a cone metric space.Then the following properties are often useful(particulary when dealing with cone metric spaces in which the cone needs not to be normal)

    (P1)If u≤v and v?w,then u?w;

    (P2)If 0≤u?c for each c∈intP0,then u=0;

    (P3)If x≤y+c for each c∈intP0,then x≤y;

    (P4)If 0≤x≤y and a∈? with a≥0,then 0≤ax≤ay;

    (P5)If 0≤xn≤ynfor each n∈? and limn→∞xn=x,limn→∞yn=y,then 0≤x≤y;

    (P6)If E is real Banach space with a cone P0and a≤λa where a∈P0and 0<λ<1, then a=0;

    (P7)If c∈intP0,0≤anand an→0,then there exists n0such that for all n>n0,we have an?c.

    Remark 1It follows from(P7)that the sequence xnconverges to x∈X if d(xn,x)→0 as n→∞and xnis a Cauchy sequence if d(xn,xm)→0 as n,m→∞.In the case when the cone is not necessarily normal,we have only one half of the statements of Lemma 1 and Lemma 4 from[1].

    The following is a particular form of the well-known result in[15].

    Lemma 3Let(X,d)be a cone metric space with a cone P0,{xn}a sequence in X and {an}a sequence in P0and an→0.If for any m>n>1,d(xn,xm)≤an,then{xn}is a Cauchy sequence.

    §2.Main Results

    Theorem 1Let K be a nonempty complete and closed subset of a cone metric space X with the convex property,{Ti:K→X}i∈?a family of non-self mappings satisfying that there exists λ∈(0,)such that for each x,y∈K and i,j∈? with i/=j,

    where

    If Ti(x)∈K for all x∈?K and i∈?,then{Ti}i∈?have a unique common fi xed point in K.

    ProofTake x0∈K.We will construct two sequences{xn}and{in the following manner.De fi ne=T1x0.If∈K,then put x1=∈/K,then by the convex property of X,there exists x1∈?K such that d(x0,x1)+d()=d().De fi ne=T2x1.If∈K,then put x2=∈/K,then by the convex property of X,there exists x2∈?K such that d(x1,x2)+d()=d().Continuing this way,we obtain{xn}and{x′n}

    where

    hence

    hence

    Case IIIf xn∈P and xn+1∈Q,then=Tn+1xn. Hence

    where

    un,n+1(xn?1,xn)

    hence

    hence

    where

    By Case II,we obtain that

    hence we obtain that

    By Case II again,we have

    hence

    But d(xn,xn+1)≤d(xn?1,+dn+1),hence we obtain that

    and therefore

    By Case II again,we have

    or

    and therefore for any n∈? with n≥2,

    or

    So,for any n∈? with n≥2,

    Let δ=h?1[d(x2,x1)+d(x1,x0)]and K=h12,then K<1,δ∈P0and for all m>n≥2,

    By the properties of P and Q,we can see that there are in fi nite elements xnk+1∈{xn}such that xnk+1∈P.

    For any fi xed n∈?,there exists an enough large k∈? such that nk+1>n and xnk+1∈P. And we can obtain the following

    where

    If un,nk+1(x?,xnk)=d(x?,xnk),then for any c∈intP0,there exists a large k0∈? such that for k≥k0,

    Hence

    and therefore,for any c∈intP,there exists a large k0∈? such that for k≥k0,

    Hence we get that d(Tnx?,x?)?c for all c∈intP,so by Lemma 2(P2),Tnx?=x?for all n∈?.This means that x?is a common f i xed point of{Tn}n∈?.

    Suppose that p and q are all common f i xed points of{Tn}n∈?,then

    If u1,2(p,q)=d(p,q),then d(p,q)≤λd(p,q),hence d(p,q)=0 by Lemma 2(P6)and therefore p=q;

    Hence x?is the unique common fi xed point of{Tn}n∈?.

