• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of PE with Broad MWD Catalyzed by Supported Ziegler-Natta Catalyst Consisting of Cycloalkoxy Silane as IED

    2014-07-25 10:07:53YuMengshanNieYanpeiZhouLuYiJianjunHuangQiguGaoKejingYangWantai
    中國煉油與石油化工 2014年2期

    Yu Mengshan; Nie Yanpei; Zhou Lu; Yi Jianjun; Huang Qigu; Gao Kejing; Yang Wantai

    (1. State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029; 2. Lab for Synthetic Resin Research Institution of Petrochemical Technology, China National Petroleum Corporation)

    Synthesis of PE with Broad MWD Catalyzed by Supported Ziegler-Natta Catalyst Consisting of Cycloalkoxy Silane as IED

    Yu Mengshan1; Nie Yanpei1; Zhou Lu1; Yi Jianjun2; Huang Qigu1; Gao Kejing2; Yang Wantai1

    (1. State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029; 2. Lab for Synthetic Resin Research Institution of Petrochemical Technology, China National Petroleum Corporation)

    Two kinds of cycloalkoxy silane compounds were synthesized and used as the internal electron donors (IEDs) of supported Ziegler-Natta catalyst for ethylene polymerization to produce polyethylene with broader molecular weight distribution (MWD). The effect of the structure and the amount of these IEDs on the polymerization performance was investigated. The results implied that the molecular weight distribution of the obtained polyethylene could be adjusted by the incorporation of IEDs. SEM result showed that the morphology of catalyst particle was spherical and uniform in size distribution. The titanium content of these catalysts was higher, the active TiCl4species were easily anchored on the support than that without adding IED, which was determined by ICP. The GPC result confirmed that the polyethylene with broader molecular weight distribution in the range of from 23.4 to 25.6 was obtained using triethoxy-(-cyclopentyloxy)-silane (ED1) and triethoxy-(-cyclohexyloxyl)- silane (ED2) as the internal electron donors.

    supported Ziegler-Natta catalyst; polyethylene; broader molecular weight distribution; electron donor

    1 Introduction

    Since the discovery of the Ziegler-Natta catalyst in the 1950s, the polyolefin industry has experienced rapid development worldwide. A variety of polyolefin products with good properties have emerged. For example, the polyethylene with broad molecular weight distribution has been attracting much attention thanks to its excellent processability and mechanical property[1-5]. The molecular weight distribution (MWD) of polyethylene plays an important role in determining its mechanical and rheological properties. Many approaches have been used to tailor the required MWD, including physical blending[6-7], synthesis through hybrid or mixed catalysts[8-9], and multi-pot processes[10]. Wang[11]reported that polyethylene with broad MWD and high weight average molecular weight (Mw) was obtained by the hybrid or mixed catalysts, Fe(acac)3-bis(imino)pyridine/MAO catalyst system. The bimodal MWD of polyethylene produced over the supported ironbased catalyst was well tailored by varying polymerization conditions, such as the ethylene pressure and molar ratio of Al/Fe. Upon considering the production cost and energy consumption, the one-pot strategy based on current industry technology is more reasonable. In our previous work[12]based on organosiloxane compounds employed as internal electron donors of the Ziegler-Natta catalyst, (co-)polyethylene with broad MWDs was successfully prepared on these modified catalysts. However, the relationship between the structure of electron donor and MWD of the obtained polyethylene is not clear, which implies that the further work on the preparation of polyethylene with broader MWD is necessary through adjusting the structure of the IEDs.

    In this research, we synthesized two kinds of cycloalkoxy silane used as IEDs of the Ziegler-Natta catalysts for ethylene polymerization. These Ziegler-Natta catalysts showed high catalytic activity for producing polyethylene featuring broader MWD (23.4—25.6). The influence of the structure and the amount of IEDs on the polymerization behavior was discussed as well. Currently in industry the preparation of PE100 featured broader MWDs in therange of between 23 and 26, a useful product in application is based on the multi-pot technology.

    2 Experimental

    2.1 General procedures and materials

    Tetraethoxysilane, Si(OEt)3Cl, cyclopentanol, cyclohexanol, 2-ethylhexanol, anhydrous magnesium dichloride and AlEt3(at a concentration of 1.0 mol/L in hexane) were purchased from the Acros Organics Agent in China. Triethylamine, anhydrous ethanol, alcohol, hydrochloric acid, TiCl4, toluene,n-heptane andn-hexane were purchased from the Beijing Chemicals Company. Toluene andn-hexane were further purified by refluxing over sodium at normal pressure for 48 h prior to use. Alcohols were treated with activated 5 A molecular sieves in nitrogen atmosphere for one week before use. Decane was purchased from the Beijing Chemical Industry Company Ltd. Ethylene (polymerization grade) obtained from the Beijing Guangming Chemical and Engineering Company, Ltd. was used without further purification.

