• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probability Inequalities for Extended Negatively Dependent Random Variables and Their Applications

    2014-07-31 22:37:16TANGXiaofeng

    TANG Xiao-feng

    (School of Mathematics and Computational Science,Fuyang Teacher’s College,Fuyang 236041,China)

    Probability Inequalities for Extended Negatively Dependent Random Variables and Their Applications

    TANG Xiao-feng

    (School of Mathematics and Computational Science,Fuyang Teacher’s College,Fuyang 236041,China)

    Some probability inequalities are established for extended negatively dependent (END)random variables.The inequalities extend some corresponding ones for negatively associated random variables and negatively orthant dependent random variables.By using these probability inequalities,we further study the complete convergence for END random variables.We also obtain the convergence rate O(n-1/2ln1/2n)for the strong law of large numbers,which generalizes and improves the corresponding ones for some known results.

    extended negatively dependent sequence;negatively orthant dependent sequence;probability inequality;complete convergence

    §1.Introduction

    Firstly,let us recall the concept of extended negatively dependent random variables.

    Def i nition 1.1[1]We call random variables{Xn,n≥1}extended negatively dependent (END,in short)if there exists a constant M>0 such that both

    and

    hold for each n≥1 and all real numbers x1,x2,···,xn.

    If M=1,the random variables are called negatively orthant dependent(NOD,in short). For more details about NOD random variables,one can refer to Joag-Dev and Proschan[2], Want et al[34],Sung[5],Wu[6],and so forth.The concept of END sequence was introduced by Liu[1].Some applications for END sequence have been found.See for example,Liu[1]obtained the precise large deviations for dependent random variables with heavy tails,Liu[7]studied the sufficient and necessary conditions of moderate deviations for dependent random variables with heavy tails,Chen et al[8]for obtained the strong law of large numbers for END random variables,Shen[9]presented some probability inequalities for END sequence and gave some applications,Wang and Wang[10]investigated the extended precise large deviations of random sums in the presence of END structure and consistent variation,and so forth.It is easily seen that independent random variables and NOD random variables are END.Joag-Dev and Proschan[2]pointed out that NA random variables are NOD.Thus,NA random variables are END.Since END random variables are much weaker than independent random variables,NA random variables and NOD random variables,studying the limit behavior of END sequence is of interest.

    It is well known that the probability inequality plays an important role in various proofs of limit theorems.We consider the following probability inequality.For proof,one can refer to Hoef f ding[11].

    Theorem AIf X1,X2,···,Xnare independent and ai≤Xi≤bi(i=1,2,···,n), then for any t>0,

    Since then the inequality was extended to some cases of dependent sequences,such as negatively associated(NA,in short)sequence,negatively orthant dependent(NOD,in short)sequence,and so forth.The main purpose of the paper is to extend Theorem A for independent sequence to the case of extended negatively dependent(END)sequence,which contains independent sequence, NA sequence and NOD sequence as special cases.By using the Hoef f ding-type inequality,we further study the complete convergence and strong law of large numbers for END sequence.We obtain the convergence rate O(n?1/2ln1/2n)for the strong law of large numbers,which generalizes and improves the corresponding ones of Kim and Kim[12],Nooghabi and Azarnoosh[13], Xing et al[14]and Jabbari et al[15].

    The following lemmas will be used to prove the main results of the paper.

    Lemma 1.1[7]Let random variables X1,X2,···,Xnbe END.

    (i)If f1,f2,···,fnare all nondecreasing(or nonincreasing)functions,then random variables f1(X1),f2(X2),···,fn(Xn)are END.

    (ii)For each n≥1,there exists a constant M>0 such that

    Lemma 1.2If X is a random variable such that a≤X≤b,where a and b are f i nite real numbers,then for any real number h,

    ProofSince the exponential function exp(hX)is convex,its graph is bounded above on the interval a≤X≤b by the straight line which connects its ordinates at X=a and X=b. Thus

    which implies(1.5).