    Remark 2If K=X itself is complete,then the boundary condition is super fl ous.In this case,we can easily know that xn=x′n,hence the convex structure of X is also super fl ous.

    Remark 3In fact,the condition“i/=j”in Theorem 1 can be replaced by the weaker condition“i<j”.

    Remark 4Many authors in the references and others obtained many common fi xed point theorems only for a fi nite family of mappings,but we fi rst introduced the concept of the convex property to discuss the existence of common fi xed point for a countable family of non-self-mappings on cone metric spaces in Theorem 1.Since we treat non-self-mappings,we need to consider the boundary condition of the given closed subset K of X in Theorem 1.The boundary condition in Theorem 1 is very weaker than that in[8]and very di ff erent from that in[8].So,we think that our technique is very di ff erent from the previous ones and our method is new.

    Theorem 2Let K a nonempty complete and closed subset of a cone metric space(X,d) with the convex property,{Ti,j:X→X}i,j∈?a family ofmappings,{mi,j}i,j∈?a family of positive integral numbers such that there exists λ∈(0,)such that for each x,y∈X and i1,i2,j∈? with i1/=i2,

    where

    Furthermore,if(a)for each i,j∈?,(?K)?K,(b)for each i1,i2,μ,ν∈? withμ/=ν, Ti1,μTi2,ν=Ti2,νTi1,μ.Then{Ti,j}i,j∈?has a unique common fi xed point in K.

    where

    If ui,k,j(Ti,j(pj),Ti,j(pj))=0,then d(Ti,j(pj),Sk,j(Ti,j(pj)))≤λ0=0,hence d(Ti,j(pj), Sk,j(Ti,j(pj)))=0,i.e.,Ti,j(pj)=Sk,j(Ti,j(pj));

    Hence in any situation,we have that Ti,j(pj)is a fi xed point of Sk,jfor each k with k/=i. So Ti,j(pj)is a common fi xed point of{Si,j}i∈?.By uniqueness of common fi xed points of {Si,j}i∈?,we haveTi,j(pj)=pjfor each i∈?.Hence pjis a common fi xed point of{Ti,j}i∈?.

    If ujand vjare common fi xed points of{Ti,j}i∈?,then they are also common fi xed points of{Si,j}i∈?,hence ui=pj=vj.So j∈?,{Ti,j}i∈?has a unique common fi xed point pj.

    Finally,we will prove that{Ti,j}i,j∈?has a unique common fi xed point.Now,we prove that for eachμ,ν∈?,pμ=pν.In fact,for any i1,i2,μ,ν∈? withμ/=ν,since Ti1,μ(pμ)=pμand Ti2,ν(pν)=pν,Ti1,μ(Ti2,ν(pν))=Ti1,μ(pν),hence Ti2,ν(Ti1,μ(pν))=Ti1,μ(Ti2,ν(pν))=Ti1,μ(pν) by(b).This means that Ti1,μ(pν)is a fi xed point of Ti2,νfor each i2,i.e.,Ti1,μ(pν)is a common fi xed point of{Ti2,ν}i2∈?.But{Ti2,ν}i2∈?has a unique common fi xe point pν,hence Ti1,μ(pν)=pνfor each i1and therefore pνis a common fi xed point of{Ti1,μ}i1∈?.But {Ti1,μ}i1∈?has a unique common fi xed point pμ,hence pμ=pν.Let p?=pj,then p?is thecommon f i xed point of{Ti,j}i,j∈?.The uniqueness of common f i xed points of{Ti,j}i,j∈?is obvious.

    Remark 5In Theorem 2,the domain of{Ti,j}i,j∈?must be X.In fact,we can not be sure that Ti,j(pj)∈K even if pj∈K in the proof of Theorem 2.Hence we should not suppose that the domain of{Ti,j}i,j∈?is K.

    [1]HUANG Long-guo,ZHANG Xian.Cone metric spaces and f i xed point theorems of contractive mappings[J]. J Math Anal Appl,2007,332(2):1468-1476.