    2.2 Ethylene slurry polymerization

    All polymerization processes were carried out in a 300 mL glass reactor after evacuating all moisture and oxygen by a high-vacuum pump. Under a nitrogen atmosphere, freshly distilled solvent (100 mL), along with a required amount of catalysts (Cat. e1—Cat. e9) and co-catalyst AlEt3were introduced successively into the reactor at room temperature. The nitrogen atmosphere in the reactor was replaced with ethylene and the temperature was increased to 70 ℃ rapidly. The polymerization was carried out for 1 h. Finally, the reaction was terminated with addition of 10% HCl dissolved in alcohol. The product was obtained after filtration and washing, followed by drying in a vacuum oven at 80 ℃. The catalytic activity was calculated according to the product amount divided by polymerization time.

    2.3 Characterization

    1H NMR spectra were recorded on a Varian INOVA600 MHz spectrometer in CDCl3solution at 25 ℃ with TMS used as the reference. All H chemical shifts were reported relative to proton resonance in CDCl3at a chemical shift (δ) of 7.26. Elemental analysis was performed on a Perkin-Elmer 2400 microanalyzer. The Ti content of catalyst was measured using a Shimadzu ICPS-5000 instrument. About 10 mg of the supported catalyst was dissolved in HF and HNO3acid completely. The solution was diluted with distilled water and used for the ICP analysis. The average molecular weight and molecular weight distribution were measured by a PL-GPC200 instrument using standard polyethylene as the reference and 1,2,4-trichlorobenzene as the solvent at 150 ℃.

    2.4 Preparation of electron donor

    Under nitrogen atmosphere, the solution containing 1.0 mL of cyclopentanol in 100 mL ofn-hexane was added into a 300-mL Schlenk flask equipped with a stirring bar. After 1.5 mL of triethylamine and 2.2 mL of Si(OEt)3Cl were dripped slowly into the reactor successively by a syringe at room temperature, the mixture was stirred for 2 h at ambient temperature. Then the mixture was filtered. The filtrate was purified under vacuum to give a colorless transparent liquid, triethoxy-(-cyclopentyloxy)-silane (ED1) at a yield of 87.3%. ED1, C11H24O4Si (MW: 248 g/mol)1H NMR analysis (Figure 1):δ1.24 (tri,J=7.025 Hz, 9H—OCH2CH3);δ1.51 (m, 2H —CH2CH2CH2CH2—);δ1. 68 (m, 2H —CH2CH2CH2CH2—);δ1.75 (m, 4H —CH2CH2CH2CH2—);δ3.85 (q,J=6.975 Hz, 6H —OCH2CH3);δ4.48 (m, 1H—CH(O)—). Elemental analysis: calcd: C=53.23%; H=9.68%, and O=25.81%; found: C=53.21%; H=9.67%, and O=25.80%.

    Figure 1 The1H NMR spectra of ED1

    Under nitrogen atmosphere, the solution of 1.0 mL of cyclohexanol in 100 mL ofn-hexane was added into a 300 mL Schlenk flask equipped with a stirring bar. After 1.3 mL of triethylamine and 1.9 mL of Si(OEt)3Clwere dripped slowly into the reactor in succession by a syringe at room temperature, and then the mixture was stirred for 2 h at room temperature. Furthermore, the mixture was filtered. The filtrate was purified under vacuum to give a colorless transparent liquid, triethoxy-(-cyclohexyloxyl)-silane (ED2) at a yield of 90.7%. ED2, C12H26O4Si (MW: 262 g/mol)1H NMR analysis (Figure 2):δ1.20 (m, 1H —CH2CH2CH2CH2CH2—CH(O)—);δ1.24 (tri,J=7.025 Hz, 9H —OCH2CH3);δ1.32—1.40 (m, 4H —CH2CH2CH2CH2CH2—CH(O)—);δ1.51 (m, 1H —CH2CH2CH2CH2CH2—CH(O)—);δ1.75—1.87 (m, 4H —CH2CH2CH2CH2CH2—CH(O)—);δ3.85 (q,J=6.975 Hz, 6H —OCH2CH3);δ3.81 (m, 1H—CH(O)—). Elemental Analysis: calcd: C=54.96%; H=9.92%, and O= 24.43%; found: C=54.95%; H=9.90%, and O=24.41%.

    Figure 2 The1H NMR spectra of ED2

    Diethoxy-isopropoxy-(t-butoxy)-silane (ED3) was prepared according to the procedure mentioned in our previous work[12].

    2.5 Preparation of polyethylene catalyst

    1.0 g of MgCl2(10.5 mmol), 6.0 mL of 2-ethylhexanol in 16.0 mL of decane, 2.1 mmol of ED1 along with a required amount of epichlorohydrin (ECH) and tributyl phosphate (TBP) were added successively at room temperature into a 300-mL Schlenk flask equipped with a stirring bar. Upon being preheated to 110 ℃, the mixture was maintained for 3 h in a nitrogen atmosphere. The mixture then turned into a homogeneous solution. After being cooled down to -10 ℃, excess TiCl4(nTi:nMg=30:1) was dripped into the solution slowly by a syringe. After that, the solution was warmed to 60 ℃ and maintained for 3 h. More precipitates were produced during this process[13-16]. The residue after filtration was washed twice with decane (20 mL×2) and three times with n-hexane (20 mL×3), and a brown powder,i.e. catalyst (Cat. e1), was obtained at a yield of 1.23 g.

