• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Corrosion Study on Tantalum in Anhydrous Ethanol

    2014-07-19 11:18:24HipingYngMotngTngBihuiLi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年4期

    Hi-ping Yng,Mo-tng Tng,Bi-hui Li

    a.College of Chemistry and Materials Science,Hubei Engineering University,Xiaogan 432000,China

    b.School of Metallurgical Science and Engineering,Central South University,Changsha 410083,China

    Corrosion Study on Tantalum in Anhydrous Ethanol

    Hai-ping Yanga?,Mo-tang Tangb,Bi-hui Lia

    a.College of Chemistry and Materials Science,Hubei Engineering University,Xiaogan 432000,China

    b.School of Metallurgical Science and Engineering,Central South University,Changsha 410083,China

    The corrosion behavior of tantalum in tetraethyl ammonium chloride(TEA)ethanol solutions was investigated using potentiodynamic polarization,cyclic voltammetry,and impedance techniques along with scanning electron microscopy(SEM).At the early stage of scanning,the current density in the cyclic voltammetry curves very slowly increased because of the presence of a thin oxide f i lm on the electrode surface.Pitting corrosion then occurred as a result of the passivity breakdown caused by the aggressive attack of the Cl-anions. SEM images showed the growth process of the pits on the electrode surface.The pitting potential decreased with the increase in TEA concentration but increased with the increase in water concentration.The apparent activation energy of the electrochemical reaction was 36 kJ/mol.The impedance spectra exhibited two time constants for all the potentials.Both the passive layer resistance and the charge transfer resistance decreased with the increase in the potential.

    Anhydrous ethanol,Electrochemical,Tantalum,Pitting corrosion

    The most common,technically simplest,and most economic preparation of tantalum alkoxides is based on tantalum chloride and alcohol[6].However,this method has the disadvantage of liberating HCl gas,resulting in the severe corrosion of the reaction apparatus.The reaction is performed using large amounts of organic solvents,which are costly to dispose.Moreover, the necessary reagents are scarce,and the reactions involve various side processes that contaminate the products and decrease their yields[7].

    For these reasons,the direct electrochemical synthesis of metal alkoxides seems to be a very promising method. This synthesis is conducted through the anode dissolution of metals in absolute alcohols in the presence of a conductive admixture.The electrochemical method has great potential for the direct conversion of less electropositive metals to their alkoxides because it is simple,highly productivity,continuous,and non-pollutive (with hydrogen as the major by-product)[8].

    In 1972,the electrochemical synthesis of tantalum ethoxide was patented;it was done through the anodic dissolution of tantalum(Ta)in ethanol in the presence of tetraethyl ammonium chloride(TEA)as the electroconductive additive[9].Since then,tantalum ethoxide was prepared by Shreider et al.[10],Turova et al. [11],and Yang et al.[12-15]using the electrochemical method.The electrochemical technique appears to have been successfully used in Russia for the commercial production of the alkoxides of Y,Ti,Zr,Nb,Ta, Mo,W,Cu,Ge,Sn,and other metals[8].

    Despite the extensive studies on the electrochemical synthesis of tantalum ethoxide,the formation mechanism of the alkoxide is still unclear and only a few studies have been reported on the corrosion behavior of this process[16-18].

    In the present work,the corrosion behavior of Ta in anhydrous ethanol containing supporting electrolytes was investigated using potentiodynamic polarization, cyclic voltammetry,and impedance techniques,which are useful in understanding the reaction mechanism and choosing the synthesis parameters.

    II.EXPERIMENTS

    A.Materials and pretreatment of electrode

    A tantalum rod(?2.25 mm×180 mm)was supplied by Zhuzhou Cemented Carbide Group Corp.Ltd.,with a chemical composition(wt%):O 0.02,C 0.005,N 0.003, Fe 0.005,Ni 0.005,Cr 0.005,Nb 0.002,W 0.002,Mo 0.001,Si 0.002,Mn 0.001,and Ta balance.The apparent exposed area was 0.25 cm2.The electrode was successively polished with a series of emery papers,from a coarse one 400 to f i ne grade 1200,rinsed with acetone, ethanol,and f i nally dipped in the electrolytic cell.

    B.Electrochemical measurements

    The experiments were performed in a 300 mL Pyrex glass cell using Pt foil and a saturated calomel electrode (SCE)as the auxiliary and reference electrodes,respectively.To avoid contamination,the SCE was connected to a bridge fi lled with the solution during the test,the tip of which was pressed against the surface of the working electrode to minimize IR drop.All potentials given in this work refer to this electrode.All chemicals used were of analytically pure grade.The electrolyte solutions were prepared from anhydrous ethanol and TEA. Prior to the experiments,the solutions were deaerated using N2,and the electrode was kept at-1 V for 300 s to electro-reduce any possible oxidized surface species.