    [2]ABBAS M,JUNGCK G.Common f i xed point results for noncommuting mappings without continuity in cone metric spaces[J].J Math Anal Appl,2008,341(1):416-420.

    [3]ABBAS M,RHOADES B E.Fixed and periodic point results in cone metric spaces[J].Applied Math Letters, 2009,22(4):511-515.

    [4]RAJA P,VAEZPOUR S M.Some extensions of Banach’s contraction principle in complete cone metric spaces[J].Fixed point theory and Applications,2008,Article ID 768294,11 pages.

    [5]KADELBURG Z,RADENO′VIC S,ROSI′C B.Strict contractive conditions and common f i xed point theorems in cone metric spaces[J].Fixed point theory and Applications,2009,Article ID 173838,14 pages.

    [6]JUNGCK G,RADENO′VIC S,RADOJE′VIC S,et al.Common f i xed point theorems for weakly compatible pairs on cone metric spaces[J].Fixed point theory and Applications,2009,Article ID 643840,13 pages.

    [7]ILI′C D,RAKO?CEVI′C V.Quasi-contraction on a cone metric space[J].Applied Math Letters,2009,22(5): 728-731.

    [8]JANKO′VIC S,KADELBURG Z,RADENO′VIC S,et al.Assad-Kirk-Type f i xed point theorems for a pair of non-self mappings on cone metric spaces[J].Fixed point theory and Applications,2009,Article ID 7610386, 16 pages.

    [9]PIAO Yong-jie.Unique common f i xed point theorems for a family of non-self maps in metrically convex spaces[J].Mathematica Applicata,2009,22(4):852-857.

    [10]PIAO Yong-jie.Unique common f i xed point theorems for a family of quasi-contractive type maps in metrically convex spaces[J].Acta Mathematica Scientica,2010,30A(2):485-493(in Chinese).

    [11]PIAO Yong-jie.Unique common f i xed point theorems for a family of self-maps with same type contractive condition in 2-metric spaces[J].Anal Theo Appl,2008,24(4):316-320.

    [12]PIAO Yong-jie.Unique common f i xed point theorems for a family of self-maps with same quasi-contractive type condition in 2-metric spaces[J].J of Nanjing Univ Math Biquart,2010,27(1):82-87(in Chinese).

    [13]ASSAD N A,KIRK W A.Fixed point theorems for set-valued mappings of contractive type[J].Pacif i c J Math,1972,43:553-562.

    [14]KHAN M S,PATHAK H K,KHAN M D.Some f i xed point theorems in metrically convex spaces[J].Georgain J Math,2000,7(3):523-530.

    [15]AZAM A,BEG I,ARSHAD M.Fixed point in topological space valued cone metric spaces[J].Fixed Point Theory and Applications,2010,Article ID 604084,9 pages.

    tion:47H05,47H10

    CLC number:O189.1,O177.91Document code:A

    1002–0462(2014)02–0221–10

    date:2012-07-19

    Supported by the National Natural Science Foundation of China(11361064)

    Biographies:PIAO Yong-jie(1962-),male(Chaoxianzu),native of Jiutai,Jilin,a professor of Yanbian University,Ph.D.,engages in nonlinear theory and space theory;LI Chun-hua(1975-),female(Chaoxianzu),native of Baishan,Jilin,a lecturer of Yanbian University,Ph.D.,engages in functional analysis and space theory.