    Cat. e2-Cat. e9 were prepared following the same procedure after merely changing the type and amount of IEDs, as shown in Table 1.

    Table 1 Property of Cat. e1 to Cat. e9 for ethylene polymerization

    3 Results and Discussion

    3.1 Ethylene polymerization

    The results of ethylene polymerization catalyzed by Cat. e1—Cat. e9 are listed in Table 1. It can be seen from Table 1 that all these catalysts are favorable for ethylene polymerization. However, there is a noticeable difference between the catalysts using tetraethoxysilane as IEDs (Cat.e8) and two new kinds of cycloalkoxy silanecompounds serving as IEDs (Cat. e1—Cat. e7). The molecular weight distribution of polyethylene prepared over Cat. e1—Cat. e7 exhibits much broader than that prepared over Cat. e8. The polyethylene catalyzed by Cat. e3 has a broadest MWD (MWD=48.0), which has been reported in our previous work[12], indicating that the MWD of polyethylene is broadened by the addition of the IED during the preparation of catalysts. But further work on the MWD adjustment through electron donor is necessary. Therefore, two IEDs (ED1 and ED2) were adopted and expected to realize the specific molecular weight distribution of polymer. It can be seen from Table 1 that Cat. e1 and Cat. e2 were used for ethylene polymerization, exhibiting high catalytic activity equating to 7.3×106g PE/(mol Ti h) and 6.9×106g PE/(mol Ti h), respectively. It can be noticed from Table 1 that the obtained polyethylene samples feature broader MWDs in the range of 25.6—23.4. The influence of the amount of electron donor was also investigated in Table 1. As regards the samples ED1 and ED2, the Ti content of the catalysts shows a slight decrease when the molar ratio of [ED] to [MgCl2] decreases from 0.2 to 0.1, and the catalytic activity shows an obvious reduction (Cat .e1 and Cat .e4, Cat. e2 and Cat. e6 in Table 1). However, the catalytic activity becomes obviously lower when the molar ratio of [ED] to [MgCl2] increases from 0.2 to 0.3 (Cat. e1 and Cat. e5, Cat. e2 and Cat. e7 in Table 1). It is possible that the vacancies of Ti atoms are occupied by the excess ED, resulting in reduction of the active sites. It can be seen from Table 1 that the change in the molar ratio of [ED] to [MgCl2] from 0.3 to 0.1 makes a slight change in MWD, implying that the active centers are not mainly affected by the amount of ED.

    3.2 Characterization of catalyst particles

    The SEM images of Cat. e1 and Cat. e2 are shown in Figure 3. It can be found from Figure 3 that the catalyst particles are spherical in shape and uniform in size with a diameter of 10 μm—18 μm. According to the morphology duplication theory[17], the spherical catalyst particles can lead to spherical polymer particles. Spherical morphology of polyolefins is important in industrial application.

    Figure 3 SEM images of catalyst particles

    3.3 Characterization of polyethylene

    Cat. e1 was used for ethylene polymerization under high pressure in order to obtain the expected morphology of polymer particles. The SEM images are given in Figure 4. It can be seen from Figure 4a that the polyethylene particles emerged in the form of blocks. The bulky polymer particles are composed of many small particles (Figure 4b), which has been explained in the literature[18]. Although the particles are not really spherical, the distribution in size is fairly uniform.

    Figure 4 SEM images of polyethylene particles catalyzed by Cat. e1

    GPC results are given in Figure 5. Figure 5 shows that the polyethylene catalyzed by Cat. e1 and Cat. e2 has broader MWD (MWD=25.6 and 23.4 in Figure 5a and 5b) than the polyethylene obtained over the catalyst without addition of ED (MWD=6.2 in Figure 5d). But the MWDs of these polyethylene samples catalyzed by Cat. e1 and Cat. e2 are narrower than that of polyethylene catalyzed by Cat. e3 (MWD=48.0 in Figure 5c). A possible coordina-tion mechanism was presented in previous report[19]. As regards the Cat. e1 and Cat. e2, these catalysts were prepared adopting two alkoxy silane compounds having two types of substituents, oxyethyl and cycloalkoxyl species. The alkoxy groups of the IEDs could be coordinated with the vacancies of Ti atoms, so that many kinds of active centers are produced.

    Figure 5 GPC spectra of polyethylene catalyzed by Cat. e1-Cat. e4, Cat. e8 and Cat. e9 (in Table 1) (a) MWD=25.6 obtained over Cat. e1, (b) MWD=23.4 obtained over Cat. e2, (c) MWD=48.0 obtained over Cat. e3, (d) MWD=6.2 obtained over Cat. e9, (e) MWD=5.8 obtained over Cat. e8

    4 Conclusions

    This work reported the supported Ziegler-Natta catalysts coupled with novel IEDs for ethylene polymerization to form polymers featuring broader MWD. Based on the traditional Ziegler-Natta catalyst, two compounds of cycloalkoxy silane were synthesized and used as IEDs for ethylene polymerization. Through optimizing reaction conditions, the catalysts with activities reaching up to 6.9×106—7.3×106gPE/(mol Ti h) could produce polyethylene characteristic of a broader MWDs ranging from 23.4 to 25.6 when the EDs serving as IEDs were incorporated during the catalyst preparation process. But the amount of IED imposed a slight influence on the molecular weight distribution of the obtained polymer. These catalysts were effective for ethylene polymerization to produce PE100 product via the one-pot strategy.

