• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on New Silica Sol Matrix Used in Fluid Catalytic Cracking Reaction

    2014-07-25 10:07:50ZhangZhongdongLiuZhaoyongYanZifengWangYiZhangHaitaoWangZhifeng
    中國煉油與石油化工 2014年2期

    Zhang Zhongdong; Liu Zhaoyong; Yan Zifeng; Wang Yi;Zhang Haitao; Wang Zhifeng

    (1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580; 2. Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060)

    Research on New Silica Sol Matrix Used in Fluid Catalytic Cracking Reaction

    Zhang Zhongdong1,2; Liu Zhaoyong1,2; Yan Zifeng1; Wang Yi1;Zhang Haitao1; Wang Zhifeng2

    (1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580; 2. Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060)

    A new silica sol binder was obtained by mixing the acid-modified aluminium sulfate and water glass. The effect of SiO2concentration in sodium silicate, pH value and polymerization was investigated. The new silica sol binder, which possessed abundant pore volume and suitable acid amount, was an ideal component for preparing cracking catalyst. As a result, the corresponding catalyst comprising the new binder showed excellent performance. Compared with the reference sample, the liquefied petroleum gas (LPG) and propylene yield obtained over this catalyst increased by 3.49 and 1.20 percentage points, respectively. The perfect pore structure and suitable Lewis acid amount of new silica sol were the possible reason leading to its outstanding performance.

    silica sol; binder; pH value; LPG; propylene; catalyst

    1 Introduction

    As we all know, fluid catalytic cracking (FCC) unit converts low value heavy hydrocarbons into a series of more valuable products such as gasoline, diesel and light olefins[1–3]. Higher conversion of heavy feedstock to these products is more desirable for FCC unit. In China, fluid catalytic cracking reaction unit at petroleum refineries is a very important source of gasoline, diesel and LPG nowadays. Although FCC units have been commercially deployed for over 60 years, the technology is still in need of further development to meet new challenges[4–6]. Modern FCC units can process a wide variety of feedstocks and operator could adjust operating conditions to maximize the production of gasoline, middle distillate (LCO) or light olefins to meet different market demands.

    To take full advantage of marketing opportunities, some refiners are blending residual oil with gas oil as the feed to FCC units[7–9]. In fact, the majority of FCC units have been designed to process residual oil. In comparison with FCC catalysts used for cracking of vacuum gas oils, the FCC catalysts for residual oil cracking should have much more macropores to increase the mass transfer of large residue molecules inside the pores of catalysts.

    Heavy metals such as vanadium and nickel existing in petroleum feedstock have the most significant impact on the FCC catalyst’s performance. During the cracking process, these metals are deposited on the catalyst and affect both catalytic activity and selectivity. The major effect of nickel is to produce additional hydrogen and coke, while vanadium, in addition to increasing gas and coke production, can cause partial destruction of the zeolite in the presence of steam. In the case of nickel, the lower activity of catalyst is primarily ascribed to coke deposition and the catalyst can therefore be regenerated. In the case of vanadium, the loss in activity is primarily due to zeolite destruction which is irreversible.

    Commercial FCC catalyst often contains Y zeolite, ZSM-5, kaolin, binder, chemical elements, etc.[10-11]The Y zeolite provides most of the cracking activity of the FCC catalyst, and the matrix fulfills both physical and auxiliary catalytic functions[5]. However, the price of Y zeolite is costly. In order to decrease the cost, people cannot help reducing the dosage of Y zeolite, because reduction of Y zeolite content will influence the conversion of heavyoil. It seems that it is difficult to take into account the relationship between the Y zeolite content and the conversion of heavy oil. People think the only purpose of using binders in fluid catalytic cracking (FCC) operation is the need for increased strength of catalyst in the course of reaction. However, with a better understanding of the FCC process, scientists believe that the role and type of binder usually vary a lot. Up to date, AlPO4, silica sol, Al sol and pseudo-boehmite are often used as binder according to the literature information[12–15]. However, these binders have many defects. For instance, the pore volume of Al sol is low, and the strength of pseudo-boehmite is weak. In this paper, a new porous binder material, which has the advantage of both suitable meso-macro pores, proper bond strength and heavy metal resistance, is prepared and applied in fluid catalytic cracking reaction.

    Silica sol, which is also called silicate sol, is a colloidal solution of multi-molecular polymer silicate formation. Its molecular formula is SiO2·xH2O. The average particle size of silica sol is 7—20 nm. Silicate polymer particles can be dispersed in water and organic solvent, which is a chemical binder. A variety of methods can be used for preparation of silica sol, which can be divided into two categories. One of the methods is polymerization by which silica sol is prepared via polymerization of silicic acid and integration of large particles, and the other is depolymerization. These two categories can be subdivided into the electrolysis-electrodialysis method[16], the ion exchange method[17]and the acidification method[18].

