• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Sulfidation Degree and Morphology of MoS2Catalyst Derived from Various Molybdate Precursors

    2014-07-25 10:07:49ZhangLeLiMingfengNieHong
    中國(guó)煉油與石油化工 2014年2期

    Zhang Le; Li Mingfeng; Nie Hong

    (Research Institute of Petroleum Processing, SINOPEC, Beijing100083)

    Study on Sulfidation Degree and Morphology of MoS2Catalyst Derived from Various Molybdate Precursors

    Zhang Le; Li Mingfeng; Nie Hong

    (Research Institute of Petroleum Processing, SINOPEC, Beijing100083)

    The MoS2catalysts were prepared from various molybdate precursors including inorganic and organic molybdate compounds. The sulfidation degree and morphology of active phases of MoS2activated by various molybdate precursors in H2S/H2stream at different temperatures were studied by X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The organic molybdate precursors lead to MoS2catalysts with higher sulfidation degree and smaller active phases to demonstrate higher catalytic activity during hydrodesulfurizaiton (HDS) of 4,6-DMDBT.

    MoS2; molybdate precursors; sulfidation degree; morphology

    1 Introduction

    Environmental concerns lead to increasingly tightening regulations on sulfur, nitrogen and aromatics content in fuels[1]. Conversion of these compounds is therefore of paramount importance, and such an objective needs the development of more active catalysts. Molybdenum sulfide materials have emerged as a class of promising catalysts for hydrotreating reactions.

    Many researches have dealt with the activation treatment by means of gas phase (H2/H2S) and liquid phase (DMDS) activation of catalysts, with the effects on morphological and catalytic properties of treated catalysts properly reported[2-3]. Especially, the decomposition of thiosalts has been widely used in preparing molybdenum or tungsten disulfide with high surface area[4-5]. L. Alvarez[6]reported that the method of activation (in-situ or ex-situ) of tetraalkylammonium thiomolybdates and the nature of the thiosalt precursor (with or without C) can influence strongly the textural and catalytic properties of the final MoS2and Co/MoS2catalysts. The use of a tetraalkylammonium thiomolybdate precursor (with C) reduces significantly the formation of a MoS2-like intermediate and can lead to a final meso-structure of MoS2. H. Nava and co-workers[7]prepared unsupported nickel-molybdenum-tungsten sulphide catalysts from tri-metallic NiMoW alkyl precursors with tetraalkylammonium thiomolibdotungstates salts, (R4N)4MoWS8(where R=H, methyl, propyl, butyl, or cetyl-trimethyl). The nature of the alkyl group can strongly affect both the specific area and the HDS activity. The catalytic activity is strongly enhanced when the carbon-containing precursors are used. So the effect of molybdate precursors (with or without C) was warmly discussed with respect to their influence on the structure, morphology and activity of MoS2catalysts. However, this investigation is mainly aimed at thiosalt precursor and sulfidation degree, and the morphology of active phases of MoS2activated by various molybdate precursors at different temperatures is less studied. In the present work, the activation law, the difference in morphology, and performance of MoS2activated by various molybdate precursors have been studied and the effect of carbon contained in the molybdate precursors has been discussed.

    2 Experimental

    2.1 Catalyst preparation

    MoS2catalysts were prepared from five different molybdates precursors listed in Table 1. The molybdates precursors Mo-1, Mo-2 and Mo-4 are chemical reagents. The molybdate precursor Mo-3 was prepared by heating a solution of citric acid and molybdenum trioxide (at a molar ratio of 1:1). The molybdate precursor Mo-5 was obtained by the following experiment. Under heating and stirring,the ammonium heptamolybdate tetrahydrate solution was added to a solution of hexadecyl trimethyl ammonium bromide (CTAB) prior to being refluxed at 373 K for 4 h. The white precipitate formed thereby was isolated by filtration, washed with water and dried at 393 K for 3 h to obtain Mo-5. The carbon content in the molybdates precursors Mo-3 and Mo-5 was analyzed by a carbon-sulfur analyzer. Then the molybdate precursors are all sulfided in a flow of 15% H2S/H2mixture at 473 K and 573 K, respectively, for 4 h to produce the MoS2catalysts (Table 2).

    Table 1 The properties and resources of molybdate precursor

    Table 2 MoS2catalysts prepared by various molybdate precursors under different activation conditions

    The MoS2catalysts were characterized by X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The XPS experiments were performed in a VG Scientific ESCALab 220i-XL spectrometer, with source of X-rays, Al Kα (1486.6 eV) anode and 300 W of power. HRTEM was carried out on a TECNAI F20 G2 apparatus, made by the FEI Company with a resolution of 0.24 nm.