    巨乳人妻的诱惑在线观看| 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久av网站| 免费在线观看视频国产中文字幕亚洲| videosex国产| 妹子高潮喷水视频| 色av中文字幕| 亚洲第一青青草原| 久久欧美精品欧美久久欧美| 黑人巨大精品欧美一区二区mp4| 中文字幕高清在线视频| 熟女少妇亚洲综合色aaa.| www.www免费av| 黄色视频不卡| 婷婷亚洲欧美| 国产成人av激情在线播放| 亚洲五月婷婷丁香| 日本 av在线| 最好的美女福利视频网| 少妇 在线观看| 亚洲精品av麻豆狂野| 女警被强在线播放| 国产私拍福利视频在线观看| 久久欧美精品欧美久久欧美| 中文亚洲av片在线观看爽| 国产亚洲精品综合一区在线观看 | 啪啪无遮挡十八禁网站| 嫩草影院精品99| 国产精品影院久久| 老司机深夜福利视频在线观看| 国产成人精品久久二区二区免费| 一进一出抽搐动态| 视频区欧美日本亚洲| 日本黄色视频三级网站网址| 成人欧美大片| 日韩欧美国产在线观看| 久久久久国产一级毛片高清牌| 无人区码免费观看不卡| 制服丝袜大香蕉在线| 久久中文看片网| 亚洲国产精品sss在线观看| 伊人久久大香线蕉亚洲五| 熟女电影av网| 国产精品亚洲美女久久久| www国产在线视频色| 一本久久中文字幕| 90打野战视频偷拍视频| 日本 av在线| 18禁观看日本| 少妇熟女aⅴ在线视频| 91老司机精品| 成人国语在线视频| 精品欧美国产一区二区三| 黄色视频,在线免费观看| 免费高清视频大片| 久久精品人妻少妇| 亚洲欧美精品综合一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 黄片播放在线免费| 久久草成人影院| 日本撒尿小便嘘嘘汇集6| 99riav亚洲国产免费| 91av网站免费观看| 国产成人精品久久二区二区免费| 日日夜夜操网爽| 看免费av毛片| 亚洲av电影不卡..在线观看| 制服丝袜大香蕉在线| 国产精品,欧美在线| av在线播放免费不卡| 国产精品亚洲一级av第二区| 欧美乱码精品一区二区三区| 中文字幕最新亚洲高清| 看黄色毛片网站| 久久国产精品人妻蜜桃| 丝袜美腿诱惑在线| 欧美午夜高清在线| av欧美777| 搡老岳熟女国产| 韩国精品一区二区三区| 一级a爱视频在线免费观看| 亚洲国产日韩欧美精品在线观看 | 久久久精品国产亚洲av高清涩受| 禁无遮挡网站| 欧美成人性av电影在线观看| 亚洲人成77777在线视频| 欧美性猛交黑人性爽| 日本精品一区二区三区蜜桃| 欧美在线黄色| 啦啦啦免费观看视频1| 一区二区三区高清视频在线| 午夜激情av网站| 欧美乱色亚洲激情| 在线观看舔阴道视频| 女人爽到高潮嗷嗷叫在线视频| 国产aⅴ精品一区二区三区波| 久久久国产成人精品二区| 久久久久国内视频| 久久亚洲真实| 亚洲av第一区精品v没综合| 啦啦啦 在线观看视频| 欧美性猛交黑人性爽| 亚洲精品美女久久av网站| 亚洲熟妇中文字幕五十中出| 免费av毛片视频| 午夜免费成人在线视频| 色哟哟哟哟哟哟| 国产精品久久久久久亚洲av鲁大| 亚洲自拍偷在线| 最好的美女福利视频网| 欧美日韩黄片免| 真人做人爱边吃奶动态| 精品久久久久久久久久免费视频| 老鸭窝网址在线观看| 十八禁人妻一区二区| 大香蕉久久成人网| 成人手机av| 99精品久久久久人妻精品| 嫁个100分男人电影在线观看| 国产精品久久视频播放| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美一区二区三区在线观看| 午夜福利18| 一二三四在线观看免费中文在| 欧美精品啪啪一区二区三区| 