    The processing of two former methods is not only complex, but also entails high production cost. However, the last one is a simple and low cost method. The defect is that the silica content in silica sol is low, and is readily transformed into gel. In this paper, a special “one-step”method is introduced. The silica content is high, and the colloid is stable. Furthermore, the catalyst containing this silica sol shows a good product distribution.

    Silica sol according to this principle was prepared just as follows[19]:

    2 Experimental

    2.1 Preparation of new silica sol and catalyst

    Acid-modified aluminium sulfate (AMAS) was prepared from aluminium sulfate solution and 1 mol/L H2SO4solution, and then mixed with the soluble water glass solution under normal pressure and temperature. After suitable treatment, the remaining liquid was used as the silica sol matrix. The industrial catalyst was prepared as follows. During the catalyst preparation process, the ZSM-5 zeolite (manufactured by the Catalyst Plant of Nankai University), the kaolin matrix (manufactured by the Suzhou Kaolin Company), and the silica sol matrix were mixed together and shaped through spray-drying to obtain a micro-spheroidal catalyst. This catalyst was named as the ADD-new. The old catalyst was prepared through adding the Al sol (manufactured by the Catalyst Plant of Lanzhou Petrochemical Company, PetroChina) to replace the silica sol. The old catalyst was marked as the ADD-old.

    2.2 Catalytic cracking tests

    The catalyst, named as the CAT-new, was prepared by mixing the ADD-new with the commercial catalyst LBO-16[20](manufactured by the Catalyst Plant of Lanzhou Petrochemical Company, PetroChina), and the catalyst CAT-old was prepared by mixing the ADD-old with LBO-16 catalyst. The catalytic cracking performance of the catalysts was evaluated in a fixed-fluidized bed unit (FFB).

    The mass ratio of binders to catalyst was 6:94. The tests were carried out under the typical conditions for FCC units: a cracking temperature of 500 ℃, a catalyst to oil mass ratio of 4.0, and a weight hourly space velocity of 15 h-1. Prior to the FFB test, the CAT-old sample and CAT-new sample were steam-deactivated at 800 ℃ for 10 h in a fluidized bed in the presence of 100% steam. The chemical composition of the product FCC gasoline was determined by an online GC-MS. The feedstock (as shown in Table 1) was a mixture of 70% Xinjiang vacuum gas oil (VGO) and 30% Xinjiang vacuum tower bottom (VTB).

    Table 1 Main properties of the FCC feedstock

    2.3 Physicochemical characterization

    The elemental content was analyzed by the X-ray fluorescence spectrometric (XFS) method on a Rigaku ZSX primus instrument operated at 50 kV and 40 mA. The textural properties were determined by N2adsorption at 77 K on an ASAP-2010 instrument (Micromeritics, USA). Prior to measurement, the sample was outgassed at 573 K for 12 h. The micropore volume and external surface area were calculated from the t-plot method.

    3 Results and Discussion

    3.1 SiO2concentration of sodium silicate

    Literature information and research[21]show that, silica sol is a dispersion system, which contains a lot of SiO2particles. Silica sol is a thermodynamic instable system, because its surface has a lot of free energy, and is prone to coalescence into large particles to produce silica gel. Therefore, the stability time of silica sol has a close relationship with the initial concentration of SiO2. In order to investigate the effect of initial concentration of raw water glass for preparation of silica sol, different concentration of raw water glass was mixed with AMAS, with the results shown in Table 2. As shown in Table 2, the less the concentration of water glass, the longer the stabilizing time of silica sol would be. Therefore, we should select a small concentration of water glass.

    Table 2 Effect of initial concentration of raw water glass

    3.2 pH value

    The effect of pH value in the range of 1—5 on the stabilizing time of silica sol was investigated, with the results shown in Figure 1. It can be seen from Figure 1 that a low pH value can prolong the stabilizing time. The reason can be ascribed to different states of aggregation in different range of pH values[22].

    Figure 1 Relation between pH value and stabilizing time of colloids

    In acidic solution, the polymerization reactions are mainly carried out through the cations of neutral molecules or are related with the hydroxyl bond effect. Therefore, at a higher acidity, the reaction can hinder or slow the reaction rate of polymerization, and then increase the stabilizing time of colloids. Therefore, the pH value should be controlled within a certain range of acidity in the course of preparation of silica sol, and a pH value of between 2.5 and 3.5 was suitable.

    3.3 Polymerization

    In order to improve the stability of silica sol, aluminum sulfate was added to prolong the stabilizing time of silica sol, with the results shown in Table 3. It can be seen from Table 3 that during the polymerization process of silica sol, aluminum ions can slow down the polymerization rate of silica sol and generate smaller particles. In addition, the aluminum ions could change the surface energy of silica sol.