    The hydrodesulfurization (HDS) of 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out in a fixed-bed micro-reactor made by the American Autoclave Engineers Company. The molybdate precursors were in-situ sulfided with a solution of 5% CS2in cyclohexane at a flow rate of 0.4 mL/min at 360 ℃, 4.14 MPa of H2pressure and a H2flow rate of 400 mL/min for 3 h. Then the reactor was switched to treatment of the reactant feed (0.45% of 4,6-DMDBT in decane) at a flow rate of 0.2 mL/min in the same hydrogen atmosphere. The reaction products were analyzed by the on-line GC-FID directly. The conversion of 4,6-DMDBT was calculated using the internal standard method. The HDS activities were calculated using the following equation:

    Total HDS activity:AHDS=F0×conversion/m

    whereF0is the molar flow rate of the reactant (mol/s) andmis the mass of the catalyst (g).

    3 Results and Discussion

    3.1 The sulfidation laws of the catalysts

    The XPS spectra of the MoS2catalysts were collected. Table 6 gives the binding energies of S2p and Mo3d derived from decomposition of the XPS spectra of MoS2catalysts. The XPS spectra of S2p on the MoS2catalysts exhibit only one peak at about 162.2 eV, which corresponds to S2-[8-9]. The absence of any signal at 169.0 eV after sulfidation indicates that no oxidation of the catalysts occurs during the transfer of the solid from the sulfidizing reactor to the XPS spectrometer. In the Mo3d spectra, the peaks are attributed to Mo4+species (229 eV and 232 eV for the 3d5/2and 3d3/2, respectively) and Mo6+species (233 eV and 236 eV)[10].

    The sulfidation degree of surface species has been calculated based on the area of the XPS peaks of the various species as shown in Table 3. The peaks at around229 eV and 232 eV are attributed to Mo4+species and can be used to calculate the sulfidation degree of surface Mo species.

    Table 3 Binding energy of elements and sulfidation degree of molybdenum in MoS2catalysts

    There are great difference in the sulfidation degree for the molybdate precursors at a sulfidation temperature of 473 K. The sulfidation degree of inorganic molybdate precursors (Mo-1 and Mo-2) dips to as low as 50%—60% upon activation at 473 K. The organic molybdate precursors (Mo-3, Mo-4 and Mo-5) have much higher sulfidation degree than inorganic molybdate precursors, and especially Mo-4 and Mo-5 are almost totally sulfided upon activation at 473 K. Interestingly, the sulfidation degree increases with the increase in carbon content of the molybdate precursors (Figure 1).

    Upon sulfidation at 573 K, the sulfidation degree of catalysts activated by different molybdate precursors shows no large difference. The sulfidation degree of catalysts activated by organic molybdate precursors is still higher than that of catalysts activated by inorganic molybdate precursors. The sulfidation degree of catalysts activated by inorganic molybdate precursors reach up to 82% under this condition, and the catalysts are almost totally sulfided by organic molybdate precursors.

    Figure 1 Carbon content of molybdate precursors versus molybdenum sulfidation degree of MoS2upon activation at 473 K

    3.2 Morphology of active phases of MoS2catalysts

    Figure 2 presents the HRTEM photographs of the sulfided MoS2catalysts prepared from various molybdate precursors upon activation at different temperatures.

    Interpretation of the HRTEM pictures of Mo sulfidebased catalysts was well documented[11-12]. The black lines in the pictures correspond to the lattice images of MoS2fragments. These short black lines might be either single or in packets of up to about seven parallel threads which correspond to the lamellar structure of the Mo dichalcogenides. Figure 2 presents some short black lines in the MoS2catalysts corresponding to the lamellar structure of random MoS2.

    It is difficult to find the black lines in the MoS-1-473 and MoS-3-473 and there is a small amount of black lines in the MoS-2-473. However, in the HRTEM pictures of MoS-4-473 and MoS-5-473, a large amount of black lines can be observed. So it means that under mild activation at a low temperature of 473 K, seldom MoS2lamellar structure can be identified in precursors Mo-1, Mo-2 and Mo-3, while a large amount of MoS2layer stacks can be formed in precursors Mo-4 and Mo-5. Upon sulfidation at 573 K, it can be seen clearly that the number of MoS2layer stacks in MoS-1-573, MoS-2-573 and MoS-3-573 increases significantly. There are also many MoS2layer stacks in MoS-4-573 and MoS-5-573. In addition, the number of MoS2layer stacks in MoS-3-573, MoS-4-573 and MoS-5-573 is remarkably more than that in MoS-1-573 and MoS-2-573. In another word, MoS-3-573, MoS-4-573 and MoS-5-573 have a much higher density of active sites than that in MoS-1-573 and MoS-2-573.

    According to the literature[13], the lengthLof the black lines, which roughly corresponds to the lateral dimension of the observed MoS2platelets, and the numberNof three-dimensional stacked layers can be calculated asfollows. In addition, the average number of MoS2stacks in an area of 1 000 nm2was also calculated. More than 200 slabs were examined on several HRTEM pictures taken from different parts of the same sample dispersed on the microscope grid.

    Figure 2 High-resolution TEM images of sulfided MoS2catalysts

    Table 4 Mean lengthand numberof the stacked layers

    Table 4 Mean lengthand numberof the stacked layers

    ?