    Acknowledgements:We sincerely thank the National Natural Science Foundation of China (No. 21174011), the Natural Science Foundation of Beijing, (No. 2102036) and the PetroChina Innovation Fund (Grant No. 2011D-5006-0502).

    [1] Heidemeyer P, Pfeiffer J. Special requirements on compounding technology for bimodal polyolefines and their industrial application[J]. Macromolecular Symposia, 2002, 181(1): 167-176

    [2] Alt F P, Bohm L L, Enderle H F. Bimodal polyethylene-Interplay of catalyst and process[J]. Macromolecular Symposia, 2001, 163(1): 135-144

    [3] Zacca J J, Debling J A, Ray W H. Reactor residence-time distribution effects on the multistage polymerization of olefins—II. Polymer properties: bimodal polypropylene and linear low-density polyethylene[J]. Chemical Engineering Science, 1997, 52(12): 1941-1967

    [4] Lopez-Linares F, Barrios A D, Ortega H, et al. Toward the bimodality of polyethylene, initiated with a mixture of a Ziegler–Natta and a metallocene /MAO catalyst system[J]. Journal of Molecular Catalysis A: Chemical, 2000, 159(2): 269-272

    [5] Cho H S, Chung J S, Lee W Y. Control of molecular weight distribution for polyethylene catalyzed over Ziegler–Natta/ metallocene hybrid and mixed catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2000, 159(2): 203-213

    [6] Cho K, Lee B H, Hwang K M, et al. Rheological and mechanical properties in polyethylene blends[J]. Polymer Engineering & Science, 1998, 38(12): 1969-1975

    [7] Premphet K, Paecharoenchai W. Polypropylene/metallocene ethylene-octene copolymer blends with a bimodal particle size distribution: Mechanical properties and their controlling factors[J]. Journal of Applied Polymer Science, 2002, 85(11): 2412-2418

    [8] Zhang Y, Huang J L, Yang X X, et al. Some mixed cyclopentadienyl–indenyl zirconium complexes with PhCH2or PhCH2CH2substituents in ethylene polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(6): 1261-1269

    [9] Cho H S, Choi Y H, Lee W Y. Characteristics of ethylene polymerization over Ziegler–Natta/metallocene catalysts: Comparison between hybrid and mixed catalysts[J]. Catalysis Today, 2000, 63(2): 523-530

    [10] Ali A H, Hsieh J T T, Kauffman K J, et al. Producing blown film and blends from bimodal high density high molecular weight film resin using magnesium oxide-supported Ziegler catalyst: The United States, US 5284613[P], 1994-02-08

    [11] Wang L C, Ren H, Sun J Q. Fe(acac)3-bis(imino) pyridine/MAO: A new catalytic system for ethylene polymerization[J]. Journal of Applied Polymer Science, 2008, 108(1): 167-173

    [12] Liu Z, Zhang X L, Huang H B, et al. Synthesis of (co-) polyethylene with broad molecular weight distribution by the heterogenous Ziegler–Natta catalysts via one-pot strategy[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 2217-2224

    [13] Kong Y, Yi J J, Dou X L, et al. Heterogeneous Ziegler-Natta catalysts with different structure of ligands for the preparation of copolymer of ethylene and 1-octene with high comonomer incorporation. Polymer, 2010, 51(17): 3859-3866

    [14] Huang Q G, Liu W J, Dou X L, et al. Olefin polymerization catalyst and preparation method: China, CN 201010186264.2[P], 2010-09-29

    [15] Liu Z, Yu M S, Wang J, et al. Preparation and characterization of novel polyethylene/carbon nanotubes nanocomposites with core–shell structure[J]. Journal of Industrial and Engineering Chemistry, 10.1016/j.jiec.2012.08.034 (2013)

    [16] Wang J, Yu M S, Jiang W H, et al. The preparation of nanosized polyethylene particles via carbon sphere nanotemplates[J]. Industrial & Engineering Chemistry Research, 2013, 52 (49): 17691-17694

    [17] Huang Q G, Liu Z, Liu W J, et al. Preparation and self-assembly of global nano-particles of MgCl2-CH3CH2OH complex[J]. Acta Polymerica Sinica, 2012(8): 883-886 (in Chinese)

    [18] Galli P, Luciani L, Gechi G. Advances in the polymerization of polyolefins with coordination catalysts[J]. Die Angewandte Macromolekulare Chemie, 1981, 94(1): 63-89

    [19] Sepp?l? J V, Auer M. Factors affecting kinetics in slurry type coordination polymerization. Progress in Polymer Science, 1990,15(1): 147-176

    Recieved date: 2013-12-24; Accepted date: 2014-2-28.