    Table 3 The effects of concentration of aluminum sulfate

    3.4 Physicochemical properties of new silica sol

    The prepared silica sol material existed in the form of slurry, and no precipitation was observed after settling for 48 h in the laboratory. The corresponding surface area and pore volume were characterized, with the results presented in Table 4. It can be seen from Table 4 that the silica sol had considerable surface area and large pore volume. Among them, the bulk density of newly prepared silica sol was lower than that of old binder. The surface area and pore volume of old binder was obviously smaller than those of new silica sol. Compared with the pure Al sol, this new porous binder, which had obvious advantages to function as cracking catalyst filler material, was an ideal cracking catalyst component.

    Table 4 Textural properties of the silica sol

    3.5 Catalytic cracking tests

    The product distribution and the property of the resulting gasoline fraction are shown in Table 5. The data show that, compared with the CAT-old sample, the LPG and propylene yield obtained during catalytic reaction over the CAT-new sample increased by 3.49 and 1.20 percentage points, respectively. The overall reaction performance of CAT-new sample was obviously superior to the CAT-old sample. We all know if the ZSM-5 zeolite content of catalyst decreases, the ability to achieve maximum LPG yield will reduce and the product distribution will deteriorate. The activity of catalyst was improved despite the decreased active components in the catalyst, which could evidence the advantages of the silica sol binder.

    Table 5 Product distribution of the prepared FCC catalysts

    Compared with the CAT-old sample, MON and RON of gasoline fraction obtained during catalytic cracking over the CAT-new sample could increase by 0.2 and 1.0 unit, respectively. The result was very ideal although the molecular sieve content reduced, which showed that the synergism effect of both ZSM-5 zeolite and new silica sol binder had fully achieved the desired catalytic properties. The high LPG yield and octane number of gasoline obtained during catalytic reaction over the new catalyst showed that the new silica sol binder was an effective component for preparing this FCC catalyst. The reason can be attributed to two aspects. On one hand, the silica sol binder had a perfect pore structure. The use of new material provided a favorable space for adsorption and diffusion of hydrocarbons of gasoline fraction and other molecules, which at the same time was helpful to LPG yield and product distribution improvements. More accessible space also facilitated the cracking of interim products. On the other hand, the acid amount of new silica sol binder was excellent. The suitable acid amount was conducive to providing a high dispersion of active components, and could bring into full play the excellent catalytic properties of zeolites.

    4 Conclusions

    A new silica sol binder was obtained by mixing the acidmodified aluminium sulfate and the water glass, and applied to prepare catalytic cracking catalyst. The effect of SiO2concentration of sodium silicate, pH value and polymerization process were investigated in this paper. The new silica sol binder possessed abundant pore volume and suitable acid amount and was an ideal component for preparing cracking catalyst. The new prepared catalystfeatured high Lewis acid amount and large pore volume. As a result, the corresponding catalyst showed excellent performance. Compared with the reference catalyst, the LPG and propylene yield of catalytic reaction over the CAT-new sample increased by 3.49 and 1.20 percentage points, respectively. MON and RON of gasoline obtained from catalytic reaction over the CAT-new sample could increase by 0.2 and 1.0 unit, respectively. The possible reason of obtaining prominent performance was ascribed to the perfect pore structure and suitable Lewis acid amount of the new silica sol.

    Acknowledgements:The authors thank the Department of Science and Technology Management of PetroChina for providing financial support.

    [1] Chen Ye-mon. Recent advances in FCC technology[J]. Powder Technology, 2006, 163(2): 2-8

    [2] Bayraktar O, Kugler E L. Effect of pretreatment on the performance of metal-contaminated fluid catalytic cracking (FCC) catalyst[J]. Applied Catalysis A: General, 2004, 260 (1): 119-124

    [3] Wu Changning, Cheng Yi, Ding Yulong, et al. CFD–DEM simulation of gas–solid reacting flows in fluid catalytic cracking (FCC) process[J]. Chem Eng Sci, 2010, 65 (1): 542-549

    [4] Pang Xinmei, Zhang Li, Sun Shuhong, et al. Effects of metal modifications of Y zeolites on sulfur reduction performance in fluid catalytic cracking process[J]. Catal Today, 2007, 125(3/4): 173-177

    [5] Liu Conghua, Deng Youquan, Pan Yuanqing, et al. Interactions between heavy metals and clay matrix in fluid catalytic cracking catalysts[J]. Applied Catalysis A: General, 2004, 257 (2): 145-150

    [6] Gao Xionghou, Tang Zhicheng, Ji Dong, et al. Modification of ZSM-5 zeolite for maximizing propylene in fluid catalytic cracking reaction[J]. Catalysis Communications, 2009, 10 (14): 1787-1790