    Throughout the paper,let{Xn,n≥1}be a sequence of random variables def i ned on a f i xed probability space(?,F,P).Denotefor each n≥1.M denotes a positive constant which may be dif f erent in various places.

    §2.Main Results and Their Proofs

    Theorem 2.1Let{Xn,n≥1}be a sequence of END random variables.If there exist two sequences of real numbers{an,n≥1}and{bn,n≥1}such that ai≤Xi≤bifor each i≥1,then for any ε>0 and each n≥1,there exists a constant M>0 such that

    ProofFor any h>0,by Markov’s inequality,we can see that

    It follows from Lemma 1.1(ii)that there exists a constant M>0 such that

    where

    The f i rst two derivatives of L(hi)are

    The last ratio is of the form u(1?u),where 0<u<1.Hence

    Therefore,by Taylor’s formula and(2.8),we can get

    It follows from(2.6)and(2.9)that

    By(2.4),(2.5)and(2.10),we have

    It is easily seen that the right-hand side of(2.11)has its minimum at hInserting this value in(2.11),we can obtain(2.1)immediately.Since{?Xn,n≥1}is a sequence of END random variables,(2.1)implies(2.2).(2.1)and(2.2)yield(2.3).The proof is complete.

    Corollary 2.1Let{Xn,n≥1}be a sequence of END random variables with common distribution function F.Then for any ε>0 and any x∈?,there exists a constant M>0 such that

    and

    ProofFor f i xed x,by Lemma 1.1(i),it is easily seen that{I(Xn≤x),n≥1}is a sequence of END random variables satisfying 0≤I(Xn≤x)≤1,n≥1 and E(Fn(x))=F(x). Therefore,(2.12)~(2.14)follow from Theorem 2.1 immediately.

    Corollary 2.2Under the conditions of Corollary 2.1,Fn(x)→F(x)completely for any x∈?.

    Theorem 2.2Let{Xn,n≥1}be a sequence of END random variables with|Xi|≤c<∞for each i≥1,where c is a positive constant.Then for any r>

    ProofFor any ε>0,it follows from Theorem 2.1 that

    which implies(2.15).

    Theorem 2.3Let{Xn,n≥1}be a sequence of END random variables with EXn=0 for each n≥1.If there exists a sequence of positive numbers{cn,n≥1}such that|Xi|≤cifor each i≥1,then for any t>0 and n≥1,there exists a constant M>0 such that

    ProofIt is easy to check that for all x∈?,the following inequality holds

    Thus,by EXi=0 and|Xi|≤cifor each i≥1,we have

    for any t>0.By Lemma 1.1 and(2.16),there exists a constant M>0 such that

    This completes the proof of the theorem.

    Corollary 2.3Let{Xn,n≥1}be a sequence of END random variables such that |Xi|≤cifor each i≥1,where{cn,n≥1}is a sequence of positive numbers.Then for any t>0 and n≥1,there exists a constant M>0 such that

    ProofIt is easily seen that{Xn?EXn,n≥1}is a sequence of END random variables with E(Xi?EXi)=0 and|Xi?EXi|≤2cifor each i≥1.By Theorem 2.3,there exists a

    constant M>0 such that

    The proof is complete.

    Similarly,we can get the following corollary.

    Corollary 2.4Let{Xn,n≥1}be a sequence of END random variables such that |Xi|≤cnfor each 1≤i≤n,n≥1,where{cn,n≥1}is a sequence of positive numbers.Then for any t>0 and n≥1,there exists a constant M>0 such that

    Theorem 2.4Let{Xn,n≥1}be a sequence of END random variables such that|Xi|≤cnfor each 1≤i≤n,n≥1,where{cn,n≥1}is a sequence of positive numbers.Then for any ε>0 such that ε≤e(2cn)and n≥1,there exists a constant M>0 such that

    ProofBy Markov’s inequality and Corollary 2.4,we have that for any t>0,there exists a constant M>0 such that

    Corollary 2.5Let{Xn,n≥1}be a sequence of identically distributed END random variables.Assume that there exists a positive integer n0such that|Xi|≤cnfor each 1≤i≤n, n≥n0,where{cn,n≥1}is a sequence of positive numbers.Then for any ε>0 such that ε≤eEX21/(2cn)and n≥n0,there exists a constant M>0 such that

