郭迎迎,吳 巍,秦秋杰,孫靖輝,劉淑瑩,2
(1.長春中醫(yī)藥大學(xué),吉林省人參科學(xué)研究院,吉林 長春 130117;2.中國科學(xué)院長春應(yīng)用化學(xué)研究所,長春質(zhì)譜中心,吉林 長春 130022)
人參皂苷Rd酸水解產(chǎn)物的RRLC-Q-TOFMS研究
郭迎迎1,吳 巍1,秦秋杰1,孫靖輝1,劉淑瑩1,2
(1.長春中醫(yī)藥大學(xué),吉林省人參科學(xué)研究院,吉林 長春 130117;2.中國科學(xué)院長春應(yīng)用化學(xué)研究所,長春質(zhì)譜中心,吉林 長春 130022)
利用高分離快速液相色譜-四極桿-飛行時(shí)間質(zhì)譜(RRLC-Q-TOF MS)聯(lián)用技術(shù)對人參皂苷Rd酸水解產(chǎn)物進(jìn)行了分析研究。通過化合物的保留時(shí)間、精確分子質(zhì)量信息、串聯(lián)質(zhì)譜碎片信息,分析鑒定了7種Rd酸水解產(chǎn)物,分別為C-Y1、C-Y2、F2、20(S)-Rg3、20(R)-Rg3、Rk1和Rg5。串聯(lián)質(zhì)譜分析水解產(chǎn)物獲得了原人參二醇苷元特征離子m/z459(20(S)-Rg3,20(R)-Rg3,F(xiàn)2),Δ20(21)或Δ20(22)位脫水原人參二醇型苷元特征離子m/z441(Rk1,Rg5),C-24、C-25位水合原人參二醇苷元特征離子m/z477(C-Y1和C-Y2)。研究表明,人參皂苷Rd在酸性條件下發(fā)生化學(xué)轉(zhuǎn)化,包括取代糖基的水解反應(yīng),Δ20(21)或Δ20(22)位脫水反應(yīng)和C-24,C-25位水合加成反應(yīng)。本實(shí)驗(yàn)可為研究人參在配位方面的化學(xué)物質(zhì)基礎(chǔ)提供方法參考。
人參皂苷Rd;高分離快速液相色譜-四極桿-飛行時(shí)間-質(zhì)譜(RRLC-Q-TOF MS);水解
人參為五加科植物人參(panaxginseng C. A. Meyer)的干燥根,其主要有效成分為人參皂苷類化合物,具有廣泛的藥理活性[1],包括抗氧化、抗炎、抗凋亡、免疫興奮等[2-3]。目前,液相色譜-質(zhì)譜聯(lián)用技術(shù)已成為分析人參皂苷的有效方法,可通過獲取分子質(zhì)量和結(jié)構(gòu)信息快速分析混合物中的化合物[4-6]。近年來,迅速發(fā)展的超高效液相色譜(UPLC)和高分離度液相色譜(RRLC)與四極桿飛行時(shí)間質(zhì)譜(Q-TOF MS)聯(lián)用技術(shù)在中藥復(fù)雜體系分析中有不可比擬的優(yōu)勢,可提供高分離度、高分辨率、高靈敏度和快速的人參檢測方法[7-8]。
人參與不同中藥配伍,煎煮液的pH值會(huì)隨著配伍中藥的不同而改變,從而影響人參皂苷的溶出和種類的變化[9]??诜藚⒓跋嚓P(guān)產(chǎn)品后,在胃腸道的酸性環(huán)境中會(huì)產(chǎn)生多種代謝物[10],文獻(xiàn)[11]報(bào)道了在體外胃酸條件下的人參皂苷水解研究。也有文獻(xiàn)報(bào)道了20(S)-原人參三醇型皂苷Re、Rg2、Rf在酸性條件下的化學(xué)轉(zhuǎn)化研究,鑒定了水解產(chǎn)物[12],并進(jìn)行了人參皂苷混合物在不同pH值條件下的水解研究[13]。人參皂苷Rd在人參中的含量較低,但由于其對神經(jīng)系統(tǒng)、心腦血管以及腎功能的良好藥理作用,引起學(xué)者們的關(guān)注[14-15]。本實(shí)驗(yàn)利用高分離快速液相色譜-四極桿-飛行時(shí)間質(zhì)譜(RRLC-Q-TOF MS)及串聯(lián)質(zhì)譜(MS/MS)技術(shù),對人參皂苷Rd在酸性條件下的水解產(chǎn)物進(jìn)行分析,旨在為研究人參在配位方面的化學(xué)物質(zhì)基礎(chǔ)提供方法參考。
1.1儀器與試劑
RRLC-Q-TOF MS/6520:美國Agilent公司產(chǎn)品,其中RRLC色譜儀配備1200SL二元梯度泵、在線真空脫氣機(jī)、SLplus標(biāo)準(zhǔn)自動(dòng)進(jìn)樣器、自動(dòng)進(jìn)樣器控溫模塊、智能柱溫箱,Q-TOF質(zhì)譜儀配備雙噴霧ESI源、自動(dòng)校準(zhǔn)系統(tǒng)。
人參皂苷Rd、20(S)-Rg3、20(R)-Rg3、F2、Rk1、Rg5對照品:購自吉林大學(xué);乙腈(色譜純):購自美國Fisher公司;甲酸(96%):購自美國Tedia公司;Milli-Q超純水:電阻率為18 MΩ·cm;其它試劑:均為分析純,購自北京化工廠。