    Electrochemical measurements were performed using a potentiostat/galvanostat(CHI 660C Electrochemical Workstation,provided by Shanghai CH Instrument Company,China)connected to a personal computer. The potentiodynamic polarization curves were recorded by automatically changing the electrode potential from -1.0 V to 3.0 V at the desired scan rate.Cyclic voltammetric measurements were conducted by linearly sweeping the potential from the starting potential to the positive direction at the given scan rate up to the required potential value.Then,the same scan rate is reversed to the starting potential to form one complete cycle.The current density is the current divided by the exposed geometric surface area which is calculated by the diameter of the tantalum rod.Electrochemical impedance spectra(EIS)measurements were taken using AC signals of 5 mV amplitude at a certain potential in the frequency range of 100 kHz to 0.01 Hz.The EIS results were analyzed using Zview software.Each experiment was performed with freshly prepared solutions and newly polished sets of electrodes.All measurements were carried out at room temperature(25±1°C)and repeated twice.

    C.SEM characterization of electrode surface

    The electrode surface was examined by the scanning electron microscope(SEM model JSM-6360 LV)after

    III.RESULTS AND DISCUSSION

    FIG.1 A typical cyclic voltammogram of Ta in anhydrous ethanol containing 0.06 mol/L TEA with a scan rate of 50 mV/s.

    anodization at 2.5 V for various time in 0.1 mol/L TEA ethanol solution.

    A.Typical potentiodynamic polarization curve

    Figure 1 displays the potentiodynamic polarization curve of Ta in anhydrous ethanol containing 0.06 mol/L TEA.On the positive scan,the cathodic current density decreased,gradually forming a small cathodic current plateau just before reaching a zero value at the corrosion potential(Ecorr).This plateau probably corresponds to the hydrogen evolution reaction on the Ta surface.The current density very slowly increased with anodic potential.This phenomenon could be attributed to the spontaneous passivation of Ta because of the presence of the oxide f i lm on the electrode surface.In fact,Ta itself is an active metal from an electrochemical point of view because its domain of thermodynamic stability is known to lie below that of water reduction at temperatures from 25°C to 300°C[19].Ta dissolution may occur through the chemical dissolution of the protective passive oxide f i lm.With the increase in anodic potential,the passive current density gradually increased, indicating that the chemical dissolution accelerated.

    However,when the anodic potential exceeded a certain critical value Eb,the current density suddenly increased without any sign of oxygen evolution,suggesting the breakdown of the passive f i lm and the initiation and propagation of the pitting corrosion.The current density continued even after the potential sweep reversal,which is an autocatalytic characteristic of pitting [20].Afterwards,the current density began to linearly decay.A hysteresis loop,which is a characteristic of the pitting corrosion phenomenon,was formed[21].This hysteresis loop enabled the repassivation potential Epto be determined,where Epcorresponds to the potential values below which no pitting occurs and above whichpit nucleation begins[22].

    FIG.2 SEM microphotographs of Ta surface after anodization at 2.5 V for various time in 0.1 mol/L TEA ethanol solution. (a)2 min,(b)5 min,(c)60 min.

    FIG.3 Potentiodynamic polarization curves of Ta in anhydrousethanolwithdifferentTEAconcentration of(a)0.02 mol/L,(b)0.04mol/L,(c)0.06mol/L, (d)0.08 mol/L,and(e)0.10 mol/L at scan rate of 5 mV/s.

    According to Hoar’s theory,the breakdown of the passive fi lm and the initiation of the pitting attack can be ascribed to the adsorption of Cl-ions on the passive fi lm[23].The adsorbed aggressive anions,with the assistance of a high electric fi eld,can penetrate the passive layer speci fically at its defect points and fl aws to reach the base metal surface.Subsequently,the pit growth occurs as a result of the increase in the concentration of Cl-resulting from its migration[24].

    B.Scanning electron microscopy(SEM)characterization

    Figure 2 shows the microscopic observations of the electrode surface anodized for various time at 2.5 V. Only several pits appeared in the image after anodization for 2 min.The number of pits sharply increased, and the pits were connected with one another while being anodized for 5 min.The pits became much larger, and large cavities emerged when the electrode was anodized for 60 min.The growth process of the pits is clearly shown on the SEM photographs.

    FIG.4 Tafel curves recorded for tantalum in anhydrous ethanol containing 0.1 mol/L TEA at different temperatures with scan rate of 1 mV/s.The temperatures for curves 1,2, 3,4,5,and 6 are 20,30,40,50,60,and 70°C,respectively. Inset is a plot of lgicorrvs.1/T.

    C.Effect of TEA concentration

    The in fl uence of TEA concentration on the anodic potentiodynamic polarization curves of tantalum is presented in Fig.3.The increase in the concentration of TEA increases the anodic current density at the same anodic potential.The acceleration e ff ect of TEA may be due to the adsorption of Cl-on the metal surface and its subsequent participation in active dissolution. Moreover,the breakdown potential Ebshifts to negative values with the increase in TEA concentration.These behaviors may be due to the weakening of the passive fi lm as a result of the competition between its formation and the formation of the soluble intermediate,and the increase in the number of aggressive chloride ions that attack the passive layer[25].Figure 4 presents the Tafel curves at di ff erent temperatures.As can be seen,the shape and change trends of each curve looked similar, indicating that dissolution mechanisms did not change at all.With the increase in the solution temperature,the curves shifted to the right,corresponding to a larger current density.The corrosion current density is a parameter that represents the corrosion rate of a material. Thus,the increase in temperature accelerated the corrosion rates of Ta.This promoting effect of the solution temperature on the corrosion process can be explained by the fact that the increase in temperature accelerates the rates of charge transfer,migration,and dif f usion of the reactant and product species into and from pits. Moreover,the increase in temperature can enhance the solubility of the passive f i lm.