    Theorem 2.5Let{Xn,n≥1}be a sequence of identically distributed END random variables.Assume that there exists a positive integer n0such that|Xi|≤cnfor each 1≤i≤n, n≥n0,where{cn,n≥1}is a sequence of positive numbers satisfying

    Denote εn=.Then for n≥n0,there exists a constant M>0 such that

    ProofIt is easy to check thatIt follows from Corollary 2.5 that for n≥n0,there exists a constant M>0 such that

    The proof is complete.

    Taking cn=δ lnn and δ>1 in Theorem 2.5,we can get the following result.

    Theorem 2.6Let{Xn,n≥1}be a sequence of identically distributed END random variables.Assume that there exists a positive integer n0such that|Xi|≤δ lnn for each 1≤i≤n,n≥n0and some δ>1.

    Remark 2.1Borel–Cantelli lemma implies thaconverges almost surely with growth rate O(n?1/2ln1/2n)under the conditions of Theorem 2.6,which generalizes and improves the corresponding ones of Kim and Kim[12],Nooghabi and Azarnoosh[13],Xing et al[14]and Jabbari et al[15].

    [References]

    [1]LIU Li.Precise large deviations for dependent random variables with heavy tails[J].Statistics and Probability Letters,2009,79:1290-1298.

    [2]JOAG-DEV K,PROSCHAN F.Negative association of random variables with applications[J].The Annals of Statistics,1983,11(1):286-295.

    [3]WANG Xue-jun,HU Shu-he,YANG Wen-zhi,et al.Exponential inequalities and inverse moment for NOD sequence[J].Statistics and Probability Letters,2010,80:452-461.

    [4]WANG Xue-jun,HU Shu-he,SHEN Ai-ting,et al.An exponential inequality for a NOD sequence and a strong law of large numbers[J].Applied Mathematics Letters,2011,24:219-223.

    [5]SUNG S H.On the strong convergence for weighted sums of random variables[J].Statistical Papers,2011, 52:447-454.

    [6]WU Qun-ying.A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables[J].Journal of Inequalities and Applications,2012,2012:50,doi:10.1186/1029-242X-2012-50.

    [7]LIU Li.Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails[J].SCIENCE CHINA Mathematics,2010,53(6):1421-1434.

    [8]CHEN Yi-qing,CHEN An-yue,NG K W.The strong law of large numbers for extend negatively dependent random variables[J].Journal of Applied Probability,2010,47:908-922.

    [9]SHEN Ai-ting.Probability inequalities for END sequence and their applications[J].Journal of Inequalities and Applications,2011,2011:98.

    [10]WANG Shi-jie,WANG Wen-sheng.Extended precise large deviations of random sums in the presence of END structure and consistent variation[J].Journal of Applied Mathematics,2012,Volume 2012,Article ID 436531,12 pages,doi:10.1155/2012/436531.

    [11]HODFFDING W.Probability inequalities for sums of bounded random variables[J].Journal of the American Statistical Association,1963,58(301):13-30.

    [12]KIM T S,KIM H C.On the exponential inequality for negative dependent sequence[J].Communications of the Korean Mathematical Society,2007,22(2):315-321.

    [13]NOOGHABI H J,AZARNOOSH H A.Exponential inequality for negatively associated random variables[J]. Statistical Papers,2009,50(2):419-428.

    [14]XING Guo-dong,YANG Shan-chao,LIU Ai-lin,et al.A remark on the exponential inequality for negatively associated random variables[J].Journal of the Korean Statistical Society,2009,38:53-57.

    [15]JABBARI H,JABBARI M,AZARNOOSH H A.An exponential inequality for negatively associated random variables[J].Electronic Journal of Statistics,2009,3:165-175.

    tion:60E15,60F15

    O211.4Document code:A

    1002–0462(2014)02–0195–08

    date:2012-06-08

    Supported by the Project of the Feature Specialty of China(TS11496);Supported by the Scientif i c Research Projects of Fuyang Teacher’s College(2009FSKJ09)

    Biography:TANG Xiao-feng(1978-),male,native of Fuyang,Anhui,a lecturer of Fuyang Teacher’s College, M.S.D.,engages in probability limit theorem.