    [7] Qi Yanping, Cheng Shengli, Dong Peng, et al. Novel macroporous residua FCC catalysts[J]. J Fuel Chem Technol, 2006, 34 (6): 685-689 (in Chinese)

    [8] Liu Haiyan, Yu Jianning, Xu Jian, et al. Identification of key oil refining technologies for China National Petroleum Co. (CNPC)[J]. Energy Policy, 2007, 35(4): 2635-2647

    [9] Zhuang Jianqin, Ma Ding, Yang Gang, et al. Solid state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J]. Journal of Catalysis, 2004, 228 (1): 234-242

    [10] Gao Xionghou, Tang Zhicheng, Zhang Haitao, et al. Influence of particle size of ZSM-5 on the yield of propylene in fluid catalytic cracking reaction[J]. J Mol Catal A Chem, 2010, 325 (1/2): 36-39

    [11] Wallenstein D, Harding R H. The dependence of ZSM-5 additive performance on the hydrogen-transfer activity of the REUSY base catalyst in fluid catalytic cracking[J]. Appl Catal A, 2001, 214 (1): 11-29

    [12] Dupain X, Makkee M, Moulijn J A. Optimal conditions in fluid catalytic cracking: A mechanistic approach[J]. Appl Catal A, 2006, 297 (2): 198-219

    [13] Cerqueira H S, Caeiro G, Costa L, et al. Deactivation of FCC catalysts[J]. J Mol Catal A, 2008, 292 (1/2): 1-13

    [14] Sadeghbeigi R. Fluid Catalytic Cracking Handbook: Design, Operation and Troubleshooting of FCC Facilities[M]. Butterworth-Heinemann, 2000

    [15] Siddiqui M A B, Aitani A M, Saeed M R, et al. Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives[J]. Fuel, 2011, 90 (2): 459-466

    [16] Mitchell B R. Metal contamination of cracking catalysts. 1. Synthetic metals deposition on fresh catalysts[J]. Ind Eng Chem Prod Res Dev, 1980, 19 (2): 209-213

    [17] Bird P G. Colloidal solutions of inorganic oxides: The United States, US 2244325[P], 1941.

    [18] Alexander G B, Iler Ralph K. Process of redispersing a precipitated silica sol: The United States, US 2605228[P], 1952

    [19] Shen Zhong, Zhao Zhenguo, Wang Guoting. Colloid and Surface Chemistry [M]. 3rd Ed. 2004 (in Chinese)

    [20] Sun Yanming, Hua Fei, Yue Rongwei, et al. Commercial application of LBO-16 olefin reduction FCC catalyst for processing heavy feed[J]. Petroleum Processing and Petrochemicals, 2007, 38(2): 26-29 (in Chinese)

    [21] Ji Mingde, Cheng Qi, Xie Jianying. Effect of polyvalent ions on the rate of silicic acid polymerization[J]. Journal of Nanchang University ( Natural Science), 1985 (4): 71-76 (in Chinese)

    [22] Xu Ruren, Pang Wenqin, Tu Kungang. Structure and Synthesis of Zeolite Molecular Sieve [M]. Changchun: Jinlin University Press, 1987 (in Chinese)

    Recieved date: 2013-10-18; Accepted date: 2014-04-22.

    Dr. Liu Zhaoyong, Telephone: +86-931-7981914; E-mail: lzy0539@126.com.