    Because there are seldom MoS2layer stacks in MoS-1-473, MoS-2-473 and MoS-3-473, the length and number of the MoS2stacked layers are not calculated. After sulfidation at 473 K, MoS-4-473 and MoS-5-473 have 1—3 layers of MoS2slabs with a thickness of about 5 nm, and their average number of MoS2stacks in 1 000 nm2is high. After sulfidation at 573 K, MoS-1-573 and MoS-2-573 have a large MoS2layer stacks with 3—4 layers in thickness and 7—8 nm in length. After sulfidation at 573 K, the length and number of the MoS2stacked layers of MoS-3-573, MoS-4-573 and MoS-5-573 derived from the organic molybdate precursors are all smaller than those of MoS-1-573 and MoS-2-573 derived from the inorganic molybdate precursors. On the other hand, the average number of MoS2stacked layers in MoS-3-573, MoS-4-573 and MoS-5-573 is much greater. Especially, MoS-3-573 has the smallest MoS2slabs, albeit with a highest density. It is strange that the MoS-4-573 and MoS-5-573 derived from molybdate precursors with high carbon content have larger MoS2slabs and lower density of active sites than that derived from the molybdate precursor Mo-3 with low carbon content. It may cause a lower activity of MoS-4-573 and MoS-5-573 as compared to MoS-3-573.When the MoS2layer stacks of MoS-3-573 are compared with MoS-4-473 and MoS-5-473, it can be found out that MoS-4-473 and MoS-5-473 have higher density of active sites than that of MoS-3-573 with almost the same size of MoS2slabs. So there is a corresponding suitable sulfidation temperature for the different molybdate precursors. For molybdate precursors Mo-4 and Mo-5, a temperature of 473 K is more appropriate for their sulfidation which can produce smaller size of MoS2slabs and higher density of active sites. However, if molybdate precursors Mo-4 and Mo-5 are transformed to sulfides at a temperature which is higher than their proper temperature, the active phases will grow into slightly larger slabs and the average number of MoS2stacks will decrease.

    In general, if the molybdate precursors are all transformed into sulfides at a suitable temperature, the size of MoS2slabs will decrease and the density of active sites will increase with an increasing carbon content in the molybdate precursors. Therefore, the organic molybdate precursors will promote a small size of MoS2stacking layers and a much high density of active sites after proper sulfidation.

    3.3 Evaluation of the catalysts

    It is generally accepted that the HDS of 4,6-DMDBT occurs through two parallel reaction pathways as follows: (i) direct desulfurization (DDS) which gives 3,3′-dimethlybiphenyl (DMBiPh); and (ii) desulfurization through hydrogenation (HYD) which yields 3-(3′-methylcyclohexyl)-toluene (DMCHT) with a tetrahydrogenated compound as an intermediate[14]. In all reactions for HDS of 4,6-DMDBT over MoS2catalysts derived from various molybdate precursors, there is no DDS product, so only the total HDS activity is given in Table 5.

    Table 5 Catalytic activity of MoS2catalyst for HDS of 4,6-DMDBT

    The results show that the sulfidized MoS-1, MoS-2 catalysts have the lowest HDS activity, while the HDS activity of MoS-3 increases by about 100% as compared to that of MoS-1 catalyst. Among all these catalysts, the HDS activity of sulfidized MoS-4 and MoS-5 catalysts are the highest which is about 6 times higher than that of MoS-1 catalyst. By taking into account the above evaluation results, the carbon content in the molybdate precursors is quite consistent with their measured catalytic activity (Figure 3). The MoS2catalyst prepared from the organic molybdate precursor Mo-5 has a highest activity along with a highest carbon content in the precursor at the same time. Comparably, the MoS2catalysts prepared from the inorganic molybdate precursors Mo-1 and Mo-2 have the lowest activity.

    Figure 3 Activity of MoS2catalysts for HDS of 4,6-DMDBT as a function of carbon content of their molybdate precursors

    4 Discussion

    The nature of the molybdate precursor influences strongly the sulfidation degree, morphology of active sites and catalytic properties of the final MoS2catalysts. The presence of initial carbon in the molybdate precursor has a beneficial effect on the final MoS2structure and performance. Compared with the inorganic molybdate precursor, the carbon-containing molybdate precursor (with C) can form MoS2catalyst with higher sulfidation degree, smaller MoS2slabs and higher HDS activity. With the increase of the carbon content in the molybdate precursor, firstly the activation of catalyst would become easier because the temperature of activation decreases greatly. The Mo-4-473 and Mo-1-573 have almost the same sulfidation degree while their activation temperature differs by 100 K. Secondly, the MoS2slabsbecome smaller and the density of active sites increases dramatically which means that there are more active sites in the MoS2catalyst upon using a carbon-containing molybdate precursor. Finally, MoS2catalyst derived from organic molybdate precursor has good performance in 4,6-DMDBT HDS reaction because of its high sulfidation degree and the existence of more active sites.