1.2樣品制備方法
精密稱取1 mg人參皂苷Rd對照品,溶解于甲酸調(diào)節(jié)的pH值為2.0的溶液中,60 ℃水浴加熱5 h后,用50%甲醇定容至1 mL,待RRLC-Q-TOF MS分析。
1.3實(shí)驗(yàn)條件
1.3.1色譜條件 Agilent SB-C18色譜柱(3.0 mm×100 mm×1.8 μm),柱溫35 ℃;二元線性梯度洗脫:流動(dòng)相為0.1%甲酸水溶液(A)和乙腈(B);梯度洗脫如下:0~13 min(18%~46%B),13~20 min(46%~50%B),20~23 min(50%~90%B),23~25 min(90%B);流速0.3 mL/min;進(jìn)樣量5 μL。
1.3.2質(zhì)譜條件 電噴霧負(fù)離子模式,質(zhì)量掃描范圍m/z100~2 200,干燥氣(N2)流量10.0 L/min,干燥氣溫度350 ℃,霧化氣壓力255 kPa,毛細(xì)管電壓3.5 kV,碎裂電壓200 V,錐孔電壓65 V,八極桿射頻電壓250 V。實(shí)驗(yàn)數(shù)據(jù)采用Masshunter Qualitative Analysis(B.03.01)分析軟件處理。
實(shí)驗(yàn)表明,人參皂苷Rd在pH值為2.0的條件下進(jìn)行酸水解,能夠促進(jìn)皂苷的化學(xué)轉(zhuǎn)化反應(yīng),有助于皂苷的分析與檢測。利用RRLC-Q-TOF MS分析人參皂苷Rd酸水解產(chǎn)物,在1.3.1條件下混合物得到很好的分離。人參皂苷Rd酸水解產(chǎn)物的RRLC-Q-TOF MS提取離子流圖示于圖1。通過化合物的保留時(shí)間、精確分子質(zhì)量和串聯(lián)質(zhì)譜分析,確定了7種水解產(chǎn)物(峰1~7),數(shù)據(jù)列于表1。以0.1%甲酸溶液作為流動(dòng)相,在負(fù)離子模式全掃描質(zhì)譜圖中,化合物均給出[M-H]-準(zhǔn)分子離子和[M+HCOO]-加合離子峰,這為確定水解產(chǎn)物的分子質(zhì)量提供了有用的信息。峰1和峰2為同分異構(gòu)體生成[M+HCOO]-離子(m/z847.50);峰3、峰4、峰5為同分異構(gòu)體,產(chǎn)生[M+HCOO]-離子(m/z829.49);峰6和峰7為同分異構(gòu)體,產(chǎn)生[M+HCOO]-離子(m/z811.48)。為進(jìn)一步確定水解產(chǎn)物的結(jié)構(gòu),分別對峰1~7進(jìn)行串聯(lián)質(zhì)譜研究,通過MS/MS特征碎片離子分析和精確質(zhì)量測定,分析了化合物苷元類型和取代糖鏈序列,質(zhì)量精確度為2×10-6~1×10-5。碎片離子采用Costello命名法[16-17],在下面的討論中,離子的m/z值用整數(shù)表示。選擇峰1和峰2的[M+HCOO]-離子(m/z847)進(jìn)行串聯(lián)質(zhì)譜研究,均產(chǎn)生碎片離子m/z801、639、477、161、101。分析數(shù)據(jù)可得,離子m/z801為母離子[M+HCOO]-丟失甲酸根產(chǎn)生的[M-H]-,母離子丟失HCOOH和Glc殘基(46 u+162 u)產(chǎn)生離子m/z639 (Y0α),表明Glc為末端取代糖,進(jìn)一步丟失Glc殘基(162 u)產(chǎn)生離子m/z477 (Y’0β),說明有2個(gè)Glc取代;而m/z221離子(1,3A2β)則說明取代糖鏈為Glc-Glc。 Glc殘基離子m/z161及Glc鍵2與鍵5斷裂后生成的離子m/z101(2,5A1α/2,5A1β)也在譜圖中出現(xiàn)。m/z477離子與二醇型苷元離子m/z459對比加合了一分子水(18 u)。結(jié)合文獻(xiàn)[13],推斷峰1和峰2為Rd的C-20位葡萄糖水解后C-24、C-25位再加合一分子水,生成分子質(zhì)量為802 u的水解產(chǎn)物C-Y1和C-Y2,C-Y1的MS/MS譜圖示于圖2a。峰3、峰4、峰5的分子質(zhì)量均為784 u,為人參皂苷Rd水解掉一分子葡萄糖的產(chǎn)物。進(jìn)一步對峰3、峰4、峰5的 [M+HCOO]-離子(m/z829)進(jìn)行MS/MS研究,均得到離子m/z459,為二醇型苷元的特征離子,表明這3個(gè)水解產(chǎn)物苷元沒有發(fā)生變化。m/z621是丟掉一分子Glc殘基產(chǎn)生的離子。