    亚洲中文字幕一区二区三区有码在线看| 丰满乱子伦码专区| 成年人黄色毛片网站| 亚洲avbb在线观看| 757午夜福利合集在线观看| 男人舔奶头视频| 天堂动漫精品| 精品欧美国产一区二区三| 99久久成人亚洲精品观看| 久久久久久久久久成人| 亚洲真实伦在线观看| 天堂√8在线中文| 嫁个100分男人电影在线观看| 校园春色视频在线观看| 亚洲色图av天堂| 日本与韩国留学比较| a级毛片免费高清观看在线播放| 亚洲最大成人手机在线| 国产av一区在线观看免费| 人妻制服诱惑在线中文字幕| av在线观看视频网站免费| 九九热线精品视视频播放| 久久久国产成人免费| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 少妇被粗大猛烈的视频| 日本 欧美在线| 免费看日本二区| 免费av观看视频| 国内少妇人妻偷人精品xxx网站| 深夜精品福利| 国产精品嫩草影院av在线观看 | 久久国产精品人妻蜜桃| 人妻夜夜爽99麻豆av| 97超视频在线观看视频| 别揉我奶头~嗯~啊~动态视频| 淫妇啪啪啪对白视频| 国产精品亚洲一级av第二区| 波多野结衣高清作品| 一本久久中文字幕| 亚洲三级黄色毛片| 国产高清视频在线播放一区| 天堂√8在线中文| 日韩亚洲欧美综合| 国产精品人妻久久久久久| 亚洲专区中文字幕在线| 18禁在线播放成人免费| 如何舔出高潮| 欧美日韩综合久久久久久 | 国产av不卡久久| 午夜精品在线福利| 赤兔流量卡办理| 亚洲专区中文字幕在线| 九九热线精品视视频播放| 狂野欧美白嫩少妇大欣赏| a级一级毛片免费在线观看| 悠悠久久av| 久久人人爽人人爽人人片va | 一个人看的www免费观看视频| 日韩中字成人| 午夜老司机福利剧场| 99久久成人亚洲精品观看| 三级男女做爰猛烈吃奶摸视频| av国产免费在线观看| 精品久久久久久久久av| 深夜精品福利| 国语自产精品视频在线第100页| 99视频精品全部免费 在线| 亚洲欧美日韩无卡精品| 99久久精品热视频| 亚洲av免费在线观看| 色哟哟·www| 少妇裸体淫交视频免费看高清| 免费搜索国产男女视频| 亚洲最大成人手机在线| 一级黄片播放器| 亚洲久久久久久中文字幕| 美女被艹到高潮喷水动态| 国产精品乱码一区二三区的特点| 亚洲色图av天堂| 夜夜看夜夜爽夜夜摸| 日韩欧美 国产精品| 欧美在线黄色| 欧美黑人欧美精品刺激| 亚洲aⅴ乱码一区二区在线播放| 一级作爱视频免费观看| 中文字幕精品亚洲无线码一区| 久久久国产成人精品二区| 成人一区二区视频在线观看| 一个人看的www免费观看视频| 成人毛片a级毛片在线播放| 国产真实伦视频高清在线观看 | 香蕉av资源在线| 免费观看人在逋| 一边摸一边抽搐一进一小说| www.www免费av| 高清在线国产一区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲 国产 在线| 色噜噜av男人的天堂激情| 欧美一区二区国产精品久久精品| 我要搜黄色片| 熟女人妻精品中文字幕| 国产精品伦人一区二区| 18禁裸乳无遮挡免费网站照片| 欧美丝袜亚洲另类 | 级片在线观看| 亚洲专区国产一区二区| 日韩欧美国产一区二区入口| 亚洲美女视频黄频| 久久久久久久久大av| 欧美潮喷喷水| 一区福利在线观看| av国产免费在线观看| 国产精品女同一区二区软件 | av视频在线观看入口| 免费黄网站久久成人精品 | 久久精品国产自在天天线| 黄色视频,在线免费观看| 亚洲成av人片免费观看| 美女 人体艺术 gogo| 日韩欧美在线二视频| 国产伦一二天堂av在线观看| 一a级毛片在线观看| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 午夜福利18| 岛国在线免费视频观看| 国内久久婷婷六月综合欲色啪| 亚洲电影在线观看av| 亚洲内射少妇av| xxxwww97欧美| 国产精品久久久久久久电影| 欧美性猛交╳xxx乱大交人| 精品午夜福利视频在线观看一区| 亚洲第一区二区三区不卡| 哪里可以看免费的av片| 老司机午夜福利在线观看视频| 一个人看的www免费观看视频| 亚洲自偷自拍三级| 99热6这里只有精品| 伊人久久精品亚洲午夜| 亚洲国产欧洲综合997久久,| 老司机午夜福利在线观看视频| 在线观看66精品国产| 亚洲av成人av| 99久国产av精品| 国产老妇女一区| 亚洲精品粉嫩美女一区| 