    The apparent activation energy,Ea,of Ta in 0.1 mol/L TEA solution of anhydrous ethanol can be calculated from the following Arrhenius-type equation [26]:

    where icorr,the corrosion current density,is calculated through the extrapolation of the linear logarithmic sections of the cathodic and anodic Tafel lines to the point of intersection,R is the universal gas constant,T is the absolute temperature,and A is the pre-exponential factor.A plot of lgicorrversus 1/T is a straight line,as shown in the inset of Fig.4.The Eaobtained from the slope of the straight line is 36 kJ/mol,indicating that the apparent activation energy of the electrochemical reaction near the Tafel region is 36 kJ/mol.

    D.Impedance measurements

    EIS is a very effective technique that analyzes the various steps involved in an electrochemical reaction by measuring the impedance system response to a small AC potential signal in a wide frequency range[27].Figures 5 and 6 show the characteristic Nyquist and Bode diagrams of Ta in the 0.1 mol/L TEA solution of anhydrous ethanol at various electrode potentials,respectively.The impedance significantly decreased when the potential increased from-0.4 V to 1.2 V.In fact,the impedance of 1.2 V is three decades smaller than that of -0.4 V,as shown in Fig.6.Moreover,the appearance of an inductive loop at 1.2 V was observed,possibly indicating the commencement of the incubation period of pitting corrosion[28].However,when the potential was higher than 2.0 V,the tendency to decline clearly slowed down.The inductive loop at the low frequency range was replaced by a nearly ideal Warburg tail,corresponding to the formation of pitting and the appearance of a dif f usion-controlled process at high electrode potentials.The slopes of the Bode impedance magnitude plots at intermediate frequencies and the maximum phase angles are close to the ideal values of-1°and 90°,respectively.These divergences from the ideal capacitive behavior may be related to the increase in the rate of passive layer dissolution as a result of its progressive attack,as the potential shifted to be more anodic in the pitting corrosion potential range[25].

    FIG.5 Nyquist plots of Ta in 0.1 mol/L TEA solution of anhydrous ethanol at various electrode potentials:(a)-0.4 V, 0.4 V,(b)1.2-3.6 V.

    FIG.6 Bode plots of Ta in 0.1 mol/L TEA solution of anhydrous ethanol at various electrode potentials.

    The Nyquist and Bode plots show two time constants for all the potentials.They can be modeled using an equivalent circuit(Fig.7),where R0is the electrolyte resistance,R1is the charge transfer resistance,R2is the resistance of the passive layer,L1is the inductance, and Q1and Q2are the constant phase elements related to the capacitance of the double layer and thepassive f i lm,respectively.The f i tting results are listed in Table I.The R0values are nearly constant,and the R1and R2values drastically decreased with the potential as a result of f i lm rapture.This f i nding further conf i rms that Ta dissolution is favored,as the anodic potential is made more positive.

    TABLE I Electrochemical parameters obtained by f i tting EIS measurements.

    FIG.7 Equivalent circuits to analyze the experimental data. (a)for 1.2 V,(b)for other potentials.

    E.Effect of water concentration

    Water concentration in the ethanol solution,which is very harmful to the electrosynthesis of tantalum alkoxides,greatly reduces yield and current efficiency.Therefore,studying the inf l uence of water content on the corrosion process is necessary.The dependence of the anodic polarization behavior of Ta on water concentration is shown in Fig.8.The curves shifted in the negative direction with increasing water concentration,indicating that passivation was enhanced.The critical pitting potential became more favorable with the increase in water content,consistent with the results of the studies of Ramgopal[29]and Mansfeld[30].Therefore,in the practical electrosynthesis of tantalum ethoxide,the lowest water content must be maintained to obtain high current efficiency and to avoid the hydrolyzation of the product.

    IV.CONCLUSION

    FIG.8 Effect of water concentration on the polarization curves of Ta in 0.04 mol/L TEA ethanol solution with a scan rate of 5 mV/s.Water concentration with volume percentage is(a)0,(b)0.5%,(c)1%,(d)2%,and(e)4%, respectively.