在峰4和峰5的MS/MS譜圖中得到m/z221離子(1,3A2β),說明取代糖鏈為Glc-Glc,未在峰3的MS/MS譜圖中發(fā)現(xiàn)該離子。與標(biāo)準(zhǔn)品F2對比發(fā)現(xiàn),保留時(shí)間與串聯(lián)質(zhì)譜數(shù)據(jù)完全一致,因此確定峰3為人參皂苷Rd的C-3位末端葡萄糖水解后生成的F2。根據(jù)文獻(xiàn)[18]報(bào)道,并與標(biāo)準(zhǔn)品20(S)-Rg3和20(R)-Rg3對照,確定峰4和峰5分別為Rd的C-20位葡萄糖水解后生成的20(S)-Rg3和20(R)-Rg3。F2的MS/MS譜圖示于圖2b,20(S)-Rg3的MS/MS譜圖示于圖2c。峰6和峰7的MS/MS譜圖中給出的m/z603離子是母離子[M+HCOO]-(m/z811)丟失HCOOH和Glc殘基(46 u+162 u)產(chǎn)生的碎片離子,m/z441是丟失HCOOH和二分子Glc殘基(46 u+162 u+162 u)產(chǎn)生的離子,離子m/z221(1,3A2β)進(jìn)一步證明存在Glc-Glc取代,推斷峰6和峰7為人參皂苷Rd水解掉C-20位葡萄糖的產(chǎn)物。離子m/z441與二醇型苷元離子m/z459對比,脫掉一分子水(-18 u),結(jié)合文獻(xiàn)[13,19]推斷,m/z457離子為Δ20(21)-或Δ20(22)-原人參二醇皂苷元的特征離子。進(jìn)一步與Rk1和Rg5的標(biāo)準(zhǔn)品比較,其保留時(shí)間和串聯(lián)質(zhì)譜數(shù)據(jù)完全一致。因此,推斷峰6和峰7為Rd的C-20位葡萄糖水解后,20(21)位和20(22)位脫水后形成的衍生物Rk1和Rg5。峰6衍生物Rk1的MS/MS質(zhì)譜圖示于圖2d。綜上所述,人參皂苷Rd在pH 2.0的酸性環(huán)境中發(fā)生了一系列的化學(xué)反應(yīng),生成了C-Y1、C-Y2、F2、20(S)-Rg3、20(R)-Rg3、Rk1、Rg5,共7種水解產(chǎn)物,轉(zhuǎn)化途徑示于圖3。
圖1 人參皂苷Rd酸水解產(chǎn)物的RRLC-Q-TOF MS負(fù)離子模式提取離子流圖Fig.1 RRLC-Q-TOF MS extracted ion chromatograms of ginsenoside Rd acid hydrolysis products in negative ion mode
注:a. C-Y1; b. F2; c. 20(S)-Rg3; d. Rk1圖2 人參皂苷Rd酸水解產(chǎn)物二級(jí)串聯(lián)質(zhì)譜圖Fig.2 MS/MS spectra of ginsenoside Rd acid hydrolysis products
表1 人參皂苷Rd水解產(chǎn)物的質(zhì)譜數(shù)據(jù)
圖3 人參皂苷Rd酸水解產(chǎn)物的轉(zhuǎn)化途徑Fig.3 The hydrolysis transformation pathway of ginsenoside Rd
利用RRLC-Q-TOF MS和MS/MS分析技術(shù)對人參皂苷Rd酸水解產(chǎn)物進(jìn)行了分析鑒定,快速測定了人參皂苷Rd酸水解后產(chǎn)生的水解產(chǎn)物C-Y1、C-Y2、F2、20(S)-Rg3、20(R)-Rg3、Rk1、Rg5。通過水解產(chǎn)物的鑒定推斷了人參皂苷Rd的化學(xué)轉(zhuǎn)化方式,包括水解、脫水和加成反應(yīng),為研究人參在配伍方面的化學(xué)物質(zhì)基礎(chǔ)提供快速、直觀、準(zhǔn)確的方法。
[1] 黎 陽,張鐵軍,劉素香,等.人參化學(xué)成分和藥理研究進(jìn)展[J].中草藥,2009,40(1):164. LI Yang, ZHANG Tiejun, LIU Suxiang,et al. Research progress on chemical constituents and pharmacological activities ofPanaxginseng[J].Chinese Herbal Medicine, 2009,40(1):164(in Chinese).
[2] LU J, YAO Q, CHEN C. Ginseng compounds: An update on their molecular mechanisms and medical applications[J]. Curr Vasc Pharmaco, 2009, 7(3): 293-302.