    精品国产三级普通话版| 国产主播在线观看一区二区| 男人舔女人下体高潮全视频| 九九久久精品国产亚洲av麻豆| 国产精品av视频在线免费观看| 国产私拍福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区三区四区久久| 亚洲成人中文字幕在线播放| 亚洲国产精品999在线| 免费看a级黄色片| 国产av在哪里看| 亚洲美女视频黄频| av欧美777| 美女免费视频网站| 久久99热这里只有精品18| 久久精品影院6| 叶爱在线成人免费视频播放| 夜夜爽天天搞| 成年人黄色毛片网站| 在线免费观看不下载黄p国产 | 国产黄片美女视频| 精品国产亚洲在线| 日韩欧美精品v在线| 男女床上黄色一级片免费看| 琪琪午夜伦伦电影理论片6080| 亚洲成av人片免费观看| 夜夜躁狠狠躁天天躁| 午夜两性在线视频| 亚洲av免费在线观看| 一边摸一边抽搐一进一小说| 精品久久久久久久久久免费视频| 午夜福利在线观看免费完整高清在 | 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 岛国在线免费视频观看| 国产精品 欧美亚洲| 国产伦在线观看视频一区| 亚洲精品亚洲一区二区| 观看美女的网站| 桃色一区二区三区在线观看| 亚洲欧美日韩东京热| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 成人av在线播放网站| 免费在线观看日本一区| 久久精品人妻少妇| 噜噜噜噜噜久久久久久91| 18禁黄网站禁片午夜丰满| 脱女人内裤的视频| 日韩人妻高清精品专区| 18禁在线播放成人免费| 欧美一级毛片孕妇| 欧美激情久久久久久爽电影| 久久婷婷人人爽人人干人人爱| 99国产精品一区二区蜜桃av| 婷婷丁香在线五月| 波野结衣二区三区在线 | 亚洲人成伊人成综合网2020| 91九色精品人成在线观看| 国产精品久久久久久亚洲av鲁大| 黄色视频,在线免费观看| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av| 一区二区三区高清视频在线| 99在线人妻在线中文字幕| av女优亚洲男人天堂| 国产探花在线观看一区二区| 此物有八面人人有两片| 69人妻影院| 少妇的丰满在线观看| 国产精品99久久久久久久久| 村上凉子中文字幕在线| 免费搜索国产男女视频| 欧美一级a爱片免费观看看| 国产一级毛片七仙女欲春2| 99精品欧美一区二区三区四区| 禁无遮挡网站| 脱女人内裤的视频| 亚洲欧美日韩无卡精品| 夜夜爽天天搞| 亚洲人成网站高清观看| 欧美又色又爽又黄视频| 丝袜美腿在线中文| 两个人看的免费小视频| av天堂在线播放| 听说在线观看完整版免费高清| 久久久久性生活片| 欧美不卡视频在线免费观看| 天堂动漫精品| 18禁黄网站禁片午夜丰满| 欧美高清成人免费视频www| 亚洲精品在线观看二区| 国产伦人伦偷精品视频| 色av中文字幕| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 两人在一起打扑克的视频| 国产免费男女视频| 国产精品一及| 别揉我奶头~嗯~啊~动态视频| 中文字幕久久专区| 老熟妇仑乱视频hdxx| 久久久成人免费电影| 最近视频中文字幕2019在线8| 亚洲精品色激情综合| 亚洲精品在线美女| 亚洲中文字幕一区二区三区有码在线看| 免费看光身美女| 日韩免费av在线播放| www.