    The activation condition for each molybdate precursor differs a lot. For the organic molybdate precursors, a temperature of 473 K—573 K might be the right temperature range for their total sulfidation. While for the inorganic molybdate precursors, a temperature of 573 K—623 K may be suitable for its total sulfidation. So different molybdate precursors should have their own suitable sulfidation temperature. At the suitable sulfidation temperature, the sulfidation degree of MoS2is high and there is a highest density of small MoS2slabs which also means the highest active sites. However, with activation conducted at a temperature higher than their suitable temperature range, the density of MoS2slabs will decrease and the size of slabs becomes bigger. So the active sites would decrease in that case, although their sulfidation degree is still high. Apparently, the activity of MoS-4 and MoS-5 catalysts for HDS of 4,6-DMDBT might not be their best performance in this reaction and could be optimized after adjusting their activation temperature. A more suitable sulfidation condition can be investigated for obtaining higher activity of MoS2catalyst in the future research work.

    5 Conclusions

    The activation law and morphology of active sites of MoS2catalysts prepared from various molybdate precursors were studied by XPS and TEM. The nature of the molybdate precursor has an significant effect on the sulfidation situation, active phase structure and HDS activity of MoS2catalyst. The MoS2catalyst originated from organic molybdate precursor (with C) has higher sulfidation degree, more active sites and better HDS performance compared with the MoS2catalyst originated from inorganic molybdate precursor. With the increase of carbon content in molybdate precursor, more MoS2active sites will be formed in the MoS2catalyst and its activity in 4,6-DMDBT HDS reaction will also improve.

    Acknowledgments:The authors gratefully acknowledge the financial support by the National Key Basic Research Development Program “973” Project (2012CB224800) of China.

    [1] Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003, 86: 211-263

    [2] Alvarez L, Espino J, Ornelas C, et al. Comparative study of MoS2and Co/MoS2catalysts prepared by ex situ/in situ activation of ammonium and tetraalkylammonium thiomolybdates[J]. J Mol Catal A, 2004, 210(1/2): 105-117

    [3] Alonso G, Berhault G, Aguilar A, et al. Characterization and HDS activity of mesoporous MoS2catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates[J]. J Catal, 2002, 208: 359-369

    [4] Alonso G, Berhault G, Chianelli R R. Synthesis and characterization of tetraalkylammonium thiomolybdates and thiotungstates in aqueous solution[J]. Inorg Chim Acta, 2001, 316: 105-109

    [5] Alonso G, Yang J, Siadati M H, et al. Synthesis of tetraalkylammonium thiometallates in aqueous solution[J]. Inorg Chim Acta, 2001, 325: 193-197

    [6] Alvarez L, Espino J, Ornelas C, et al. Comparative study of MoS2and Co/MoS2catalysts prepared by ex situ/in situ activation of ammonium and tetraalkylammonium thiomolybdates[J]. J Mol Catal A, 2004, 210(1/2): 105-117

    [7] Navaa H, Pedrazab F, Alonso F. Nickel-molybdenumtungsten sulphide catalysts prepared by in situ activation of tri-metallic (Ni-Mo-W) alkylthiomolybdotungstates[J]. Catalysis Letters, 2005, 99(1/2): 65-71

    [8] Okamoto Y, Imanaka T, Teranishi S. Surface structure of CoO-MoO3/Al2O3catalysts studied by X-ray photoelectron spectroscopy[J]. J Catal, 1980, 65: 448-460

    [9] Gajardo P, Mathieux A, Grange P, et al. Structure and catalytic activity of CoMo/γ-Al2O3and CoMo/SiO2hydrodesulphurization catalysts: An XPS and ESR characterization of sulfided used catalysts[J]. Appl Catal, 1982, 3: 347-376

    [10] Li C P, Hercules D M. A surface spectroscopic study of sulfided molybdena-alumina catalysts[J]. J Phys Chem, 1984, 88(3): 456-464

    [11] Sanders J V. Chapter 2: The electron microscopy of catalysts[M]// Anderson J R, Boudart M. Catalysis Science and Technology: vol. 7. Berlin: Springer-Verlag, 1985: 51-157

    [12] Zaikovskii V I, Playasova L M, Burmistrov V A, et al. Sulphide catalysts on silica as a support. ii. High resolution electron microscopy data[J]. Appl Catal, 1984, 11: 15-27

    [13] Payen E, Hubaut R, Kasztelan S, et al. Morphology study of MoS2-based and WS2-based hydrotreating catalysts by high-resolution electron-microscopy[J]. J Catal, 1994, 147(1): 123-132

    [14] Bataille F, Lemberton J L, Perot G, et al. Sulfided Mo and CoMo supported on zeolite as hydrodesulfurization catalysts: Transformation of dibenzothiophene and 4,6-dimethyldibenzothio-phene[J]. Appl Catal A, 2001, 220 (1/2): 191-205

    Recieved date: 2013-11-08; Accepted date: 2014-2-12.

    Dr. Zhang Le, Telephone: +86-10-82368255; E-mail: zhangle.ripp@sinopec.com.