欧美3d第一页| 亚洲精品在线美女| 俄罗斯特黄特色一大片| 日本一本二区三区精品| 亚洲自拍偷在线| 精品久久久久久久末码| 国产精品人妻久久久久久| 婷婷色综合大香蕉| 成人性生交大片免费视频hd| 老熟妇乱子伦视频在线观看| 国产一区二区亚洲精品在线观看| 欧美极品一区二区三区四区| 欧美一区二区精品小视频在线| 一级毛片久久久久久久久女| 国产成人a区在线观看| 午夜福利在线在线| 嫁个100分男人电影在线观看| 午夜视频国产福利| 久久这里只有精品中国| 简卡轻食公司| 国产黄片美女视频| 国产一区二区三区在线臀色熟女| 亚洲天堂国产精品一区在线| 久久久久亚洲av毛片大全| 免费搜索国产男女视频| 啦啦啦韩国在线观看视频| 午夜福利18| 中亚洲国语对白在线视频| 成人美女网站在线观看视频| avwww免费| 亚洲成av人片免费观看| 熟妇人妻久久中文字幕3abv| АⅤ资源中文在线天堂| 蜜桃久久精品国产亚洲av| 不卡一级毛片| 日韩av在线大香蕉| 色综合婷婷激情| 国产午夜精品久久久久久一区二区三区 | 免费人成在线观看视频色| 亚洲美女黄片视频| 久久午夜亚洲精品久久| 欧美不卡视频在线免费观看| 一个人免费在线观看的高清视频| 国产高清三级在线| 午夜a级毛片| 国产真实乱freesex| 少妇熟女aⅴ在线视频| 美女黄网站色视频| 女人被狂操c到高潮| 中文亚洲av片在线观看爽| 90打野战视频偷拍视频| 久久人妻av系列| 亚洲美女黄片视频| 国产美女午夜福利| 国产精品亚洲一级av第二区| 两个人视频免费观看高清| 啦啦啦观看免费观看视频高清| 亚洲美女黄片视频| 国产成人aa在线观看| 伊人久久精品亚洲午夜| or卡值多少钱| 脱女人内裤的视频| 97人妻精品一区二区三区麻豆| 美女cb高潮喷水在线观看| 特级一级黄色大片| 亚州av有码| 欧美中文日本在线观看视频| 国产精品一区二区性色av| 69人妻影院| 久久久久久久亚洲中文字幕 | 国产成人啪精品午夜网站| 在线观看av片永久免费下载| 久久九九热精品免费| 内射极品少妇av片p| 亚洲国产欧洲综合997久久,| 尤物成人国产欧美一区二区三区| 久久人人精品亚洲av| 俺也久久电影网| 国产亚洲精品av在线| 国产91精品成人一区二区三区| xxxwww97欧美| 身体一侧抽搐| 亚洲精品久久国产高清桃花| 国产精品乱码一区二三区的特点| 舔av片在线| 久久人妻av系列| 国产午夜精品久久久久久一区二区三区 | 欧美区成人在线视频| 一个人免费在线观看的高清视频| 99热精品在线国产| 他把我摸到了高潮在线观看| 又爽又黄无遮挡网站| 午夜福利在线观看免费完整高清在 | 国产69精品久久久久777片| 九九在线视频观看精品| 久久6这里有精品| 成人一区二区视频在线观看| 精品一区二区免费观看| 免费看日本二区| 国产精品综合久久久久久久免费| 青草久久国产| 亚洲专区国产一区二区| 国产黄色小视频在线观看| 内地一区二区视频在线| 国产精品久久久久久亚洲av鲁大| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 一夜夜www| 99精品在免费线老司机午夜| 日韩欧美一区二区三区在线观看| 免费在线观看成人毛片| 免费av不卡在线播放| 黄色视频,在线免费观看| 久久伊人香网站| 日韩免费av在线播放| 久久天躁狠狠躁夜夜2o2o| 韩国av一区二区三区四区| 美女高潮喷水抽搐中文字幕| 色尼玛亚洲综合影院| 亚洲精品一区av在线观看| 在现免费观看毛片| 国产老妇女一区| 91在线精品国自产拍蜜月| 天堂网av新在线| 亚洲自拍偷在线| 1024手机看黄色片| 国产亚洲精品久久久久久毛片| a级毛片a级免费在线| 国产成人a区在线观看| 亚洲片人在线观看| 极品教师在线视频| 人人妻,人人澡人人爽秒播| 亚洲欧美清纯卡通| 看十八女毛片水多多多| 欧美成人性av电影在线观看| 一个人看视频在线观看www免费| 精品久久久久久久久av| 免费观看精品视频网站| 深夜精品福利| 欧美国产日韩亚洲一区| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 无遮挡黄片免费观看| 亚洲成人久久爱视频| 亚洲精品在线美女| 久久天躁狠狠躁夜夜2o2o| 天天一区二区日本电影三级| 精品免费久久久久久久清纯| 欧美绝顶高潮抽搐喷水| 国产精品女同一区二区软件 | 久久热精品热| 国产欧美日韩一区二区精品| 不卡一级毛片| 