    Huang Qigu, E-mail: huangqg@mail. buct.edu.cn.

    少妇的逼好多水| 亚洲av成人不卡在线观看播放网| 午夜a级毛片| 免费在线观看成人毛片| 久久精品综合一区二区三区| 2021天堂中文幕一二区在线观| 久久久久免费精品人妻一区二区| 久99久视频精品免费| 亚洲av成人av| 欧美又色又爽又黄视频| 亚洲国产日韩欧美精品在线观看| 老司机福利观看| av女优亚洲男人天堂| 一个人观看的视频www高清免费观看| 黄片小视频在线播放| 男人舔奶头视频| av天堂中文字幕网| 日韩大尺度精品在线看网址| 久久久久性生活片| 亚洲aⅴ乱码一区二区在线播放| 国产精品一及| 亚洲激情在线av| 超碰av人人做人人爽久久| 天天躁日日操中文字幕| 日韩有码中文字幕| 亚洲精品乱码久久久v下载方式| 久久久久久久亚洲中文字幕 | 波多野结衣高清无吗| 日韩欧美精品v在线| 久久精品国产自在天天线| 精品午夜福利在线看| 美女xxoo啪啪120秒动态图 | 国产毛片a区久久久久| 欧美三级亚洲精品| 两个人的视频大全免费| 91av网一区二区| www.色视频.com| 欧美一区二区国产精品久久精品| 国产精品女同一区二区软件 | 午夜精品久久久久久毛片777| 又爽又黄无遮挡网站| 真实男女啪啪啪动态图| 91九色精品人成在线观看| 日本成人三级电影网站| 亚洲精品在线观看二区| 精品一区二区免费观看| 亚洲熟妇中文字幕五十中出| 一区二区三区四区激情视频 | 成人精品一区二区免费| 天天一区二区日本电影三级| 网址你懂的国产日韩在线| 成人av一区二区三区在线看| 婷婷色综合大香蕉| 国产亚洲欧美在线一区二区| 欧美在线一区亚洲| 能在线免费观看的黄片| av黄色大香蕉| 中文字幕高清在线视频| 婷婷精品国产亚洲av| 12—13女人毛片做爰片一| 国产精品一及| 嫩草影院入口| 日本撒尿小便嘘嘘汇集6| 精品久久久久久成人av| 精品久久久久久成人av| 欧美高清成人免费视频www| 日本黄色视频三级网站网址| 激情在线观看视频在线高清| 日韩精品中文字幕看吧| 成年版毛片免费区| 99国产极品粉嫩在线观看| 香蕉av资源在线| 国内毛片毛片毛片毛片毛片| 麻豆国产av国片精品| 午夜久久久久精精品| 伦理电影大哥的女人| 人人妻人人澡欧美一区二区| 五月玫瑰六月丁香| 国产伦人伦偷精品视频| 亚洲精品久久国产高清桃花| 成年免费大片在线观看| 国产精品永久免费网站| 级片在线观看| 婷婷亚洲欧美| 久久久久久九九精品二区国产| 一进一出好大好爽视频| 黄色视频,在线免费观看| 久久天躁狠狠躁夜夜2o2o| 99在线视频只有这里精品首页| 一卡2卡三卡四卡精品乱码亚洲| 小蜜桃在线观看免费完整版高清| 亚洲第一区二区三区不卡| eeuss影院久久| 欧美日韩中文字幕国产精品一区二区三区| 国产精品女同一区二区软件 | 欧美一区二区国产精品久久精品| 我要搜黄色片| 简卡轻食公司| 国产日本99.免费观看| 最近在线观看免费完整版| 18禁黄网站禁片午夜丰满| 久久伊人香网站| 午夜久久久久精精品| 亚洲午夜理论影院| 国产精品综合久久久久久久免费| 少妇丰满av| 一个人免费在线观看的高清视频| a在线观看视频网站| 亚洲成a人片在线一区二区| 日韩欧美在线二视频| 日韩大尺度精品在线看网址| 一个人看视频在线观看www免费| 日韩欧美 国产精品| 国产蜜桃级精品一区二区三区| 亚洲av电影在线进入| 麻豆成人午夜福利视频| 级片在线观看| 国产精品98久久久久久宅男小说| 91av网一区二区| 亚洲狠狠婷婷综合久久图片| 欧美黑人巨大hd| 久久久久性生活片| 精品久久久久久久久久免费视频| 欧美激情国产日韩精品一区| 亚洲国产日韩欧美精品在线观看| 老司机深夜福利视频在线观看| 欧美区成人在线视频| 婷婷精品国产亚洲av在线| 欧美午夜高清在线| 极品教师在线免费播放| 国产成人影院久久av| 极品教师在线视频| 成人欧美大片| 一个人看的www免费观看视频| 欧美一区二区精品小视频在线| 18禁黄网站禁片免费观看直播| 欧美性猛交黑人性爽| 午夜福利在线观看吧| 国产精品伦人一区二区| 亚洲欧美日韩高清在线视频| 成年版毛片免费区| 亚洲欧美日韩无卡精品| 变态另类丝袜制服| 国产亚洲av嫩草精品影院| 久久99热6这里只有精品| 国产成+人综合+亚洲专区| 亚洲欧美日韩无卡精品| 男人的好看免费观看在线视频| 国产精品永久免费网站| 亚洲成人久久性| 听说在线观看完整版免费高清| 又爽又黄无遮挡网站| 国语自产精品视频在线第100页| 国产蜜桃级精品一区二区三区| 亚洲av免费高清在线观看| 小蜜桃在线观看免费完整版高清| 18禁黄网站禁片免费观看直播| 