日本成人三级电影网站| 无限看片的www在线观看| xxx96com| 级片在线观看| xxxwww97欧美| 国产成人av教育| 亚洲人成电影免费在线| 久久香蕉激情| 女警被强在线播放| 中文字幕人妻熟女乱码| 给我免费播放毛片高清在线观看| 亚洲五月婷婷丁香| 麻豆成人午夜福利视频| 大香蕉久久成人网| 亚洲av第一区精品v没综合| 精品免费久久久久久久清纯| 日韩视频一区二区在线观看| 亚洲熟妇熟女久久| 天堂√8在线中文| 深夜精品福利| 男女床上黄色一级片免费看| 亚洲第一青青草原| 黄片小视频在线播放| 黄片小视频在线播放| 天堂动漫精品| 久久中文字幕人妻熟女| 国产精品爽爽va在线观看网站 | 亚洲久久久国产精品| 免费电影在线观看免费观看| 免费在线观看完整版高清| 亚洲熟妇熟女久久| 黄色视频,在线免费观看| 国产午夜精品久久久久久| 一区二区日韩欧美中文字幕| 日韩欧美一区视频在线观看| 18禁国产床啪视频网站| 久久天堂一区二区三区四区| www.999成人在线观看| 亚洲精品美女久久久久99蜜臀| av在线天堂中文字幕| 国产欧美日韩一区二区三| 一进一出好大好爽视频| 国产免费av片在线观看野外av| 色在线成人网| 精品国产一区二区三区四区第35| 男女下面进入的视频免费午夜 | 欧美日韩中文字幕国产精品一区二区三区| 欧美在线黄色| 1024香蕉在线观看| 美女高潮到喷水免费观看| 男女之事视频高清在线观看| 国产三级黄色录像| 深夜精品福利| 日韩三级视频一区二区三区| 国产午夜精品久久久久久| 男女之事视频高清在线观看| 日日干狠狠操夜夜爽| 午夜亚洲福利在线播放| 最近最新免费中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 大型黄色视频在线免费观看| 黄色丝袜av网址大全| 欧美大码av| 久久 成人 亚洲| 亚洲一区中文字幕在线| 亚洲三区欧美一区| 日本五十路高清| 国产真人三级小视频在线观看| 久久精品国产清高在天天线| 丝袜美腿诱惑在线| 久久香蕉国产精品| 国产黄色小视频在线观看| 又大又爽又粗| 1024手机看黄色片| 在线av久久热| www.精华液| 脱女人内裤的视频| 亚洲最大成人中文| 成人特级黄色片久久久久久久| www日本黄色视频网| 久久久久久久久久黄片| 欧美激情极品国产一区二区三区| 丝袜美腿诱惑在线| 精品久久久久久久末码| 亚洲国产精品成人综合色| 欧美日韩乱码在线| 亚洲国产精品成人综合色| 国产亚洲av嫩草精品影院| 99久久精品国产亚洲精品| 法律面前人人平等表现在哪些方面| 精品国产乱子伦一区二区三区| 中文字幕精品免费在线观看视频| 精品不卡国产一区二区三区| www.自偷自拍.com| 亚洲激情在线av| 国产精品,欧美在线| 久久精品影院6| 丝袜美腿诱惑在线| 日本 欧美在线| 亚洲一区高清亚洲精品| 中文字幕最新亚洲高清| 99久久99久久久精品蜜桃| 亚洲欧美精品综合一区二区三区| 男女午夜视频在线观看| 国产精品二区激情视频| 少妇裸体淫交视频免费看高清 | 国产男靠女视频免费网站| av欧美777| 天天添夜夜摸| 国产欧美日韩一区二区精品| 成年免费大片在线观看| 成人亚洲精品av一区二区| 精品久久久久久久人妻蜜臀av| 熟妇人妻久久中文字幕3abv| 亚洲中文字幕日韩| 男女午夜视频在线观看| 亚洲激情在线av| 听说在线观看完整版免费高清| 国产成人精品久久二区二区91| 给我免费播放毛片高清在线观看| 午夜老司机福利片| 成熟少妇高潮喷水视频| 精品第一国产精品| 男男h啪啪无遮挡| 熟妇人妻久久中文字幕3abv| 国产精品99久久99久久久不卡| 久久香蕉精品热| 18禁观看日本| 久久国产乱子伦精品免费另类| 