    Investigations on the corrosion behavior of Ta in TEA ethanol solutions were conducted using potentiodynamic polarization,cyclic voltammetry,and impedance techniques along with SEM.Results show that Ta underwent pitting corrosion in the TEA ethanol solution to a certain extent,depending on the applied anodic potential,anodization time,temperature,and TEA and water concentrations.The current density in the cyclic voltammetry curves very slowly increased with the anodic potential at the early stage of scanning because of spontaneous passivation.The passivity was caused by the presence of a thin oxide f i lm on the anode surface. The electrode retained its passivity up to Eb,when the current increased.The anodic current density increased with the increase in the solution temperature and TEA concentration.The apparent activation energy in the range of the studied temperature was about 36 kJ/mol. SEM images show the growth process of pits on the electrode surface.The impedance spectra exhibited two time constants for all the potentials,and the impedance decreased with increasing potential.The pitting formation process was characterized using EIS.The appearance of an inductive loop corresponded with the incubation period for pitting corrosion,and the presence of another capacitor loop was related to the formation of pits.The critical pitting potential became more positive with increasing water concentration.

    [1]N.Dharmaraj,H.C.Park,C.H.Kim,P. Viswanathamurthi,and H.Y.Kim,Mater.Res.Bull. 41,612(2006).

    [2]S.Ezhilvalavan and T.Y.Tseng,J.Mater.Sci-mater. El.10,9(1999).

    [3]I.V.Sieber and P.Schmuki,J.Electrochem.Soc.152, C639(2005).

    [4]C.Wang,L.Fang,G.Zhang,D.M.Zhuang,and M.S. Wu,Thin Solid Films 458,246(2004).

    [5]K.Kukli,J.Aarik,A.Aidla,H.Siimon,M.Ritala,and M.Leskel,Appl.Surf.Sci.112,236(1997).

    [6]K.Reuter,F.Zell,and M.Ebner,US Patent 7273943 (2007).

    [7]V.A.Shreider,E.P.Turevskaya,N.I.Koslova,and N. Y.Turova,Inorg.Chim.Acta 53,L73(1981).

    [8]D.Bradley,R.Mehrotra,I.Rothwell,and A.Singh, Alkoxo and Aryloxo Derivatives of Metals,London: Academic Press,18(2001).

    [9]T.Tripp,US Patent 3730857(1973).

    [10]V.A.Shreider,E.P.Turevskaya,N.I.Kozlova,and N. Y.Turova,Russ.Chem.Bull.30,1363(1981).

    [11]N.Y.Turova,A.V.Korolev,D.E.Tchebukov,A.I. Belokon,A.I.Yanovsky,and Y.T.Struchkov,Polyhedron,15,3869(1996).

    [12]S.H.Yang,Y.M.Chen,H.P.Yang,Y.Y.Liu,M. T.Tang,and G.Z.Qiu,Trans.Nonferrous Met.Soc. China 18,196(2008).

    [13]S.H.Yang,Z.Q.Pan,Z.H.Li,M.T.Tang,and G.Z. Qiu,Rare Met.Mater.Eng.35,625(2006).

    [14]H.P.Yang,S.H.Yang,Y.N.Cai,G.F.Hou,J.Y.Xia, and M.T.Tang,Trans.Nonferrous Met.Soc.China 21, 179(2011).

    [15]H.P.Yang,S.H.Yang,Y.N.Cai,G.F.Hou,and M. T.Tang,Electrochim.Acta 55,2829(2010).

    [16]M.Berezkin,I.Chernykh,E.Polyakov,and A.Tomilov, Russ.J.Appl.Chem.79,741(2006).

    [17]M.Berezkin,E.Polyakov,V.Turygin,and A.Tomilov, Russ.J.Electrochem.43,1200(2007).

    [18]A.D.Davydov,Electrochim.Acta 46,3777(2001).

    [19]S.M.Maeng,Ph.D.Dissertation,New Jersey:New Jersey Institute of Technology,(2005).

    [20]H.Kaesche,Mater.Corros.39,153(1988).

    [21]M.A.Amin and S.S.A.Rehim,Electrochim.Acta 49, 2415(2004).

    [22]M.Metikoˇs-Hukovi′c and I.Miloˇsev,J.Appl.Electrochem.22,448(1992).

    [23]T.P.Hoar,D.C.Mears,and G.P.Rothwell,Corros. Sci.5,279(1965).

    [24]H.H.Hassan,S.S.A.Rehim,and N.F.Mohamed, Corros.Sci.44,37(2002).

    [25]H.H.Hassan and K.Fahmy,Int.J.Electrochem.Sci. 3,29(2008).

    [26]M.A.M.Ibrahim,S.S.A.Rehim,and M.M.Hamza, Mater.Chem.Phys.115,80(2009).

    [27]T.Du,D.Tamboli,Y.Luo,and V.Desai,Appl.Surf. Sci.229,167(2004).

    [28]C.P.Lee,Y.Y.Chen,C.Y.Hsu,J.W.Yeh,and H. C.Shih,Thin Solid Films 517,1301(2008).

    [29]T.Ramgopal,Corrosion 61,757(2005).

    [30]F.Mansfeld,J.Electrochem.Soc.118,1412(1971).

    I.INTRODUCTION

    pentoxide(Ta2O5)has

    considerable attention over the past decades because of its high dielectric constant(about 25),high refractive index,chemical and thermal stability,compatibility with ultra-large scale integrated circuits,and promising application to MOM or MOS capacitors,waveguides,silicon solar cells,and electrochromic devices and displays[1-4].Ta2O5f i lms have been deposited through chemical vapor deposition using several precursor materials,such as Ta(OC2H5)5,Ta(OCH3)5,TaCl5, and Ta[N(CH3)2]5.Among these precursors,tantalum ethoxide is the most preferred because of its 100% volatility and superior thermal stability[5].