午夜老司机福利剧场| 窝窝影院91人妻| 国产av在哪里看| 久久久久久久精品吃奶| 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| 桃红色精品国产亚洲av| 搞女人的毛片| 国产精品一及| 亚洲人与动物交配视频| 99视频精品全部免费 在线| 有码 亚洲区| 久久久国产成人精品二区| 免费av不卡在线播放| 国产高清视频在线观看网站| 精品午夜福利视频在线观看一区| 国产精品一区二区性色av| 舔av片在线| 99热这里只有精品一区| 久久久久久九九精品二区国产| 我要搜黄色片| 国产精品电影一区二区三区| 欧美bdsm另类| 精品熟女少妇八av免费久了| 在线a可以看的网站| 国产黄a三级三级三级人| 首页视频小说图片口味搜索| 国产午夜福利久久久久久| 丰满乱子伦码专区| 日本一本二区三区精品| 亚洲乱码一区二区免费版| 欧美一区二区国产精品久久精品| 级片在线观看| 成人三级黄色视频| 欧美色视频一区免费| 国产探花极品一区二区| 亚洲精品粉嫩美女一区| 欧美另类亚洲清纯唯美| 91字幕亚洲| 99久久无色码亚洲精品果冻| 中文字幕久久专区| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 色综合婷婷激情| 精品久久久久久久久亚洲 | 成熟少妇高潮喷水视频| 大型黄色视频在线免费观看| 精品免费久久久久久久清纯| 午夜免费男女啪啪视频观看 | 久久热精品热| 一区二区三区免费毛片| 天天一区二区日本电影三级| 亚洲18禁久久av| 欧美丝袜亚洲另类 | 久久人人精品亚洲av| 国产精品久久久久久人妻精品电影| 国内精品久久久久精免费| 精品久久久久久,| 亚洲五月婷婷丁香| 国产精品国产高清国产av| 国产精品一区二区三区四区久久| 免费黄网站久久成人精品 | 国产69精品久久久久777片| 亚洲av二区三区四区| 亚洲av成人av| 国产av一区在线观看免费| 久久久久久九九精品二区国产| 久久6这里有精品| 国产精品野战在线观看| 色吧在线观看| 成人亚洲精品av一区二区| 色哟哟哟哟哟哟| 一级毛片久久久久久久久女| 窝窝影院91人妻| 搡女人真爽免费视频火全软件 | 91在线精品国自产拍蜜月| 欧美一级a爱片免费观看看| 亚洲精品日韩av片在线观看| www.www免费av| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 国产精品影院久久| 99在线视频只有这里精品首页| 成人高潮视频无遮挡免费网站| 丰满人妻一区二区三区视频av| 免费在线观看成人毛片| 悠悠久久av| 69av精品久久久久久| 欧美一级a爱片免费观看看| 五月伊人婷婷丁香| 国产视频内射| 国产乱人视频| 免费搜索国产男女视频| 真人做人爱边吃奶动态| eeuss影院久久| 成人av在线播放网站| 黄色配什么色好看| 嫩草影院新地址| 天堂网av新在线| 国产不卡一卡二| 国产成人av教育| 国产精品亚洲一级av第二区| 欧美zozozo另类| 成人美女网站在线观看视频| 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 婷婷亚洲欧美| 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 亚洲国产精品999在线| 最近在线观看免费完整版| 99久久九九国产精品国产免费| 成人特级av手机在线观看| 别揉我奶头 嗯啊视频| 国产男靠女视频免费网站| 久久久久国内视频| 免费无遮挡裸体视频| 免费看美女性在线毛片视频| 国产伦精品一区二区三区四那| 久久99热这里只有精品18| 国产亚洲欧美98| 悠悠久久av| 最近最新免费中文字幕在线| 白带黄色成豆腐渣| 狠狠狠狠99中文字幕| 免费人成在线观看视频色| 国产免费av片在线观看野外av| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看| 桃红色精品国产亚洲av| 一级黄色大片毛片| 毛片一级片免费看久久久久 | 婷婷亚洲欧美| 一夜夜www| 精品久久久久久久人妻蜜臀av| 免费电影在线观看免费观看| 天堂影院成人在线观看| 欧美在线黄色| 国产精品伦人一区二区| 国产精品久久久久久亚洲av鲁大| 无人区码免费观看不卡| 欧美一区二区精品小视频在线| 一边摸一边抽搐一进一小说| h日本视频在线播放| 一个人免费在线观看电影| 波多野结衣巨乳人妻| 亚州av有码| 亚洲av电影不卡..