久久精品aⅴ一区二区三区四区| 99在线人妻在线中文字幕| 欧美性猛交黑人性爽| 国产精品精品国产色婷婷| 亚洲aⅴ乱码一区二区在线播放 | 日韩高清综合在线| 老司机午夜十八禁免费视频| 亚洲人成电影免费在线| 国产97色在线日韩免费| 校园春色视频在线观看| 中文字幕最新亚洲高清| 啦啦啦观看免费观看视频高清| 波多野结衣巨乳人妻| 女人爽到高潮嗷嗷叫在线视频| 女性被躁到高潮视频| 一边摸一边做爽爽视频免费| 午夜视频精品福利| 国产野战对白在线观看| 欧美在线黄色| 香蕉av资源在线| 女生性感内裤真人,穿戴方法视频| 天天添夜夜摸| 亚洲国产欧美一区二区综合| 欧美人与性动交α欧美精品济南到| 亚洲第一欧美日韩一区二区三区| www.熟女人妻精品国产| 精品久久久久久久人妻蜜臀av| 欧美绝顶高潮抽搐喷水| 一区二区三区高清视频在线| 国产精品久久久av美女十八| 两个人免费观看高清视频| 99在线人妻在线中文字幕| 久久精品成人免费网站| 黄色片一级片一级黄色片| 欧美黄色淫秽网站| 久久国产精品人妻蜜桃| 久久国产精品影院| 国内少妇人妻偷人精品xxx网站 | 亚洲第一av免费看| 免费观看人在逋| 久久这里只有精品19| 亚洲天堂国产精品一区在线| 一本综合久久免费| 日本五十路高清| 国产精品精品国产色婷婷| 国产熟女午夜一区二区三区| √禁漫天堂资源中文www| 少妇 在线观看| 国产精品久久久人人做人人爽| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 国产亚洲精品一区二区www| 亚洲av成人不卡在线观看播放网| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 色尼玛亚洲综合影院| 777久久人妻少妇嫩草av网站| 日韩欧美国产一区二区入口| 国产av不卡久久| 亚洲五月婷婷丁香| 欧美中文综合在线视频| 欧美不卡视频在线免费观看 | 亚洲专区中文字幕在线| 在线永久观看黄色视频| 日韩大码丰满熟妇| 国产精品永久免费网站| 亚洲av片天天在线观看| 精品乱码久久久久久99久播| 亚洲第一青青草原| a级毛片在线看网站| 99热这里只有精品一区 | 欧美精品啪啪一区二区三区| 亚洲 国产 在线| 免费av毛片视频| cao死你这个sao货| 成熟少妇高潮喷水视频| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻丝袜一区二区| 亚洲精品久久国产高清桃花| 91老司机精品| 亚洲精品中文字幕在线视频| 男女床上黄色一级片免费看| 久久久国产成人免费| 免费观看精品视频网站| 亚洲熟女毛片儿| 国产精品免费一区二区三区在线| 欧美成人一区二区免费高清观看 | 97碰自拍视频| а√天堂www在线а√下载| 国产成人欧美在线观看| 亚洲av成人一区二区三| 在线视频色国产色| 国产午夜精品久久久久久| 日韩有码中文字幕| 一级毛片女人18水好多| 国产99白浆流出| 欧美又色又爽又黄视频| 国产精品精品国产色婷婷| e午夜精品久久久久久久| 欧美乱码精品一区二区三区| 2021天堂中文幕一二区在线观 | 日韩欧美国产在线观看| 少妇 在线观看| 在线免费观看的www视频| 在线观看免费日韩欧美大片| 成人精品一区二区免费| 婷婷精品国产亚洲av在线| 少妇裸体淫交视频免费看高清 | 日韩三级视频一区二区三区| tocl精华| 中文字幕久久专区| 久久久久久九九精品二区国产 | 欧美乱色亚洲激情| 丁香欧美五月| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久久久电影| 两性午夜刺激爽爽歪歪视频在线观看 | 国产单亲对白刺激| 