    (Dated:Received on April 28,2014;Accepted on July 2,2014)

    ?Author to whom correspondence should be addressed.E-mail:yhp1008@163.com,Tel.:+86-712-2345464

    黄片小视频在线播放| 侵犯人妻中文字幕一二三四区| 亚洲精品中文字幕一二三四区 | 亚洲精品一卡2卡三卡4卡5卡 | 水蜜桃什么品种好| av一本久久久久| 人人妻人人澡人人看| 久久免费观看电影| 黄片小视频在线播放| 纯流量卡能插随身wifi吗| 美女福利国产在线| 一级毛片电影观看| 18禁黄网站禁片午夜丰满| 天天操日日干夜夜撸| 日韩三级视频一区二区三区| 国产xxxxx性猛交| 久久久久国产精品人妻一区二区| 91精品国产国语对白视频| 亚洲第一欧美日韩一区二区三区 | 91成人精品电影| 国产精品一区二区精品视频观看| 两个人看的免费小视频| 一区二区av电影网| 18在线观看网站| 精品久久久久久久毛片微露脸 | 国产有黄有色有爽视频| 国产91精品成人一区二区三区 | 久久人人爽人人片av| 我要看黄色一级片免费的| 我的亚洲天堂| 操出白浆在线播放| 久久中文字幕一级| 一区福利在线观看| 超碰97精品在线观看| 在线观看舔阴道视频| 窝窝影院91人妻| 亚洲国产中文字幕在线视频| 男女边摸边吃奶| 大香蕉久久网| 一区福利在线观看| 999久久久国产精品视频| 国产老妇伦熟女老妇高清| 50天的宝宝边吃奶边哭怎么回事| 国产97色在线日韩免费| 日本av免费视频播放| 免费女性裸体啪啪无遮挡网站| 99精品欧美一区二区三区四区| 欧美精品高潮呻吟av久久| 好男人电影高清在线观看| 建设人人有责人人尽责人人享有的| 91老司机精品| 99久久精品国产亚洲精品| 日本av免费视频播放| 日韩大码丰满熟妇| 丝袜人妻中文字幕| 一级片免费观看大全| 91av网站免费观看| 日本精品一区二区三区蜜桃| 日韩视频在线欧美| 18禁观看日本| 久热爱精品视频在线9| 中文字幕高清在线视频| 91大片在线观看| 欧美黄色淫秽网站| 中文字幕人妻熟女乱码| 麻豆国产av国片精品| 欧美亚洲 丝袜 人妻 在线| 男女免费视频国产| 亚洲av电影在线进入| 亚洲中文av在线| 国产精品九九99| 欧美黑人精品巨大| av天堂在线播放| 亚洲精品国产区一区二| 一区二区三区激情视频| 亚洲va日本ⅴa欧美va伊人久久 | 国产日韩欧美视频二区| 精品福利观看| 国产免费一区二区三区四区乱码| 久久青草综合色| svipshipincom国产片| 色婷婷av一区二区三区视频| 久久久国产成人免费| 亚洲美女黄色视频免费看| 18在线观看网站| 国产黄色免费在线视频| 国产免费福利视频在线观看| 国产一区二区三区在线臀色熟女 | 1024香蕉在线观看| 国产av一区二区精品久久| av在线app专区| 亚洲国产成人一精品久久久| 午夜免费成人在线视频| 亚洲精品国产区一区二| 亚洲精品成人av观看孕妇| 欧美 日韩 精品 国产| 亚洲欧美激情在线| 黑人巨大精品欧美一区二区mp4| 777久久人妻少妇嫩草av网站| 超碰成人久久| 黄色毛片三级朝国网站| 日日夜夜操网爽| 人人澡人人妻人| 久久人人爽av亚洲精品天堂| 成人影院久久| 国产人伦9x9x在线观看| 青春草亚洲视频在线观看| 国产高清videossex| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费大片| 国产亚洲欧美精品永久| 777米奇影视久久| 久久这里只有精品19| 一进一出抽搐动态| 日韩有码中文字幕| 中文欧美无线码| 国产成人影院久久av| 又大又爽又粗| 国产精品久久久久久人妻精品电影 | 国产av国产精品国产| 国产成人啪精品午夜网站| 精品久久蜜臀av无| 女人精品久久久久毛片| 99精品久久久久人妻精品| 国产一区二区三区av在线| a在线观看视频网站| 91国产中文字幕| 亚洲av国产av综合av卡| 欧美日韩成人在线一区二区| 亚洲av日韩在线播放| 久久99一区二区三区| 少妇裸体淫交视频免费看高清 | 777米奇影视久久| 桃花免费在线播放| 最新在线观看一区二区三区| 久久这里只有精品19| 桃花免费在线播放| 大码成人一级视频| 一本久久精品| 丰满少妇做爰视频| 高清欧美精品videossex| 丰满少妇做爰视频| 美国免费a级毛片| 无限看片的www在线观看| 色婷婷久久久亚洲欧美| 下体分泌物呈黄色| 一二三四在线观看免费中文在| 韩国高清视频一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲三区欧美一区| 在线观看www视频免费| 国产成人欧美| 亚洲精品中文字幕在线视频| 纯流量卡能插随身wifi吗| 