    中文字幕人成人乱码亚洲影| tocl精华| 18禁黄网站禁片免费观看直播| 国产成人啪精品午夜网站| 欧美乱妇无乱码| 俄罗斯特黄特色一大片| АⅤ资源中文在线天堂| 国产精品影院久久| 久久精品91蜜桃| 在线观看免费午夜福利视频| 美女大奶头视频| 最近最新中文字幕大全电影3 | 丰满的人妻完整版| 国产黄片美女视频| 国产片内射在线| 99riav亚洲国产免费| 精品国产美女av久久久久小说| 国产99白浆流出| 99国产精品一区二区三区| 亚洲欧美日韩高清在线视频| 99热这里只有精品一区 | 欧美色视频一区免费| 精品久久久久久久毛片微露脸| av免费在线观看网站| 国产99久久九九免费精品| 1024手机看黄色片| 男人舔女人下体高潮全视频| 男男h啪啪无遮挡| 欧美一级毛片孕妇| 亚洲国产欧美一区二区综合| 国产三级黄色录像| 中文字幕人成人乱码亚洲影| 老熟妇仑乱视频hdxx| 在线观看舔阴道视频| 日韩欧美在线二视频| 久久香蕉激情| 国产精品 国内视频| 欧美激情 高清一区二区三区| 国产成+人综合+亚洲专区| 久久久久久久久免费视频了| 国产精品美女特级片免费视频播放器 | 日本 av在线| 亚洲成人精品中文字幕电影| 黑人巨大精品欧美一区二区mp4| 成人亚洲精品av一区二区| 一区二区三区精品91| 嫩草影院精品99| 88av欧美| 在线观看一区二区三区| 久久精品人妻少妇| 色哟哟哟哟哟哟| 久久国产精品影院| 一级a爱视频在线免费观看| 亚洲av成人一区二区三| 国产成人av激情在线播放| 色综合欧美亚洲国产小说| 欧美人与性动交α欧美精品济南到| 久久天堂一区二区三区四区| 久久久久免费精品人妻一区二区 | 19禁男女啪啪无遮挡网站| 欧美激情久久久久久爽电影| 成人亚洲精品av一区二区| 禁无遮挡网站| 亚洲狠狠婷婷综合久久图片| 国产一区在线观看成人免费| 一进一出抽搐gif免费好疼| 日韩中文字幕欧美一区二区| 色婷婷久久久亚洲欧美| 亚洲专区字幕在线| 韩国av一区二区三区四区| 99国产精品99久久久久| 成人欧美大片| 日日爽夜夜爽网站| 色尼玛亚洲综合影院| 99热6这里只有精品| 久久久久国内视频| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 看免费av毛片| 老司机福利观看| 亚洲欧美激情综合另类| 好男人在线观看高清免费视频 | 亚洲天堂国产精品一区在线| 精品一区二区三区四区五区乱码| 国产91精品成人一区二区三区| 不卡一级毛片| 久久国产精品影院| 黄网站色视频无遮挡免费观看| 久久国产亚洲av麻豆专区| 日韩欧美在线二视频| 很黄的视频免费| 日韩有码中文字幕| 最近最新免费中文字幕在线| 大型av网站在线播放| 欧美zozozo另类| 亚洲性夜色夜夜综合| 香蕉丝袜av| 在线天堂中文资源库| 99re在线观看精品视频| 国产av在哪里看| 国产成人欧美| 亚洲精品国产区一区二| 中文亚洲av片在线观看爽| 亚洲国产精品合色在线| 又黄又爽又免费观看的视频| 欧美 亚洲 国产 日韩一| 国产免费男女视频| 9191精品国产免费久久| 一级毛片高清免费大全| 精品一区二区三区av网在线观看| 国产精品永久免费网站| 亚洲欧洲精品一区二区精品久久久| 国产亚洲欧美在线一区二区| www日本黄色视频网| 激情在线观看视频在线高清| 亚洲av电影不卡..在线观看| 亚洲七黄色美女视频| 亚洲国产精品999在线| 变态另类成人亚洲欧美熟女| 精品卡一卡二卡四卡免费| 欧美中文综合在线视频| 在线看三级毛片| 国产v大片淫在线免费观看| 可以免费在线观看a视频的电影网站| 国产真实乱freesex| 成年人黄色毛片网站| av福利片在线| 欧美人与性动交α欧美精品济南到| 国产高清有码在线观看视频 | 精品久久久久久成人av| 三级毛片av免费| 最近在线观看免费完整版| 18禁裸乳无遮挡免费网站照片 | 久久性视频一级片| 国产精品久久视频播放| 精品久久久久久久末码| 亚洲精华国产精华精| 亚洲黑人精品在线| 极品教师在线免费播放| 国产亚洲欧美在线一区二区| 黄色 视频免费看| 91在线观看av| 99久久精品国产亚洲精品| 国产成人av教育| 国产成人av教育| 人人妻,人人澡人人爽秒播| 日本黄色视频三级网站网址| 亚洲 欧美 日韩 在线 免费| 精品一区二区三区视频在线观看免费| 亚洲五月色婷婷综合| 亚洲精品一卡2卡三卡4卡5卡| 免费无遮挡裸体视频| 久久久久国产精品人妻aⅴ院| 日日夜夜操网爽| 亚洲 欧美一区二区三区| 色综合婷婷激情| 国产亚洲精品av在线| 女人爽到高潮嗷嗷叫在线视频| 久久 成人 亚洲| 精品国产国语对白av| 国产激情偷乱视频一区二区| 麻豆一二三区av精品| 欧美日本视频| 又黄又爽又免费观看的视频| 动漫黄色视频在线观看| 天天躁夜夜躁狠狠躁躁| 日韩精品青青久久久久久| 又黄又爽又免费观看的视频| 一级毛片女人18水好多| 黄色丝袜av网址大全| 国产日本99.