亚洲av中文字字幕乱码综合 | 99热6这里只有精品| 国产亚洲精品一区二区www| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 97超级碰碰碰精品色视频在线观看| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 精品不卡国产一区二区三区| 黄片小视频在线播放| 一级作爱视频免费观看| 成人精品一区二区免费| 亚洲精品一区av在线观看| 国产成人精品无人区| 亚洲第一电影网av| 午夜视频精品福利| 色综合站精品国产| 亚洲第一欧美日韩一区二区三区| 亚洲午夜精品一区,二区,三区| 欧美午夜高清在线| 久久午夜亚洲精品久久| 精品卡一卡二卡四卡免费| 美女大奶头视频| 亚洲精品中文字幕一二三四区| 亚洲男人的天堂狠狠| 精品国产亚洲在线| 国产午夜精品久久久久久| 国产视频内射| 国产99白浆流出| 最近最新中文字幕大全免费视频| 国产高清videossex| 亚洲一区二区三区色噜噜| 叶爱在线成人免费视频播放| 国产v大片淫在线免费观看| 久久久久国产精品人妻aⅴ院| 香蕉av资源在线| 桃红色精品国产亚洲av| 九色国产91popny在线| 亚洲精品中文字幕在线视频| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 日本成人三级电影网站| 亚洲中文av在线| 少妇的丰满在线观看| 国产乱人伦免费视频| 国产精品一区二区三区四区久久 | 精品欧美一区二区三区在线| 女同久久另类99精品国产91| 亚洲成av片中文字幕在线观看| 国产亚洲欧美98| 国产精品1区2区在线观看.| 国产欧美日韩一区二区三| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 男女做爰动态图高潮gif福利片| 亚洲精品久久国产高清桃花| 脱女人内裤的视频| av中文乱码字幕在线| cao死你这个sao货| 我的亚洲天堂| 午夜影院日韩av| 俺也久久电影网| 在线国产一区二区在线| 无遮挡黄片免费观看| 国产成人影院久久av| 国产成人精品久久二区二区免费| 欧美在线黄色| 制服诱惑二区| 搞女人的毛片| 欧美午夜高清在线| 香蕉国产在线看| 91九色精品人成在线观看| av国产免费在线观看| 婷婷亚洲欧美| 精品午夜福利在线看| 人妻少妇偷人精品九色| 内射极品少妇av片p| 亚洲内射少妇av| 别揉我奶头 嗯啊视频| 亚洲自拍偷在线| 国产片特级美女逼逼视频| 亚洲专区国产一区二区| 亚洲七黄色美女视频| 小蜜桃在线观看免费完整版高清| 亚洲一级一片aⅴ在线观看| 直男gayav资源| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| ponron亚洲| 长腿黑丝高跟| 午夜福利成人在线免费观看| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 可以在线观看毛片的网站| 丰满人妻一区二区三区视频av| 特大巨黑吊av在线直播| 国产三级中文精品| 久久午夜亚洲精品久久| 99视频精品全部免费 在线| 国产高清有码在线观看视频| 国产精品电影一区二区三区| 日韩欧美一区二区三区在线观看| 特大巨黑吊av在线直播| 午夜福利18| 别揉我奶头~嗯~啊~动态视频| 日本-黄色视频高清免费观看| 国产精品久久视频播放| 国内精品一区二区在线观看| 中国国产av一级| 国产色爽女视频免费观看| 精品久久久久久久久亚洲| 女人被狂操c到高潮| 97碰自拍视频| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 