18禁观看日本| 午夜免费成人在线视频| 涩涩av久久男人的天堂| tube8黄色片| 男人添女人高潮全过程视频| 久久天堂一区二区三区四区| 欧美老熟妇乱子伦牲交| 亚洲av日韩精品久久久久久密| 欧美黄色片欧美黄色片| 午夜福利在线免费观看网站| 俄罗斯特黄特色一大片| 国产成人精品无人区| 欧美精品人与动牲交sv欧美| 亚洲美女黄色视频免费看| 国产极品粉嫩免费观看在线| 女人精品久久久久毛片| 亚洲免费av在线视频| 少妇人妻久久综合中文| av又黄又爽大尺度在线免费看| 亚洲精品国产一区二区精华液| 男女国产视频网站| 日日夜夜操网爽| 国产成人a∨麻豆精品| 免费在线观看视频国产中文字幕亚洲 | 丝袜脚勾引网站| 久久久国产欧美日韩av| 国产免费现黄频在线看| 操美女的视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 90打野战视频偷拍视频| 国产色视频综合| 国产精品一区二区在线不卡| 免费在线观看视频国产中文字幕亚洲 | 精品乱码久久久久久99久播| av超薄肉色丝袜交足视频| 热99re8久久精品国产| 男女国产视频网站| 国产精品1区2区在线观看. | 三级毛片av免费| 亚洲色图综合在线观看| 婷婷色av中文字幕| 欧美老熟妇乱子伦牲交| 视频在线观看一区二区三区| 精品欧美一区二区三区在线| 中文字幕高清在线视频| 亚洲精品在线美女| 一区二区日韩欧美中文字幕| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看 | 黄色 视频免费看| 1024香蕉在线观看| 久久99一区二区三区| 成年女人毛片免费观看观看9 | 久久狼人影院| 精品免费久久久久久久清纯 | h视频一区二区三区| 久久精品国产亚洲av高清一级| 日韩一卡2卡3卡4卡2021年| 人人澡人人妻人| 欧美国产精品va在线观看不卡| 黄色 视频免费看| 久久毛片免费看一区二区三区| 国产精品自产拍在线观看55亚洲 | 丁香六月天网| 国产三级黄色录像| 亚洲精品日韩在线中文字幕| 亚洲国产欧美在线一区| 夜夜骑夜夜射夜夜干| 欧美 日韩 精品 国产| 18禁国产床啪视频网站| 中文字幕人妻丝袜制服| 操出白浆在线播放| 精品少妇久久久久久888优播| 日韩 亚洲 欧美在线| 国产又爽黄色视频| 叶爱在线成人免费视频播放| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频 | 99久久国产精品久久久| 丰满迷人的少妇在线观看| 久久久久网色| 国产日韩欧美在线精品| 成人亚洲精品一区在线观看| 国产av又大| √禁漫天堂资源中文www| 中文字幕av电影在线播放| 午夜福利影视在线免费观看| 午夜两性在线视频| 少妇粗大呻吟视频| 日韩精品免费视频一区二区三区| 国内毛片毛片毛片毛片毛片| 母亲3免费完整高清在线观看| 汤姆久久久久久久影院中文字幕| 桃红色精品国产亚洲av| 99香蕉大伊视频| 亚洲欧美成人综合另类久久久| 中国国产av一级| 午夜激情av网站| 美女午夜性视频免费| 亚洲性夜色夜夜综合| 国产极品粉嫩免费观看在线| 久久国产精品人妻蜜桃| 一二三四在线观看免费中文在| 精品视频人人做人人爽| 国产成人精品无人区| 精品欧美一区二区三区在线| 亚洲av片天天在线观看| 久久久久久久大尺度免费视频| 在线永久观看黄色视频| 国产男女超爽视频在线观看| 欧美日韩一级在线毛片| 精品国产国语对白av| 亚洲精品国产区一区二| 另类亚洲欧美激情| 国产成人精品久久二区二区91| 可以免费在线观看a视频的电影网站| 啦啦啦视频在线资源免费观看| 飞空精品影院首页| 久久亚洲国产成人精品v| 母亲3免费完整高清在线观看| 午夜成年电影在线免费观看| 亚洲自偷自拍图片 自拍| www.自偷自拍.com| av有码第一页| 男人操女人黄网站| 精品一区二区三区av网在线观看 | 午夜久久久在线观看| 免费日韩欧美在线观看| 狠狠精品人妻久久久久久综合| 欧美变态另类bdsm刘玥| 国产成人精品久久二区二区91| www.精华液| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品999| 久久天躁狠狠躁夜夜2o2o| 各种免费的搞黄视频| 日日摸夜夜添夜夜添小说| 久久久久久免费高清国产稀缺| 欧美老熟妇乱子伦牲交| 69av精品久久久久久 | 国产熟女午夜一区二区三区| 狂野欧美激情性xxxx| 91九色精品人成在线观看| 午夜免费成人在线视频| 色94色欧美一区二区| 日本一区二区免费在线视频| 日日爽夜夜爽网站| 欧美+亚洲+日韩+国产| 国产亚洲欧美在线一区二区| 桃花免费在线播放| 免费日韩欧美在线观看| 久热这里只有精品99| 中国美女看黄片| 午夜免费鲁丝| 国产一级毛片在线| 亚洲精品久久成人aⅴ小说| 成年美女黄网站色视频大全免费| 