[3] JIA L, ZHAO Y, LIANG X. Current evaluation of the millennium phytomedicine-ginseng (II):Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine[J]. Curr Med Chem, 2009, 16(22): 2 924-2 942.
[4] CUI M, SONG F R, ZHOU Y, et al. Rapid identification of saponins in plant extracts by electrospray ionization multi-stage tandem mass spectrometry and liquid chromatography/tandem mass spectrometry[J]. Rapid Commun Mass Spectrom, 2000, 14(14): 1 280-1 286.
[5] FUZZATI N, GABETTA B, JAYAKAR K, et al. Liquid chromatography-electrospray mass spectrometric identification of ginsenosides inPanaxginsengroots[J]. Chromatogr A, 1999, 854(1/2): 69-79.
[6] WANG X, SAKUMA T, ASAFU-ADJAYE E, et al. Determination of ginsenosides in plant extracts fromPanaxginsengandPanaxquinquefoliusL. by LC/MS/MS[J]. Anal Chem, 1999, 71(8):1 579-1 584.
[7] CHAN E C Y, YAP S, LAU A, et al. Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamedPanaxnotoginseng[J]. Rapid Commun Mass Spectrom, 2007, 21(4): 519-528.
[8] XIE G X, NI Y, SU M M, et al. Application of ultra-performance LC-TOF MS metabolite profiling techniques to the analysis of medicinalPanaxherbs[J]. Metabolomics, 2008, 4(3): 248-260.
[9] ZHANG X, WANG L N, SONG F R, et al. St- udy on the variation of chemical constituents during combination of ginseng with trogopteroum feces and semen raphani by high performance liquid chromatography mass spectrometry[J]. Chinese J Anal Chem, 2007, 35: 559-563.
[10] BAE E A, CHOO M K, PARK E K, et al. Metabolism of ginsenoside Rcby human intestinal bacteria and its related antiallergic activity[J]. Biol Pharm Bull, 2002,25(6): 743-747.
[11] PIETTA P, MAURI P, RAVA A. Hydrolysis of ginsenosides in artificial gastric fluid monitored by high-performance of liquid chromatography[J]. Chromatogr, 1986, 362(2): 291-297.
[12] WU W, QIN Q J, GUO Y Y, et al. Studies on the chemical transformation of 20(S)-protopanaxatriol (PPT)-type ginsenosides Re, Rg2, and Rfusing rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)[J]. Journal of Agricultural and Food Chemistry, 2012, 60: 10 007.