狠狠狠狠99中文字幕| 午夜免费男女啪啪视频观看 | 非洲黑人性xxxx精品又粗又长| 日韩强制内射视频| 国产69精品久久久久777片| 欧美日韩综合久久久久久| 毛片一级片免费看久久久久| 日韩在线高清观看一区二区三区| 变态另类丝袜制服| 老女人水多毛片| 亚洲综合色惰| 老司机午夜福利在线观看视频| 亚洲美女黄片视频| 一级毛片我不卡| 久久精品91蜜桃| 美女cb高潮喷水在线观看| 免费av不卡在线播放| 欧美在线一区亚洲| 黄色欧美视频在线观看| 男女做爰动态图高潮gif福利片| 性欧美人与动物交配| 午夜福利18| 久久久国产成人精品二区| 村上凉子中文字幕在线| 国产精品一区www在线观看| 日本-黄色视频高清免费观看| 嫩草影院入口| 波野结衣二区三区在线| 狂野欧美激情性xxxx在线观看| 日韩一区二区视频免费看| 丰满人妻一区二区三区视频av| 免费看av在线观看网站| 大型黄色视频在线免费观看| 久久午夜亚洲精品久久| 美女 人体艺术 gogo| 在线国产一区二区在线| 成年女人永久免费观看视频| 欧美一级a爱片免费观看看| 少妇的逼好多水| 国产激情偷乱视频一区二区| 99在线人妻在线中文字幕| 精品久久久久久久人妻蜜臀av| 天堂√8在线中文| 青春草视频在线免费观看| 波多野结衣高清作品| 久久久精品大字幕| 国产精品免费一区二区三区在线| 直男gayav资源| 丰满的人妻完整版| 天堂影院成人在线观看| 免费电影在线观看免费观看| 99久久成人亚洲精品观看| av天堂在线播放| 国产麻豆成人av免费视频| 婷婷精品国产亚洲av在线| 桃色一区二区三区在线观看| 免费看a级黄色片| 欧美丝袜亚洲另类| 国产美女午夜福利| 日本黄大片高清| 国产成人a∨麻豆精品| 亚洲欧美日韩东京热| 露出奶头的视频| 国产av麻豆久久久久久久| 十八禁网站免费在线| 久久久a久久爽久久v久久| 久久这里只有精品中国| 成熟少妇高潮喷水视频| 亚洲成人精品中文字幕电影| 国产中年淑女户外野战色| 欧美日韩一区二区视频在线观看视频在线 | 中国国产av一级| 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| 亚洲最大成人中文| 一区二区三区四区激情视频 | 在线a可以看的网站| 99久久精品国产国产毛片| 99久久久亚洲精品蜜臀av| 在线免费观看不下载黄p国产| 少妇人妻一区二区三区视频| 亚洲人成网站在线播| 一进一出好大好爽视频| 亚洲久久久久久中文字幕| 久久国产乱子免费精品| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 国产淫片久久久久久久久| 不卡一级毛片| 日本一二三区视频观看| 在线观看免费视频日本深夜| 天天躁日日操中文字幕| 亚洲av五月六月丁香网| 卡戴珊不雅视频在线播放| 一个人看的www免费观看视频| 最后的刺客免费高清国语| 成年女人看的毛片在线观看| 日本欧美国产在线视频| 悠悠久久av| 亚洲欧美中文字幕日韩二区| 久久久久久九九精品二区国产| 亚洲国产精品成人久久小说 | 三级经典国产精品| 性插视频无遮挡在线免费观看| 一个人看视频在线观看www免费| 18禁在线播放成人免费| 久久鲁丝午夜福利片| 99久久无色码亚洲精品果冻| av天堂中文字幕网| 欧美成人a在线观看| 伦理电影大哥的女人| 91在线精品国自产拍蜜月| 日韩,欧美,国产一区二区三区 | 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 精品人妻视频免费看| 亚洲精品456在线播放app| 亚洲欧美日韩无卡精品| 麻豆av噜噜一区二区三区| 亚洲欧美日韩无卡精品| 又爽又黄无遮挡网站|