成人国产av品久久久| 日韩大片免费观看网站| 午夜91福利影院| 欧美+亚洲+日韩+国产| 欧美激情极品国产一区二区三区| 国产黄频视频在线观看| 欧美国产精品一级二级三级| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 国产黄频视频在线观看| 黄色a级毛片大全视频| 秋霞在线观看毛片| 人妻 亚洲 视频| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 亚洲国产精品一区三区| 欧美日韩精品网址| 国产精品香港三级国产av潘金莲| cao死你这个sao货| 一级片'在线观看视频| 国产精品99久久99久久久不卡| 日韩欧美一区二区三区在线观看 | 午夜成年电影在线免费观看| 免费日韩欧美在线观看| 亚洲少妇的诱惑av| 香蕉丝袜av| 十分钟在线观看高清视频www| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 美女脱内裤让男人舔精品视频| 国产成人欧美在线观看 | 男女之事视频高清在线观看| av又黄又爽大尺度在线免费看| 精品久久久精品久久久| tube8黄色片| 纵有疾风起免费观看全集完整版| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品熟女久久久久浪| 亚洲欧美色中文字幕在线| 亚洲一码二码三码区别大吗| 丰满人妻熟妇乱又伦精品不卡| 天堂俺去俺来也www色官网| 日本黄色日本黄色录像| 桃花免费在线播放| 亚洲午夜精品一区,二区,三区| 亚洲国产看品久久| 51午夜福利影视在线观看| 久久久国产一区二区| 欧美成狂野欧美在线观看| 亚洲精品国产一区二区精华液| 久久人人爽人人片av| 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 美女福利国产在线| 99国产极品粉嫩在线观看| 91av网站免费观看| 高清av免费在线| 99热全是精品| 久久久久精品人妻al黑| 国产成人av教育| 9热在线视频观看99| 久久av网站| 亚洲国产av影院在线观看| 国产老妇伦熟女老妇高清| 另类亚洲欧美激情| 69精品国产乱码久久久| 国产成人a∨麻豆精品| 丁香六月天网| 国产精品久久久久久人妻精品电影 | 十八禁网站免费在线| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 国产欧美日韩综合在线一区二区| 国产在视频线精品| tube8黄色片| 18在线观看网站| 啦啦啦视频在线资源免费观看| 国产在线观看jvid| 中亚洲国语对白在线视频| 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网 | 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲 | 午夜福利一区二区在线看| 日韩一卡2卡3卡4卡2021年| 国产在视频线精品| 人妻 亚洲 视频| 国产国语露脸激情在线看| 日韩 亚洲 欧美在线| 99国产综合亚洲精品| 多毛熟女@视频| 18禁观看日本| 男女下面插进去视频免费观看| 国产人伦9x9x在线观看| 12—13女人毛片做爰片一| 90打野战视频偷拍视频| 日韩中文字幕视频在线看片| 亚洲专区国产一区二区| 在线天堂中文资源库| 国产精品欧美亚洲77777| 国产精品久久久av美女十八| 免费人妻精品一区二区三区视频| 免费在线观看日本一区| 日韩制服丝袜自拍偷拍| 性色av乱码一区二区三区2| www.熟女人妻精品国产| 日韩欧美国产一区二区入口| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 国产亚洲一区二区精品| 午夜福利在线免费观看网站| 国产男女内射视频| 精品国产超薄肉色丝袜足j| 俄罗斯特黄特色一大片| 正在播放国产对白刺激| 狠狠精品人妻久久久久久综合| 国产精品 国内视频| 黄色毛片三级朝国网站| 精品视频人人做人人爽| 免费人妻精品一区二区三区视频| 大片免费播放器 马上看| av欧美777| 免费观看a级毛片全部| 岛国在线观看网站| 国产三级黄色录像| 欧美 亚洲 国产 日韩一| 成人av一区二区三区在线看 | 黄色a级毛片大全视频| 精品一区二区三卡| 亚洲熟女精品中文字幕| 欧美 亚洲 国产 日韩一| 老汉色av国产亚洲站长工具| 中文字幕色久视频| 欧美成人午夜精品| 国内毛片毛片毛片毛片毛片| 亚洲精品久久午夜乱码| av欧美777| 亚洲国产av影院在线观看| 久久国产精品影院| 精品国产一区二区三区久久久樱花| 黑人欧美特级aaaaaa片| 精品亚洲乱码少妇综合久久| 一级,二级,三级黄色视频| 精品国产国语对白av| 男女床上黄色一级片免费看| 多毛熟女@视频| 男女午夜视频在线观看| 亚洲美女黄色视频免费看| 丝袜脚勾引网站| 午夜福利在线免费观看网站| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 黄色片一级片一级黄色片| 国产日韩欧美视频二区| 男女下面插进去视频免费观看| 国产免费视频播放在线视频| 国产av一区二区精品久久| 国产成人免费观看mmmm| 国产欧美日韩一区二区三区在线| a级毛片在线看网站| 欧美乱码精品一区二区三区| 欧美黑人欧美精品刺激| www.