精品欧美国产一区二区三| 在线a可以看的网站| 男女之事视频高清在线观看| 欧美绝顶高潮抽搐喷水| 搡老妇女老女人老熟妇| 国产伦一二天堂av在线观看| 免费大片18禁| 一本综合久久免费| 我要搜黄色片| 日韩国内少妇激情av| 欧美性猛交╳xxx乱大交人| 国产激情偷乱视频一区二区| 琪琪午夜伦伦电影理论片6080| 观看免费一级毛片| 99热只有精品国产| 国产精品一区二区免费欧美| 深夜精品福利| 国产在线精品亚洲第一网站| 宅男免费午夜| 亚洲第一电影网av| 国产欧美日韩一区二区三| 国产v大片淫在线免费观看| 日本五十路高清| 一进一出抽搐动态| 久久精品人妻少妇| 亚洲人成伊人成综合网2020| 中文字幕av成人在线电影| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 简卡轻食公司| 又粗又爽又猛毛片免费看| 欧美色视频一区免费| 动漫黄色视频在线观看| 亚洲最大成人手机在线| 国产精品久久久久久久电影| 亚洲av免费高清在线观看| 在线观看免费视频日本深夜| 国产成人影院久久av| 白带黄色成豆腐渣| 91久久精品国产一区二区成人| 日韩国内少妇激情av| 制服丝袜大香蕉在线| 欧美高清成人免费视频www| 久久久久久久午夜电影| 9191精品国产免费久久| 亚洲性夜色夜夜综合| 国产在线男女| 亚洲性夜色夜夜综合| 色综合婷婷激情| 丰满乱子伦码专区| netflix在线观看网站| a级毛片免费高清观看在线播放| 国产av麻豆久久久久久久| 国产成人福利小说| 国产在线男女| 欧美性猛交╳xxx乱大交人| 99久久99久久久精品蜜桃| 久久久久久国产a免费观看| 窝窝影院91人妻| 99在线人妻在线中文字幕| 免费观看精品视频网站| 亚洲av日韩精品久久久久久密| a级一级毛片免费在线观看| 成年女人永久免费观看视频| 色综合婷婷激情| 露出奶头的视频| 真人做人爱边吃奶动态| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看| 国产精品女同一区二区软件 | 久久国产乱子免费精品| 精品99又大又爽又粗少妇毛片 | 精品久久久久久久末码| 熟女电影av网| 久9热在线精品视频| 国产精品一区二区性色av| 1024手机看黄色片| 日韩精品青青久久久久久| 少妇人妻精品综合一区二区 | 国产淫片久久久久久久久 | 俺也久久电影网| 在线天堂最新版资源| 亚洲欧美清纯卡通| 一进一出抽搐gif免费好疼| 精品人妻熟女av久视频| 最好的美女福利视频网| 亚洲精品456在线播放app | 夜夜爽天天搞| 亚洲成人免费电影在线观看| 麻豆成人午夜福利视频| 午夜福利在线在线| 极品教师在线视频| 免费av毛片视频| 国产aⅴ精品一区二区三区波| 亚洲av美国av| 免费在线观看日本一区| 亚洲无线在线观看| 国产精品99久久久久久久久| 色播亚洲综合网| 网址你懂的国产日韩在线| 国模一区二区三区四区视频| 国内精品美女久久久久久| 麻豆成人午夜福利视频| 日本五十路高清| 欧美中文日本在线观看视频| 久久这里只有精品中国| 精品一区二区三区av网在线观看| 床上黄色一级片| 中文字幕高清在线视频| 一夜夜www| 免费无遮挡裸体视频| 亚洲精品久久国产高清桃花| 国产免费一级a男人的天堂| 一级作爱视频免费观看| 免费看a级黄色片| 一级av片app| 亚洲片人在线观看| 精品一区二区三区av网在线观看| 欧美日韩中文字幕国产精品一区二区三区| 91狼人影院| 男女之事视频高清在线观看| 三级男女做爰猛烈吃奶摸视频| 国产精华一区二区三区| 日韩人妻高清精品专区| 亚洲精品456在线播放app | 一区二区三区免费毛片| 三级国产精品欧美在线观看| 国产成人aa在线观看| 自拍偷自拍亚洲精品老妇| 如何舔出高潮| 美女黄网站色视频| 成人精品一区二区免费| 日本a在线网址| 婷婷精品国产亚洲av| 午夜免费激情av| 国产爱豆传媒在线观看| 欧美黄色淫秽网站| 国产免费av片在线观看野外av| 十八禁国产超污无遮挡网站| 成年女人永久免费观看视频| 看十八女毛片水多多多| 男插女下体视频免费在线播放| 不卡一级毛片| 99热这里只有是精品在线观看 | 欧美一级a爱片免费观看看| 亚洲国产欧美人成| 搞女人的毛片| 俺也久久电影网| ponron亚洲| 少妇人妻精品综合一区二区 | 在线观看午夜福利视频| 国产亚洲精品久久久久久毛片| 久久午夜亚洲精品久久| 最好的美女福利视频网| 别揉我奶头 嗯啊视频| 亚洲,欧美精品.