色视频.com| 超碰av人人做人人爽久久 | 精品久久久久久久久久免费视频| 少妇熟女aⅴ在线视频| 日韩欧美 国产精品| 国产精品久久久久久精品电影| 搡老妇女老女人老熟妇| 美女 人体艺术 gogo| 两个人看的免费小视频| 老熟妇仑乱视频hdxx| 中文字幕熟女人妻在线| 日本三级黄在线观看| 精品国产超薄肉色丝袜足j| 少妇的逼好多水| 99热6这里只有精品| 欧美日韩国产亚洲二区| 一进一出好大好爽视频| 成人性生交大片免费视频hd| 欧美精品啪啪一区二区三区| 在线免费观看的www视频| 国产淫片久久久久久久久 | 精品福利观看| 88av欧美| 国产69精品久久久久777片| 少妇高潮的动态图| 他把我摸到了高潮在线观看| 熟女人妻精品中文字幕| 又黄又粗又硬又大视频| 五月伊人婷婷丁香| 淫秽高清视频在线观看| 男人和女人高潮做爰伦理| 欧美成人免费av一区二区三区| 中文字幕久久专区| 波野结衣二区三区在线 | 午夜福利免费观看在线| 亚洲精品久久国产高清桃花| 亚洲第一欧美日韩一区二区三区| 午夜免费男女啪啪视频观看 | 18禁国产床啪视频网站| 18禁美女被吸乳视频| 三级毛片av免费| 久久人妻av系列| 在线观看66精品国产| 啦啦啦免费观看视频1| 日本免费a在线| 两人在一起打扑克的视频| 亚洲最大成人中文| 久久人人精品亚洲av| 日本与韩国留学比较| 久久这里只有精品中国| 亚洲av日韩精品久久久久久密| 一本一本综合久久| 可以在线观看的亚洲视频| 国产精品久久久久久久久免 | 亚洲国产精品成人综合色| 亚洲成a人片在线一区二区| 国产av麻豆久久久久久久| 动漫黄色视频在线观看| 国产精品一及| 高清毛片免费观看视频网站| 日韩欧美在线二视频| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品sss在线观看| 午夜免费观看网址| 90打野战视频偷拍视频| 欧美另类亚洲清纯唯美| 人妻夜夜爽99麻豆av| 国产黄a三级三级三级人| 国产美女午夜福利| 亚洲国产精品合色在线| 国产私拍福利视频在线观看| 18禁黄网站禁片午夜丰满| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| 久久午夜亚洲精品久久| 91九色精品人成在线观看| 无遮挡黄片免费观看| 亚洲黑人精品在线| 最新美女视频免费是黄的| 91九色精品人成在线观看| 精品福利观看| 天天一区二区日本电影三级| 身体一侧抽搐| 婷婷六月久久综合丁香| 国产成人福利小说| 天天躁日日操中文字幕| 亚洲一区高清亚洲精品| 国产精品电影一区二区三区| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩无卡精品| 久久久国产精品麻豆| 男人和女人高潮做爰伦理| 国产精品永久免费网站| 欧美绝顶高潮抽搐喷水| 人人妻人人澡欧美一区二区| 色播亚洲综合网| 国产色爽女视频免费观看| 精品一区二区三区人妻视频| 欧美性感艳星| 国产精品久久电影中文字幕| 1000部很黄的大片| 深爱激情五月婷婷| 成人18禁在线播放| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 久久久久免费精品人妻一区二区| 国产精品一及| 无人区码免费观看不卡| 国产亚洲精品av在线| avwww免费| 国产成人影院久久av| 国产精品电影一区二区三区| 中文字幕人成人乱码亚洲影| 97超级碰碰碰精品色视频在线观看| 人人妻人人看人人澡| 村上凉子中文字幕在线| 国产成人影院久久av| 中文字幕久久专区| av天堂在线播放| 欧美成人性av电影在线观看| 最近最新中文字幕大全电影3| 一区二区三区高清视频在线| 国产精品女同一区二区软件 | 在线观看免费午夜福利视频| 亚洲中文字幕日韩| 搡老妇女老女人老熟妇| 亚洲午夜理论影院| 久久久久久久久大av| 国内精品久久久久久久电影| 在线a可以看的网站| 欧美一区二区国产精品久久精品| 欧美日韩一级在线毛片| 国内久久婷婷六月综合欲色啪| 国产精品亚洲美女久久久| 好男人电影高清在线观看| 亚洲国产精品sss在线观看| 2021天堂中文幕一二区在线观| 99国产综合亚洲精品| 毛片女人毛片| 精品99又大又爽又粗少妇毛片 | 可以在线观看的亚洲视频| 无限看片的www在线观看| 美女免费视频网站| 叶爱在线成人免费视频播放| 亚洲国产色片| 99热精品在线国产| 亚洲真实伦在线观看| 亚洲欧美一区二区三区黑人| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品人妻蜜桃| 日本黄色视频三级网站网址| 久久精品国产清高在天天线| 日本a在线网址| 亚洲久久久久久中文字幕| 婷婷精品国产亚洲av| 一级a爱片免费观看的视频| 叶爱在线成人免费视频播放| 夜夜夜夜夜久久久久| 国产亚洲精品一区二区www| 日本五十路高清| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全电影3| 91字幕亚洲| 亚洲av一区综合| 久久精品国产99精品国产亚洲性色| 午夜日韩欧美国产| 一区二区三区高清视频在线| 精品乱码久久久久久99久播| 热99re8久久精品国产| 中文字幕av在线有码专区| 亚洲国产精品999在线| 18禁裸乳无遮挡免费网站照片| 美女被艹到高潮喷水动态| 村上凉子中文字幕在线| 最后的刺客免费高清国语| 亚洲中文日韩欧美视频| 婷婷六月久久综合丁香| 青草久久国产| 国产色婷婷99| 亚洲中文字幕日韩| 美女免费视频网站| 亚洲国产精品成人综合色| 中出人妻视频一区二区| 在线a可以看的网站| 久久久国产精品麻豆| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 日韩精品青青久久久久久| 叶爱在线成人免费视频播放| 色av中文字幕| 久久国产精品影院| 99热只有精品国产| 真人一进一出gif抽搐免费| 看片在线看免费视频| 一区二区三区激情视频| 国产国拍精品亚洲av在线观看 | 精品午夜福利视频在线观看一区| 午夜久久久久精精品| 国产av在哪里看| 日韩亚洲欧美综合| 三级国产精品欧美在线观看| 久久精品91无色码中文字幕| 欧美最新免费一区二区三区 | 国产一区二区激情短视频| 美女 人体艺术 gogo| 久久精品亚洲精品国产色婷小说| 日韩欧美一区二区三区在线观看| 麻豆国产av国片精品| 九色国产91popny在线| 欧美+亚洲+日韩+国产| 男女之事视频高清在线观看| 久久伊人香网站| 久久香蕉精品热| 欧美黄色片欧美黄色片| 在线观看免费午夜福利视频| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av | 搡老熟女国产l中国老女人| 久久这里只有精品中国| 操出白浆在线播放| 成人国产综合亚洲| 国产国拍精品亚洲av在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲18禁久久av| 99久久精品国产亚洲精品| 国产精品99久久99久久久不卡| 亚洲内射少妇av| 午夜福利成人在线免费观看| 亚洲 欧美 日韩 在线 免费| 香蕉丝袜av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | avwww免费| 亚洲精品456在线播放app | 免费在线观看影片大全网站| 国产精品嫩草影院av在线观看 | 欧美一级a爱片免费观看看| 色吧在线观看| 精品久久久久久久久久免费视频| 亚洲激情在线av| www.