免费观看| 亚洲五月天丁香| 淫秽高清视频在线观看| 国产91精品成人一区二区三区| 午夜福利欧美成人| 婷婷六月久久综合丁香| 草草在线视频免费看| 国产蜜桃级精品一区二区三区| 香蕉av资源在线| 国产一区二区三区在线臀色熟女| 少妇裸体淫交视频免费看高清 | 亚洲自偷自拍图片 自拍| 亚洲色图av天堂| ponron亚洲| 日韩免费av在线播放| 男人舔奶头视频| 免费在线观看影片大全网站| 国产高清视频在线播放一区| 国产99白浆流出| 亚洲成人久久性| 国产三级在线视频| 欧美在线黄色| 国产成人系列免费观看| 在线永久观看黄色视频| 欧美黑人欧美精品刺激| 男女之事视频高清在线观看| 欧美黑人巨大hd| 午夜精品久久久久久毛片777| 一本久久中文字幕| 两性夫妻黄色片| av福利片在线| bbb黄色大片| 可以免费在线观看a视频的电影网站| 国产单亲对白刺激| 最近最新中文字幕大全电影3 | 99久久99久久久精品蜜桃| 欧美日韩瑟瑟在线播放| 亚洲精品国产区一区二| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产美女av久久久久小说| 国产一区在线观看成人免费| av欧美777| 国产av一区二区精品久久| 啦啦啦 在线观看视频| 国产高清有码在线观看视频 | 精品电影一区二区在线| 午夜视频精品福利| 日本 av在线| 99在线人妻在线中文字幕| 国产精品久久久久久人妻精品电影| 色播亚洲综合网| 免费在线观看黄色视频的| 欧美日韩亚洲国产一区二区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 91大片在线观看| 欧美绝顶高潮抽搐喷水| 欧美乱码精品一区二区三区| 成人精品一区二区免费| 我的亚洲天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品影院6| 国产精品 国内视频| 狠狠狠狠99中文字幕| 极品教师在线免费播放| 国产成人影院久久av| 久久香蕉激情| 久久精品国产99精品国产亚洲性色| 欧美另类亚洲清纯唯美| 国产1区2区3区精品| 欧美不卡视频在线免费观看 | 亚洲真实伦在线观看| 韩国精品一区二区三区| 麻豆久久精品国产亚洲av| 在线观看一区二区三区| 欧美激情高清一区二区三区| 99国产精品一区二区蜜桃av| 男人的好看免费观看在线视频 | 琪琪午夜伦伦电影理论片6080| 国产黄a三级三级三级人| 欧美日韩亚洲综合一区二区三区_| 免费看美女性在线毛片视频| 久久精品91无色码中文字幕| 国产麻豆成人av免费视频| 成人18禁在线播放| 成人精品一区二区免费| 一级a爱视频在线免费观看| 男人舔奶头视频| 亚洲激情在线av| 国产亚洲欧美在线一区二区| 一个人观看的视频www高清免费观看 | 亚洲精品色激情综合| 国产一区二区激情短视频| 久久久久久久精品吃奶| 国产极品粉嫩免费观看在线| 法律面前人人平等表现在哪些方面| 人人澡人人妻人| 熟妇人妻久久中文字幕3abv| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区三| 大型av网站在线播放| 日韩有码中文字幕| 国产精品永久免费网站| 国产亚洲精品av在线| 日韩中文字幕欧美一区二区| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清 | 国产蜜桃级精品一区二区三区| 18禁国产床啪视频网站| 听说在线观看完整版免费高清| 青草久久国产| 日韩欧美国产在线观看| www日本在线高清视频| 男女午夜视频在线观看| 91成年电影在线观看| 香蕉国产在线看| 久久午夜综合久久蜜桃| 国产熟女xx| 999精品在线视频| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 国产成人精品久久二区二区91| 最近最新免费中文字幕在线| 午夜免费激情av| 久久久国产成人精品二区| 中出人妻视频一区二区| 脱女人内裤的视频| 国产亚洲精品av在线| 777久久人妻少妇嫩草av网站| 侵犯人妻中文字幕一二三四区| 日本成人三级电影网站| 午夜福利一区二区在线看| 亚洲av电影在线进入| 午夜免费激情av| 最新美女视频免费是黄的| 少妇 在线观看| 啦啦啦免费观看视频1| 亚洲九九香蕉| 精品一区二区三区四区五区乱码| 