在线观看| 一级a爱片免费观看的视频| 亚洲人与动物交配视频| 999久久久精品免费观看国产| 男女之事视频高清在线观看| 一个人看视频在线观看www免费| 久久久久久国产a免费观看| 日本在线视频免费播放| 热99在线观看视频| 色综合欧美亚洲国产小说| 精品人妻1区二区| av女优亚洲男人天堂| 九九在线视频观看精品| 色精品久久人妻99蜜桃| 亚洲经典国产精华液单 | 欧美绝顶高潮抽搐喷水| 国产精品女同一区二区软件 | 欧美又色又爽又黄视频| 狂野欧美白嫩少妇大欣赏| 不卡一级毛片| 男人的好看免费观看在线视频| 免费无遮挡裸体视频| 免费观看人在逋| 91在线观看av| 欧美性猛交黑人性爽| 国产色婷婷99| 99热只有精品国产| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 国产高清三级在线| 美女高潮喷水抽搐中文字幕| 国产综合懂色| 美女黄网站色视频| av在线老鸭窝| 美女高潮喷水抽搐中文字幕| 亚洲av成人精品一区久久| 免费电影在线观看免费观看| 黄色丝袜av网址大全| 午夜a级毛片| 中出人妻视频一区二区| 在线观看一区二区三区| 可以在线观看的亚洲视频| 国产乱人伦免费视频| 男女做爰动态图高潮gif福利片| 亚洲最大成人中文| 日本五十路高清| 一个人免费在线观看电影| 国产久久久一区二区三区| 亚洲第一区二区三区不卡| 国产一区二区三区在线臀色熟女| 国产精品久久电影中文字幕| 动漫黄色视频在线观看| 黄片小视频在线播放| 中文字幕精品亚洲无线码一区| 在线国产一区二区在线| 国产不卡一卡二| 非洲黑人性xxxx精品又粗又长| 黄色一级大片看看| 久久久久久久久久黄片| 在线看三级毛片| 中文亚洲av片在线观看爽| 日本精品一区二区三区蜜桃| 日韩 亚洲 欧美在线| 久久久久久久久久成人| 久久久成人免费电影| 中文字幕精品亚洲无线码一区| 在线观看舔阴道视频| 中文字幕人成人乱码亚洲影| 中国美女看黄片| 欧美高清成人免费视频www| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品久久久久久毛片777| 男女那种视频在线观看| av在线蜜桃| 性色av乱码一区二区三区2| 最近最新中文字幕大全电影3| 757午夜福利合集在线观看| 91麻豆精品激情在线观看国产| 一级黄片播放器| 一个人看的www免费观看视频| 亚洲av日韩精品久久久久久密| 久久久国产成人精品二区| 国产午夜福利久久久久久| 日本免费a在线| 久久久久久久亚洲中文字幕 | 精品久久久久久久末码| 看免费av毛片| 亚洲av成人av| 熟女人妻精品中文字幕| 欧美最新免费一区二区三区 | 夜夜夜夜夜久久久久| 亚洲一区二区三区不卡视频| 97人妻精品一区二区三区麻豆| 免费观看人在逋| 久久久精品大字幕| 久久精品国产自在天天线| 少妇人妻精品综合一区二区 | 一个人看的www免费观看视频| 久久久久久久午夜电影| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一区av在线观看| www.www免费av| 国产伦精品一区二区三区四那| 在线观看一区二区三区| 99在线视频只有这里精品首页| 久久久久国产精品人妻aⅴ院| 国产精品免费一区二区三区在线| 好男人在线观看高清免费视频| 国产精品人妻久久久久久| 欧美午夜高清在线| 一级av片app| 国产精品综合久久久久久久免费| 久久亚洲真实| 色5月婷婷丁香| 久久中文看片网| 欧美中文日本在线观看视频| 亚洲成人久久性| 欧美黑人巨大hd| 国产午夜精品论理片| 久久人人爽人人爽人人片va | 国产乱人伦免费视频| 国产一区二区三区在线臀色熟女| 国产在线精品亚洲第一网站| 亚洲片人在线观看| 国产大屁股一区二区在线视频| 在线免费观看的www视频| 亚洲欧美日韩高清在线视频| 中文字幕熟女人妻在线| 少妇熟女aⅴ在线视频| 一区二区三区四区激情视频 | 简卡轻食公司| av中文乱码字幕在线| 夜夜夜夜夜久久久久| 少妇人妻一区二区三区视频| 欧美另类亚洲清纯唯美| 国产精品,欧美在线| 国产 一区 欧美 日韩| 51国产日韩欧美| 日韩人妻高清精品专区| 一级黄片播放器| 村上凉子中文字幕在线| 黄片小视频在线播放| 亚洲av电影在线进入| 亚洲狠狠婷婷综合久久图片| 99国产精品一区二区蜜桃av| 欧美日韩福利视频一区二区| 国产单亲对白刺激| av中文乱码字幕在线| 热99re8久久精品国产| 久久热精品热| a级毛片免费高清观看在线播放| 欧美潮喷喷水| 亚洲av电影在线进入| 欧美日韩国产亚洲二区| 国产黄色小视频在线观看| 欧美日本视频| 超碰av人人做人人爽久久| 国产精品亚洲美女久久久| 欧美性感艳星| 99热这里只有是精品在线观看 | 又爽又黄无遮挡网站| 亚洲,欧美,日韩| 