熟女人妻精品国产| 他把我摸到了高潮在线观看| 九色国产91popny在线| 亚洲激情在线av| 99久久成人亚洲精品观看| 99久久精品热视频| 日本在线视频免费播放| 国产97色在线日韩免费| 国产黄片美女视频| 亚洲精品国产精品久久久不卡| 国内精品久久久久久久电影| 韩国av一区二区三区四区| 日本与韩国留学比较| 嫩草影院精品99| 在线播放国产精品三级| 精品电影一区二区在线| 男女之事视频高清在线观看| 天堂影院成人在线观看| 一个人看的www免费观看视频| 国产精品久久久人人做人人爽| 性色avwww在线观看| 久久久久久久久中文| 国产精品香港三级国产av潘金莲| 亚洲欧美日韩高清专用| 人妻丰满熟妇av一区二区三区| 亚洲一区二区三区色噜噜| 有码 亚洲区| 国产精品久久电影中文字幕| 婷婷精品国产亚洲av| 亚洲美女视频黄频| 亚洲欧美日韩高清专用| 国产视频一区二区在线看| 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 一区二区三区免费毛片| 午夜福利在线观看免费完整高清在 | 亚洲七黄色美女视频| 免费看光身美女| av视频在线观看入口| 白带黄色成豆腐渣| 十八禁人妻一区二区| 久久精品91蜜桃| 亚洲av免费高清在线观看| 人妻夜夜爽99麻豆av| 成人性生交大片免费视频hd| 午夜免费成人在线视频| 欧美一级毛片孕妇| 国产精品久久久人人做人人爽| 中文字幕人妻熟人妻熟丝袜美 | 午夜免费男女啪啪视频观看 | 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| 亚洲av五月六月丁香网| 嫁个100分男人电影在线观看| 夜夜看夜夜爽夜夜摸| 午夜精品在线福利| 嫩草影视91久久| 两人在一起打扑克的视频| 在线视频色国产色| 亚洲不卡免费看| 丰满的人妻完整版| 天堂网av新在线| 亚洲国产欧美人成| 特级一级黄色大片| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 99在线视频只有这里精品首页| 日本免费一区二区三区高清不卡| 两人在一起打扑克的视频| 91av网一区二区| 蜜桃久久精品国产亚洲av| 香蕉av资源在线| 亚洲在线观看片| 九色成人免费人妻av| 午夜免费男女啪啪视频观看 | 欧美日韩综合久久久久久 | 亚洲一区二区三区色噜噜| 久久午夜亚洲精品久久| 午夜两性在线视频| 最近最新免费中文字幕在线| 亚洲国产高清在线一区二区三| 亚洲欧美日韩高清专用| av中文乱码字幕在线| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 香蕉av资源在线| 人妻丰满熟妇av一区二区三区| 国产黄a三级三级三级人| 少妇的逼水好多| 18禁在线播放成人免费| 国语自产精品视频在线第100页| 国模一区二区三区四区视频| 我的老师免费观看完整版| 国产麻豆成人av免费视频| 亚洲美女黄片视频| 欧美国产日韩亚洲一区| 哪里可以看免费的av片| 国产伦一二天堂av在线观看| 日本 欧美在线| 国产极品精品免费视频能看的| 国产美女午夜福利| 亚洲精品成人久久久久久| 国产精品 欧美亚洲| 黄片小视频在线播放| 美女被艹到高潮喷水动态| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 男人和女人高潮做爰伦理| 此物有八面人人有两片| 欧美另类亚洲清纯唯美| 国产精品一区二区三区四区久久| 在线国产一区二区在线| 国产精品久久久久久人妻精品电影| 又紧又爽又黄一区二区| 亚洲成人久久爱视频| 精品久久久久久,| 色尼玛亚洲综合影院| 五月玫瑰六月丁香| 亚洲无线观看免费| 中亚洲国语对白在线视频| 亚洲精品在线美女| xxxwww97欧美| 久久久成人免费电影| 午夜精品一区二区三区免费看| 亚洲狠狠婷婷综合久久图片| 色老头精品视频在线观看| 国产精华一区二区三区| 亚洲精品亚洲一区二区| 亚洲av电影不卡..