精华液| 天天躁狠狠躁夜夜躁狠狠躁| 操出白浆在线播放| 国产精品国产三级国产专区5o| 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 深夜精品福利| 正在播放国产对白刺激| 在线观看一区二区三区激情| 久久这里只有精品19| 老司机靠b影院| 美女高潮喷水抽搐中文字幕| av又黄又爽大尺度在线免费看| 丝瓜视频免费看黄片| 亚洲精品日韩在线中文字幕| www日本在线高清视频| 捣出白浆h1v1| 丰满人妻熟妇乱又伦精品不卡| 精品人妻1区二区| 香蕉国产在线看| 下体分泌物呈黄色| 黑丝袜美女国产一区| 一级毛片女人18水好多| 在线观看免费视频网站a站| 亚洲伊人久久精品综合| 亚洲国产欧美日韩在线播放| 又大又爽又粗| 欧美精品啪啪一区二区三区 | 交换朋友夫妻互换小说| 天天躁日日躁夜夜躁夜夜| 国产伦理片在线播放av一区| 正在播放国产对白刺激| 午夜福利一区二区在线看| 中文字幕最新亚洲高清| 欧美激情 高清一区二区三区| 国产成人啪精品午夜网站| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品区二区三区| 免费看十八禁软件| 久热爱精品视频在线9| 伊人亚洲综合成人网| 国产精品熟女久久久久浪| 国产成人精品在线电影| 日日爽夜夜爽网站| 国产伦理片在线播放av一区| 国产片内射在线| 国产精品久久久人人做人人爽| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 桃红色精品国产亚洲av| 老司机在亚洲福利影院| 免费观看av网站的网址| 精品久久久精品久久久| 久久精品人人爽人人爽视色| 久久 成人 亚洲| 十八禁网站免费在线| 欧美大码av| 国产免费av片在线观看野外av| 老司机福利观看| 亚洲成人免费av在线播放| 国产国语露脸激情在线看| 亚洲精品中文字幕在线视频| 日韩大码丰满熟妇| a级毛片黄视频| 高清黄色对白视频在线免费看| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 精品国产国语对白av| 成年人免费黄色播放视频| 淫妇啪啪啪对白视频 | 国产有黄有色有爽视频| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| 欧美久久黑人一区二区| 91麻豆精品激情在线观看国产 | 丰满迷人的少妇在线观看| 午夜福利乱码中文字幕| 亚洲免费av在线视频| 国产精品影院久久| 亚洲国产av新网站| 亚洲专区中文字幕在线| 最黄视频免费看| 午夜视频精品福利| 精品熟女少妇八av免费久了| 纯流量卡能插随身wifi吗| 日韩有码中文字幕| 国产一级毛片在线| 免费人妻精品一区二区三区视频| 侵犯人妻中文字幕一二三四区| 欧美精品人与动牲交sv欧美| 黄色视频在线播放观看不卡| 一级,二级,三级黄色视频| 一二三四在线观看免费中文在| 一级片免费观看大全| a 毛片基地| 免费看十八禁软件| 亚洲三区欧美一区| 欧美精品一区二区免费开放| 精品国产超薄肉色丝袜足j| 麻豆国产av国片精品| 亚洲精品国产av蜜桃| 国产成人一区二区三区免费视频网站| 久久人人97超碰香蕉20202| 热99re8久久精品国产| 久久人人97超碰香蕉20202| 久久久精品国产亚洲av高清涩受| 自线自在国产av| bbb黄色大片| 日韩欧美国产一区二区入口| e午夜精品久久久久久久| 国产在线一区二区三区精| 女人精品久久久久毛片| 免费黄频网站在线观看国产| 成人国产av品久久久| 超碰成人久久| 国产成人精品无人区| 少妇 在线观看| 久久精品成人免费网站| 午夜两性在线视频| 香蕉国产在线看| 18禁观看日本| 亚洲国产av影院在线观看| 亚洲成人免费av在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 久久狼人影院| 青春草亚洲视频在线观看| 精品人妻熟女毛片av久久网站| 午夜福利视频精品| 午夜福利免费观看在线| 搡老熟女国产l中国老女人| 成年美女黄网站色视频大全免费| 美女国产高潮福利片在线看| 色精品久久人妻99蜜桃| 不卡一级毛片| 国产成人免费观看mmmm| 久久国产精品男人的天堂亚洲| 久久久精品94久久精品| 欧美黑人欧美精品刺激|