• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Molybdenum Doping on Oxygen Permeation Properties and Chemical Stability of SrCo0.8Fe0.2O3-δ

    2014-07-19 11:18:24ChunlinSongShuminFang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年4期

    Chun-lin Song,Shu-min Fang

    a.Faculty of Materials and Energy,Southwest University,Chongqing 400715,China

    b.Department of Mechanical Engineering,University of South Carolina,Columbia,SC 29208,USA

    Effect of Molybdenum Doping on Oxygen Permeation Properties and Chemical Stability of SrCo0.8Fe0.2O3-δ

    Chun-lin Songa?,Shu-min Fangb*

    a.Faculty of Materials and Energy,Southwest University,Chongqing 400715,China

    b.Department of Mechanical Engineering,University of South Carolina,Columbia,SC 29208,USA

    The phase composition,microstructure,thermal expansion coefficients,oxygen permeation properties and chemical stability of SrCo0.7Fe0.2Mo0.1O3-δ(SCFM)were investigated and compared with those of SrCo0.8Fe0.2O3-δ(SCF).Single phase SCFM was successfully prepared by a combined EDTA-citric method.SCFM shows a lower thermal expansion coefficient(24×10-6-29×10-6/K)than SCF between 500 and 1050°C,indicating a more stable structure.SCFM shows a high oxygen permeation f l ux,although the oxygen f l ux of SCFM decreases slightly because of Mo dopant.Furthermore,it was demonstrated that the doping of Mo in SCF can prevent the order-disorder transition and improves the chemical stability to CO2.

    Oxygen permeation,SrCo0.8Fe0.2O3-δ,Chemical stability,Molybdenum

    I.INTRODUCTION

    The vast combustion of fossil fuels results in an enormous emission of CO2,which is believed to be one of the key factor for global warming.Thus,it draws a lot of attention to the development of an efficient combustion process incorporated with CO2capture and sequestration(CCS)[1].Recently,a system,in which pure oxygen was supplied to the burner,was proposed. The burner released a f l ue gas only consisting of CO2and water to avoid costs in the step of separating N2from CO2before the sequestration of CO2[2].However,present technologies such as cryogenic distillation are quite expensive for producing pure oxygen.A membrane reactor,in which only oxygen is supplied to fossil fuels,is a promising way.Dense mixed oxygen ion/electron conductors(MIECs),showing 100%oxygen selectivity,are the most promising materials for this application.Except high oxygen permeation property, the most important challenges are the mechanical and chemical stability of MIECs,especially in a CO2atmosphere[3-6].

    Among the types of MIECs,cobalt-based perovskite oxides with composition of(Ln,A)(Co,B)O3-δ(Ln=rareearthelements,A=Ca,Sr,andBa, B=transition metal elements)show the highest oxygen ionic conductivity,making them one of the promising oxygen separation materials.Although Ba-containing perovskite oxides show a very high oxygen permeation fl ux,their chemical stability is too low in CO2[7-9]. As one of the most promising MIECs,SrCo0.8Fe0.2O3-δ(SCF)shows not only higher oxygen permeation fl ux, but also better chemical stability in CO2than that of Ba-based perovskite[4,10-15].However,its chemical stability still needs to be improved in order to withstand the cruel conditions in oxy-fuel process.Furthermore, SCF shows a high thermal expansion coefficient(TEC) [16,17],which needs to be reduced for the match with sealing materials.

    Recently,substitution with high valence cations(e.g., Ti,Zr,Nb,Ta)has been found to decrease TEC and improve the structural and chemical stability in CO2[4, 6,7,18].With a higher valence than Ti,Zr,Nb,and Ta,Mo6+may be more e ff ective to improve the chemical sta?bility of SCF in CO2.The ionic radius of Mo6+(0.59?A)is close to that of Co4+and Co3+(0.53 and0.61A,respectively)[19],which ensures a high solubility in the perovskite structure of SCF.Actually,Modoping in Sr0.7Ba0.3FeO3-δsigni ficantly improves its chemical stability in CO2[20].However,up to date, the e ff ect of Mo doping on these properties of SCF has not been reported.

    In this work,we investigated the phase composition,microstructure,thermal expansion coefficient, oxygen permeation properties,and chemical stability of SrCo0.7Fe0.2Mo0.1O3-δ.The role of Mo-doping was also illustrated.

    II.EXPERIMENTS

    SrCo0.7Fe0.2Mo0.1O3-δ(SCFM)powder was prepared by a combined ethylenediaminetetraacetic acid (EDTA)-citric acid method.Stoichiometric amounts of Sr(NO3)2,Co(NO3)2·6H2O,Fe(NO3)3·9H2O,and MoO3(Sigma-Aldrich,>99%)were f i rst dissolved in distilled water or dilute nitric acid under heating and stirring.EDTA(dissolved in ammonia)and citric acid were added as complexation agents,with the molar ratio of EDTA/citric acid/total metal cations set at 1:1.5:1.The pH value of the solution was adjusted by ammonia to~7.Appropriate amount of ammonium nitrate was then added as a trigger for combustion.Then the solution was heated at 120-150°C under stirring to evaporate water until it changed into a viscous gel. The viscous gel was heated to form a lot of foam,and f inally vigorous combustion took place,resulting in f l uf f y powder.The powder was then calcined at 950°C for 5 h to obtain single phase SCFM powder.