在线观看| 97超视频在线观看视频| 国产亚洲精品综合一区在线观看| 欧美黑人巨大hd| 国产免费一级a男人的天堂| 97超级碰碰碰精品色视频在线观看| 一区福利在线观看| 啦啦啦韩国在线观看视频| АⅤ资源中文在线天堂| 国产成人a区在线观看| 在线观看免费视频日本深夜| 亚洲国产精品999在线| 成人性生交大片免费视频hd| 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 女同久久另类99精品国产91| 色播亚洲综合网| 日本熟妇午夜| 欧美zozozo另类| 在线十欧美十亚洲十日本专区| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| 有码 亚洲区| 免费一级毛片在线播放高清视频| 丰满的人妻完整版| 久久久国产成人精品二区| 亚洲精品在线观看二区| 午夜福利在线观看吧| 久久久久久久久中文| 九色成人免费人妻av| 精品久久久久久久久久免费视频| 久久久成人免费电影| 亚洲久久久久久中文字幕| 美女大奶头视频| x7x7x7水蜜桃| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线 | 噜噜噜噜噜久久久久久91| 精品国内亚洲2022精品成人| 天堂√8在线中文| 日韩大尺度精品在线看网址| 色吧在线观看| 国产 一区 欧美 日韩| 午夜免费观看网址| 久久国产精品人妻蜜桃| 97超视频在线观看视频| 啦啦啦观看免费观看视频高清| 哪里可以看免费的av片| 精品久久久久久久人妻蜜臀av| 国语自产精品视频在线第100页| 天美传媒精品一区二区| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 黄色成人免费大全| 亚洲人与动物交配视频| 一a级毛片在线观看| 成人欧美大片| 欧美黑人巨大hd| 久久精品人妻少妇| 国产av一区在线观看免费| 一个人免费在线观看的高清视频| 国产精品99久久99久久久不卡| 18禁黄网站禁片午夜丰满| 久久这里只有精品中国| 在线国产一区二区在线| 18禁裸乳无遮挡免费网站照片| 午夜免费成人在线视频| 久久国产精品人妻蜜桃| 一个人免费在线观看电影| 欧美日韩黄片免| 婷婷丁香在线五月| 国产精品三级大全| 国产精品99久久99久久久不卡| 美女 人体艺术 gogo| 精品国产美女av久久久久小说| 久久精品国产综合久久久| 黄片大片在线免费观看| 久久国产乱子伦精品免费另类| 国产成人a区在线观看| 69人妻影院| ponron亚洲| 欧美一级毛片孕妇| 国产一区二区亚洲精品在线观看| 国产乱人伦免费视频| 一级黄片播放器| 美女黄网站色视频| 天天一区二区日本电影三级| 久99久视频精品免费| 久久精品国产亚洲av香蕉五月| 99久久99久久久精品蜜桃| 桃红色精品国产亚洲av| 亚洲成人中文字幕在线播放| 99久久精品一区二区三区| 欧美黑人巨大hd| av中文乱码字幕在线| 亚洲在线自拍视频| а√天堂www在线а√下载| 日韩欧美 国产精品| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久午夜电影| 熟女电影av网| 欧美中文日本在线观看视频| 国产黄a三级三级三级人| 黄色成人免费大全| 欧美丝袜亚洲另类 | 国产一区二区在线观看日韩 | 中文字幕人妻丝袜一区二区| 免费看光身美女| 女警被强在线播放| 18禁国产床啪视频网站| 日本熟妇午夜| 三级毛片av免费| 精品乱码久久久久久99久播| 欧美日韩瑟瑟在线播放| 在线免费观看不下载黄p国产 | 一区福利在线观看| 91在线观看av| 男人和女人高潮做爰伦理| 日本 av在线| 18+在线观看网站| 男插女下体视频免费在线播放| 精华霜和精华液先用哪个| 小蜜桃在线观看免费完整版高清| 久久久久九九精品影院| 中文字幕人成人乱码亚洲影| 亚洲国产欧美网| tocl精华| 国产免费av片在线观看野外av| 搡老熟女国产l中国老女人| 麻豆成人午夜福利视频| 国产免费av片在线观看野外av| 成人永久免费在线观看视频| 真人一进一出gif抽搐免费| 九九久久精品国产亚洲av麻豆| 国产伦一二天堂av在线观看| 亚洲人成电影免费在线| 高清日韩中文字幕在线| 少妇熟女aⅴ在线视频|