精品第一国产精品| 少妇 在线观看| 久热这里只有精品99| 69av精品久久久久久| 非洲黑人性xxxx精品又粗又长| 中出人妻视频一区二区| 久久人妻av系列| 手机成人av网站| 97人妻精品一区二区三区麻豆 | 国产av一区二区精品久久| 制服丝袜大香蕉在线| 亚洲人成电影免费在线| 亚洲在线自拍视频| 亚洲熟女毛片儿| 欧美黑人精品巨大| 午夜精品在线福利| 成人精品一区二区免费| 亚洲第一av免费看| 久久久国产精品麻豆| 精品日产1卡2卡| 成人av一区二区三区在线看| a级毛片a级免费在线| 久99久视频精品免费| 亚洲在线自拍视频| 亚洲 欧美 日韩 在线 免费| 国产精品一区二区三区四区久久 | 亚洲国产欧美一区二区综合| 亚洲avbb在线观看| 在线十欧美十亚洲十日本专区| 少妇粗大呻吟视频| 国产午夜精品久久久久久| 久久精品成人免费网站| 国产av一区在线观看免费| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三| 可以在线观看的亚洲视频| 欧美精品啪啪一区二区三区| 精品国产美女av久久久久小说| 欧美激情极品国产一区二区三区| 在线观看午夜福利视频| 伦理电影免费视频| 少妇 在线观看| 精品国产美女av久久久久小说| 色播亚洲综合网| 深夜精品福利| 成在线人永久免费视频| 国产精品久久电影中文字幕| 黄色成人免费大全| 午夜福利一区二区在线看| 色播亚洲综合网| 久久午夜综合久久蜜桃| 麻豆成人av在线观看| 在线免费观看的www视频| 午夜免费激情av| 亚洲欧洲精品一区二区精品久久久| 在线国产一区二区在线| 欧美又色又爽又黄视频| 亚洲九九香蕉| 亚洲欧美精品综合久久99| 成年版毛片免费区| 999精品在线视频| 一进一出好大好爽视频| 十八禁人妻一区二区| 中文字幕久久专区| 亚洲专区字幕在线| 免费在线观看影片大全网站| 国产精品二区激情视频| 国产亚洲精品久久久久5区| 大香蕉久久成人网| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久久久久 | 一区二区三区国产精品乱码| 不卡一级毛片| 两个人免费观看高清视频| а√天堂www在线а√下载| 国产麻豆成人av免费视频| 日日夜夜操网爽| 欧美成人午夜精品| 亚洲成人国产一区在线观看| 日韩高清综合在线| 男女那种视频在线观看| 久久精品人妻少妇| 亚洲性夜色夜夜综合| 十分钟在线观看高清视频www| 国产精品一区二区免费欧美| 男人舔女人的私密视频| 亚洲av电影在线进入| 精品欧美一区二区三区在线| 亚洲人成网站在线播放欧美日韩| 国产精品久久久人人做人人爽| 一本久久中文字幕| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区三| 麻豆成人午夜福利视频| 中文字幕久久专区| 97碰自拍视频| 免费女性裸体啪啪无遮挡网站| 久9热在线精品视频| 免费一级毛片在线播放高清视频| 亚洲色图av天堂| 国产欧美日韩一区二区三| 欧美在线一区亚洲| 最近最新中文字幕大全电影3 | 午夜视频精品福利| videosex国产| 久久草成人影院| 在线观看66精品国产| 一二三四社区在线视频社区8| 国产熟女午夜一区二区三区| 成人欧美大片| 97人妻精品一区二区三区麻豆 | 欧美色视频一区免费| 91在线观看av| 巨乳人妻的诱惑在线观看| 久久亚洲真实| 91老司机精品| 亚洲 国产 在线| 亚洲精品中文字幕一二三四区| 午夜老司机福利片| 一本大道久久a久久精品| 国产不卡一卡二| 一区二区三区精品91| 亚洲av片天天在线观看| 久久精品aⅴ一区二区三区四区| www.www免费av| 国产免费男女视频| 极品教师在线免费播放| 精品久久久久久久人妻蜜臀av| 精品国产美女av久久久久小说| 夜夜夜夜夜久久久久| 久久婷婷成人综合色麻豆| 国产精品久久视频播放| 搡老熟女国产l中国老女人| 天堂√8在线中文| 欧美久久黑人一区二区| 午夜a级毛片| 老司机福利观看| 午夜福利在线在线| 大香蕉久久成人网| 免费在线观看日本一区| 久久中文看片网| 色av中文字幕| 精品久久久久久,| 嫁个100分男人电影在线观看| 欧美激情极品国产一区二区三区| 看片在线看免费视频| 亚洲成人免费电影在线观看| 国产精品九九99| 国产精品亚洲av一区麻豆| 亚洲熟女毛片儿| 欧美不卡视频在线免费观看 | 观看免费一级毛片| 欧美+亚洲+日韩+国产| 国产黄色小视频在线观看| 黑人欧美特级aaaaaa片| 亚洲精品一区av在线观看| 亚洲成av人片免费观看| 99精品在免费线老司机午夜| 日韩免费av在线播放| or卡值多少钱| 