免费在线观看影片大全网站| av在线天堂中文字幕| 欧美日韩福利视频一区二区| 久久久久久久久中文| 大型黄色视频在线免费观看| 淫秽高清视频在线观看| 久久精品国产亚洲av天美| 此物有八面人人有两片| 亚洲欧美日韩卡通动漫| av专区在线播放| 搡女人真爽免费视频火全软件 | 人妻丰满熟妇av一区二区三区| 最好的美女福利视频网| 欧美成人一区二区免费高清观看| 精品久久久久久久人妻蜜臀av| 午夜影院日韩av| 十八禁人妻一区二区| 91狼人影院| 男女床上黄色一级片免费看| 成年免费大片在线观看| 成人国产综合亚洲| 成年女人永久免费观看视频| 精品日产1卡2卡| 国产高潮美女av| 男女视频在线观看网站免费| av专区在线播放| 色吧在线观看| 欧美3d第一页| av在线蜜桃| 欧美黑人巨大hd| 91九色精品人成在线观看| 国产国拍精品亚洲av在线观看| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 69人妻影院| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看| 午夜激情福利司机影院| 老熟妇乱子伦视频在线观看| 国产一区二区在线av高清观看| 成年免费大片在线观看| 欧美高清成人免费视频www| 久久婷婷人人爽人人干人人爱| 99热6这里只有精品| 亚洲色图av天堂| 波多野结衣高清作品| 男人和女人高潮做爰伦理| 99热这里只有是精品50| 99久久久亚洲精品蜜臀av| 91久久精品国产一区二区成人| 国产成人a区在线观看| 婷婷色综合大香蕉| 久久久色成人| 欧美+日韩+精品| 十八禁网站免费在线| 国产单亲对白刺激| 日本五十路高清| 国产成人影院久久av| 日日摸夜夜添夜夜添小说| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 变态另类成人亚洲欧美熟女| 搡老妇女老女人老熟妇| 亚洲三级黄色毛片| 宅男免费午夜| 成人鲁丝片一二三区免费| 国产亚洲精品久久久久久毛片| 国产免费av片在线观看野外av| 欧美乱妇无乱码| 色5月婷婷丁香| 国产私拍福利视频在线观看| 99久久精品国产亚洲精品| 婷婷亚洲欧美| 免费高清视频大片| 国产欧美日韩一区二区精品| 精品福利观看| 麻豆国产97在线/欧美| 色尼玛亚洲综合影院| 麻豆成人av在线观看| 欧美精品国产亚洲| 黄色丝袜av网址大全| 男人舔女人下体高潮全视频| 99久久精品国产亚洲精品| ponron亚洲| 啪啪无遮挡十八禁网站| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜| 欧美成人免费av一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲精品影视一区二区三区av| 麻豆一二三区av精品| 国产欧美日韩精品亚洲av| 又黄又爽又刺激的免费视频.| 最好的美女福利视频网| 成人性生交大片免费视频hd| 男女床上黄色一级片免费看| 成人亚洲精品av一区二区| 脱女人内裤的视频| 国产精品av视频在线免费观看| 97超视频在线观看视频| 高潮久久久久久久久久久不卡| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片午夜丰满| 好男人电影高清在线观看| 热99re8久久精品国产| 中文亚洲av片在线观看爽| 亚洲aⅴ乱码一区二区在线播放| 国产大屁股一区二区在线视频| 国产精品免费一区二区三区在线| 亚洲人成网站高清观看| 无遮挡黄片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩无卡精品| 简卡轻食公司| 每晚都被弄得嗷嗷叫到高潮| 夜夜爽天天搞| 午夜免费男女啪啪视频观看 | 人人妻,人人澡人人爽秒播| 精品一区二区三区视频在线| 99国产精品一区二区三区| 黄色视频,在线免费观看| 日韩欧美在线乱码| 丰满人妻一区二区三区视频av| 国产又黄又爽又无遮挡在线| 热99在线观看视频| 能在线免费观看的黄片| av在线蜜桃| 性色av乱码一区二区三区2| 91在线观看av| 亚洲最大成人av| 日韩欧美国产在线观看| 国产高清激情床上av| 麻豆成人午夜福利视频| 免费看光身美女| 少妇被粗大猛烈的视频| 久久精品国产99精品国产亚洲性色| 免费av不卡在线播放| 久久久久九九精品影院| 波多野结衣巨乳人妻| 免费大片18禁| 在线观看舔阴道视频| 哪里可以看免费的av片| 精品国内亚洲2022精品成人| 亚洲精品色激情综合| 99久久精品一区二区三区| 亚洲av电影在线进入| 国产精品电影一区二区三区| 欧美一区二区亚洲|