[13] ZHANG X, SONG F, CUI M, et al. Investigation of the hydrolysis of ginsenosides by high performance liquid chromatography-electrospray ionization mass spectrometry[J]. Planta Med, 2007, 73(11): 1 225-1 229.
[14] 張 琛,趙 鋼.人參皂苷Rd的藥理作用研究進(jìn)展[J].中國新藥雜志,2011, 20(11):953-958. ZHANG Chen, ZHAO Gang. Research progress of the pharmacological effects of ginsenoside Rd[J].Chinese Journal of New Drugs, 2011,20(11):953-958(in Chinese).
[15] 周超群,周 珮.人參皂苷Rd的研究進(jìn)展[J].中草藥,2009,40(5):832-836. ZHOU Chaoqun, ZHOU Pei. Research progress of ginsenoside Rd[J].Chinese Traditional and Herbal Drugs, 2009,40(5):832-836(in Chinese).
[16] DOMON B, COSTELLO C E. A systematic nomenclature for carbohydrate ragmentations in FAB-MS/MS spectra of glycoconjugates [J]. Glycoconj J, 1988, 5(4): 397-409.
[17] PERREAULT H, COSTELLO C E. Liquid secondary ionization tandem and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric characterization of glycosphingolipid derivatives [J]. Org Mass Spectrom, 1994, 29(12): 720-735.
[18] 楊 柳,許舜軍,曾 星,等. 大鼠尿中人參皂苷Rd及其代謝物的LC-MS研究[J].藥學(xué)學(xué)報(bào), 2006, 41(8): 742-746. YANG Liu, XU Shunjun, ZENG Xing, et al.Study of ginsenoside Rdand its metabolites in rat urine by LC-MS[J]. Acta Pharmaceutica Sinica, 2006, 41(8): 742-746(in Chinese).
[19] KWON S W, HAN S B, PARK I H, et al. Liquid chromatographic determination of less polar ginsenosides in processed ginseng[J]. Chromatogr A, 2001, 921(2):335-339.
StudyontheHydrolysisofGinsenosideRdbyRRLC-Q-TOFMS
GUO Ying-ying1, WU Wei1, QIN Qiu-jie1, SUN Jing-hui1, LIU Shu-ying1,2
(1.JilinGinsengAcademy,ChangchunUniversityofChineseMedicine,Changchun130117,China; 2.ChangchunCenterofMassSpectrometry,ChangchunInstituteofAppliedChemistry,ChineseAcademyofSciences,Changchun130022,China)
Rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF MS) method was developed for analyzing the hydrolysis ofginsenosideRdin acidic condition. The hydrolysis products were identified by comparison with the retention time of the standard compounds, the accurate mass and the characteristic fragment ions obtained from RRLC-Q-TOF-MS/MS analysis, including C-Y1, C-Y2, F2, 20(S)-Rg3, 20(R)-Rg3, Rk1and Rg5. The specific product ions of aglycone PPD (m/z459), Δ20 (21)-or Δ20 (22)-dehydration-PPD (m/z441) and C-24, C-25 hydrated-PPD (m/z477) by MS/MS were discussed for structural characterization. The chemical transformation mechanisms ofginsenosideRdwere demonstrated in acidic condition, include saccharide hydrolysis, Δ20(21)- or Δ20(22)-dehydration and hydration addition reactions at C-24, C-25. The hydrolysis transformation pathway ofginsenosideRdwas summarized. The developed RRLC-Q-TOF-MS/MS method was applied for comparative analysis of ginsenoside Rdand related hydrolysis transformation products.
ginsensideRd; rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF MS); hydrolysis
2013-03-26;
:2013-05-15
吉林省科技發(fā)展重大項(xiàng)目(20096043);吉林省高校創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(JTD201213)資助
郭迎迎(1987~),女(漢族),吉林人,碩士研究生,從事中藥化學(xué)研究。E-mail: guoyingying871108@126.com
劉淑瑩(1943~),女(漢族),黑龍江人,研究員,從事中藥化學(xué)和有機(jī)質(zhì)譜學(xué)研究。E-mail: syliu19@yahoo.com.cn
O 657.63
:A
:1004-2997(2014)01-0079-06
10.7538/zpxb.2014.35.01.0079