两人在一起打扑克的视频| 免费在线观看视频国产中文字幕亚洲| 久久九九热精品免费| 成人一区二区视频在线观看| 亚洲国产欧美日韩在线播放| 一个人免费在线观看的高清视频| av福利片在线| 老司机深夜福利视频在线观看| 村上凉子中文字幕在线| 国产欧美日韩一区二区精品| 在线十欧美十亚洲十日本专区| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 男人舔女人的私密视频| 日韩av在线大香蕉| netflix在线观看网站| 宅男免费午夜| 国产亚洲欧美98| 黄色 视频免费看| 日韩av在线大香蕉| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区二区三区在线观看| 国产极品粉嫩免费观看在线| 国产精品国产高清国产av| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 亚洲精品一区av在线观看| a在线观看视频网站| 好看av亚洲va欧美ⅴa在| 色综合亚洲欧美另类图片| 免费在线观看成人毛片| 久热爱精品视频在线9| 欧美日韩中文字幕国产精品一区二区三区| 欧美中文日本在线观看视频| 精品不卡国产一区二区三区| videosex国产| 黄色丝袜av网址大全| 波多野结衣av一区二区av| 国产欧美日韩一区二区精品| 欧美日韩精品网址| av在线天堂中文字幕| 脱女人内裤的视频| 色综合亚洲欧美另类图片| 十分钟在线观看高清视频www| 欧美成人午夜精品| 性色av乱码一区二区三区2| 久久 成人 亚洲| 黄片小视频在线播放| 人妻久久中文字幕网| 日本免费一区二区三区高清不卡| 亚洲av熟女| 男男h啪啪无遮挡| 久久精品影院6| 国产高清videossex| 国产在线观看jvid| 免费在线观看成人毛片| 每晚都被弄得嗷嗷叫到高潮| 国产成人影院久久av| 亚洲最大成人中文| 亚洲精品中文字幕一二三四区| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 欧美成人免费av一区二区三区| 又紧又爽又黄一区二区| 久久精品成人免费网站| 亚洲 欧美 日韩 在线 免费| 欧美乱妇无乱码| 国产99白浆流出| 91国产中文字幕| 老熟妇乱子伦视频在线观看| 波多野结衣高清作品| 国产aⅴ精品一区二区三区波| 午夜影院日韩av| 日本一区二区免费在线视频| 欧美三级亚洲精品| 一边摸一边抽搐一进一小说| 亚洲色图av天堂| 国产高清有码在线观看视频 | 俄罗斯特黄特色一大片| 窝窝影院91人妻| 亚洲精品色激情综合| √禁漫天堂资源中文www| 91成人精品电影| 无人区码免费观看不卡| 国产一区二区三区视频了| 久久天躁狠狠躁夜夜2o2o| 欧美日韩瑟瑟在线播放| 国产精品自产拍在线观看55亚洲| 欧美大码av| 黄色女人牲交| 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 成人手机av| 亚洲三区欧美一区| 国产精品久久视频播放| 老司机在亚洲福利影院| 老鸭窝网址在线观看| 亚洲av五月六月丁香网| 欧美日韩亚洲综合一区二区三区_| 夜夜躁狠狠躁天天躁| 欧美午夜高清在线| 美女扒开内裤让男人捅视频| 亚洲精品一区av在线观看| 精品一区二区三区四区五区乱码| 动漫黄色视频在线观看| 在线观看免费日韩欧美大片| 欧美精品啪啪一区二区三区| АⅤ资源中文在线天堂| 天堂影院成人在线观看| 在线观看一区二区三区| 女人被狂操c到高潮| 国产精品影院久久| 亚洲人成电影免费在线| 999久久久精品免费观看国产| 亚洲国产欧美一区二区综合| 中文资源天堂在线| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| 一二三四社区在线视频社区8| 国产激情久久老熟女| 一a级毛片在线观看| 性欧美人与动物交配| 亚洲精品一区av在线观看| xxxwww97欧美| 欧美又色又爽又黄视频| 在线看三级毛片| 久久人人精品亚洲av| 在线av久久热| 日韩免费av在线播放| 国产国语露脸激情在线看| 国产高清视频在线播放一区| 午夜精品久久久久久毛片777| 日本黄色视频三级网站网址| 国产精华一区二区三区| 欧美日韩黄片免| 久99久视频精品免费| 好男人电影高清在线观看| 午夜激情福利司机影院| 日本五十路高清| 少妇的丰满在线观看| 亚洲国产精品sss在线观看| 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 桃色一区二区三区在线观看| 一a级毛片在线观看| 丰满人妻熟妇乱又伦精品不卡| www日本黄色视频网|