| 成人欧美大片| 黄色视频,在线免费观看| 亚洲欧美日韩东京热| 岛国在线免费视频观看| 国产午夜福利久久久久久| 美女 人体艺术 gogo| 婷婷色综合大香蕉| 久久久久久久亚洲中文字幕 | 又黄又爽又免费观看的视频| 亚洲七黄色美女视频| 国产色婷婷99| 国产一区二区在线av高清观看| 免费av观看视频| 欧美zozozo另类| 精品国产亚洲在线| 国产视频内射| 欧美午夜高清在线| 小蜜桃在线观看免费完整版高清| а√天堂www在线а√下载| 欧美区成人在线视频| 日韩有码中文字幕| 精品久久久久久久久亚洲 | 欧美日韩黄片免| 日本撒尿小便嘘嘘汇集6| av欧美777| 久久久久久久亚洲中文字幕 | 久久国产精品影院| 国产麻豆成人av免费视频| 亚洲真实伦在线观看| 校园春色视频在线观看| 精品乱码久久久久久99久播| 午夜视频国产福利| 免费搜索国产男女视频| 老熟妇仑乱视频hdxx| 成年免费大片在线观看| 国产蜜桃级精品一区二区三区| 久久伊人香网站| 深夜精品福利| 国产精品99久久久久久久久| 俺也久久电影网| 久久欧美精品欧美久久欧美| 欧美国产日韩亚洲一区| 欧美性猛交黑人性爽| 99久久九九国产精品国产免费| 一本一本综合久久| 美女大奶头视频| 久久国产精品人妻蜜桃| 极品教师在线免费播放| 久久香蕉精品热| 亚洲国产色片| www日本黄色视频网| 男女那种视频在线观看| 超碰av人人做人人爽久久| 欧美日韩综合久久久久久 | 老司机福利观看| 天堂动漫精品| 亚洲欧美日韩东京热| 午夜精品在线福利| 成人三级黄色视频| 夜夜躁狠狠躁天天躁| 我要搜黄色片| 亚洲中文字幕一区二区三区有码在线看| 久久99热6这里只有精品| 香蕉av资源在线| netflix在线观看网站| 一边摸一边抽搐一进一小说| 99国产极品粉嫩在线观看| 黄色丝袜av网址大全| 亚洲精品粉嫩美女一区| 婷婷亚洲欧美| 日韩 亚洲 欧美在线| 久久精品久久久久久噜噜老黄 | 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| 一区二区三区高清视频在线| 欧美另类亚洲清纯唯美| 久久精品影院6| 亚洲午夜理论影院| 成人无遮挡网站| 欧美又色又爽又黄视频| 国内久久婷婷六月综合欲色啪| 亚洲18禁久久av| 日本熟妇午夜| 简卡轻食公司| 国产不卡一卡二| 可以在线观看毛片的网站| 亚洲av第一区精品v没综合| 精品一区二区三区人妻视频| 老司机福利观看| 精品久久国产蜜桃| 老熟妇乱子伦视频在线观看| 国产成人av教育| 欧美午夜高清在线| 一本综合久久免费| 国产精品嫩草影院av在线观看 | 1000部很黄的大片| 免费看日本二区| 天堂√8在线中文| 老熟妇乱子伦视频在线观看| 午夜激情福利司机影院| 久久精品国产清高在天天线| 国产亚洲精品av在线| 国产精华一区二区三区| 亚洲精品成人久久久久久| 欧美潮喷喷水| 女人十人毛片免费观看3o分钟| av在线蜜桃| 内地一区二区视频在线| 我要看日韩黄色一级片| 久久香蕉精品热| 久久精品国产99精品国产亚洲性色| 波多野结衣高清作品| 激情在线观看视频在线高清| 非洲黑人性xxxx精品又粗又长| 我的女老师完整版在线观看| 欧美乱色亚洲激情| 午夜精品久久久久久毛片777| 热99在线观看视频| 99久久99久久久精品蜜桃| 久久性视频一级片| 日本免费一区二区三区高清不卡| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 国产私拍福利视频在线观看| 99久国产av精品| 久久中文看片网| 丁香六月欧美| 欧美性感艳星| 精品福利观看| 精品欧美国产一区二区三| 久久精品国产自在天天线| 色综合婷婷激情| 亚洲成av人片免费观看| 村上凉子中文字幕在线| 日韩大尺度精品在线看网址| 日本 欧美在线| 无遮挡黄片免费观看| av在线老鸭窝| 亚洲黑人精品在线| 最好的美女福利视频网| 国产探花在线观看一区二区| 午夜福利在线观看吧| 精品国产亚洲在线| 在线看三级毛片| 日本 av在线| 日本三级黄在线观看| 亚洲内射少妇av| 日韩国内少妇激情av| 亚洲成av人片免费观看| 自拍偷自拍亚洲精品老妇| 色尼玛亚洲综合影院| 色综合站精品国产| 亚洲av五月六月丁香网| 国产淫片久久久久久久久 | 男人舔女人下体高潮全视频| 国产精品电影一区二区三区| 午夜亚洲福利在线播放|