    SCFM powder was uniaxially pressed at 50 MPa to disk membranes,followed by isostatic pressing at 400 MPa for 3 min.The obtained membranes were sintered at 1230°C for 5 h at a heating and cooling rate of 2°C/min.The phase composition of powder and sintered membranes was characterized by X-ray dif f raction(XRD,Philips X’pert).The microstructure was investigated by scanning electron microscope (SEM,JEOL JSM-5600LV).The density was measured by the Archimedes method in mercury.Thermal expansion behavior was measured using dilatometer(Netzsch Dil-402C)in static air from 20°C to 1050°C at a heating rate of 3°C/min.To investigate the chemical stability of SCFM in CO2-containing atmosphere,the weight gain of SCFM powder was tested in 71%CO2/N2at 900°C.

    Both surfaces of sintered membranes were polished with silicon carbide sandpapers(120,320,600 grits) before the oxygen permeation measurement.All the membranes were polished to 1 mm thickness.The oxygen permeation performance was measured in a quartz reactor with glass ring(Schott 8252)sealed at 1000°C for 60 min.The oxygen permeation performance was measured from 800°C to 900°C with an interval of 25°C in a quartz reactor sealed with a glass ring at 1000°C for 1 h.The feed gas was 100 mL/min synthetic air,and the sweep gas was 30 mL/min He.In order to test the performance in CO2,the sweep gas was switched into a mixture of He and CO2to obtain 6%,8%,10%,and 100%CO2/He.The composition of the exhaust from sweep side was analyzed by a gas chromatograph(GC,Varian CP-4900)equipped with packed column(f i lled with 5?A molecular sieve)and thermal conductivity detector using He as carrier gas. The f l ow rate of the exhaust gas from the sweep side was measured by a digital f l ow meter(Varian ADM1000). The leakage through incomplete sealing was checked by measuring N2concentration in the sweep gas.The detected leakage was less than 2%in all cases,suggesting that an effective sealing was obtained.

    FIG.1 XRD patterns of different sample.(a)SCFM powder calcined at 950°C for 10 h,(b)SCFM membrane sintered at 1230°C for 5 h,and(c)standard pattern of SrCo0.81Fe0.19O2.78(JCPDS No.82-2445).

    FIG.2 SEM images of sintered SCFM membrane.(a)Surface and(b)cross-section.

    III.RESULTS AND DISCUSSION

    Figure 1 shows the XRD patterns of calcined SCFM powder and sintered SCFM membrane.After calcination at 950°C for 10 h,a pure perovskite phase has been formed,conf i rming the high solubility of Mo in SCF. All the dif f raction lines can be well indexed,referring to standard pattern of SrCo0.81Fe0.19O2.78(JCPDS No.82-2445).The result suggests that the fabricated SCFM possesses perovskite structure.The calculated lattice parameter is 3.889?A,slightly larger than 3.871?A of SCF[21],which is consistent with the fact that Mo6+is larger than Co4+(0.59 and 0.53?A,respectively)[19].

    FIG.3 Thermal expansion behavior of SCFM.

    Figure 2 shows the surface and cross-section SEM images of SCFM membrane sintered at 1230°C for 5 h.The membrane is dense with grain size of 10-20μm.Some small pores were also observed both on the surface and the section.In agreement with the dense microstructure,the relative density measured by Archimedes method is 93.9%.Although these micro pores exist,the sample is still gas-tight,enabling oxygen permeation measurement.

    Figure 3 shows the thermal expansion behavior of SCFM measured in static air by dilatometry.Due to the release of oxygen from the oxide at elevated temperatures,two regions were observed.At the low temperatures(200-500°C),the TEC(α)varies between 12.5×10-6and 15.0×10-6/K.At the high temperatures(500-1050°C),the TEC f i rst quickly increases to 29.0×10-6/K and then decreases to~24.0×10-6/K. The sudden increase in TEC is due to the reduction of Co4+and Fe4+to Co3+and Fe3+,respectively[22].The ionic radii of low valence cations is larger than that of high valence ones.The reduction process is also coupled with loss of oxygen and formation of additional oxygen vacancies in SCFM lattice.Both the reduction of high valence cations and formation of oxygen vacancies can cause expansion of lattice,which is called chemical expansion[23].The reported TEC of SCF(39×10-6/K [16],34×10-6-29×10-6/K[21])are significantly higher than that of SCFM,suggesting Mo-doping reduces the TEC of SCF.It is beneficial for the resistance of the membranes to heating/cooling cycles.

    FIG.4 Arrhenius plot of oxygen permeation f l ux through SCFM membrane under air/He gradient.Membrane thickness=1.0 mm.

    Figure 4 shows the Arrhenius plots of oxygen permeation f l ux JO2through SCFM membrane.An orderdisorder transition of oxygen vacancies was reported in SCF at~790°C f i rst by Kruidhof et al.[24].Later, the transition temperature was reported to be~810°C [16,17,25].It was reported that the doping of Sc, Y,Al,Ti,Zr,Nb,and Ta at Co-sites could stabilize the perovskite structure of SCF,and the orderdisorder transition was suppressed or prevented[4,14, 17,26-29].Figure 4 shows no significant bending in the range of 800-825°C,indicating that the orderdisorder transition is suppressed or prevented to a large extent.The results suggest that Mo-doping plays an important role in stabilizing the perovskite structure of SCF.The activation energy of SCFM between 800 and 900°C is 53.2±2.1 kJ/mol,which is slightly higher than that of SCF(~46 kJ/mol)[25].Similar increase in activation energy is also observed in Zr and Nb-doped SCF[14,17].The fl ux of SCFM at 800 and 900°C is 0.28 and 0.48μmol/cm2s,respectively,which is slightly lower than that of SCF(0.48 and 0.76μmol/cm2s, respectively)[25].However,the oxygen permeation fl ux is comparable with that of 5wt%Nb2O5-doped SrCo0.8Fe0.2O3-δ(0.27 and 0.48μmol/cm2s,respectively)[17].Compared with SCF,the decreased oxygen permeation fl ux may come from the change in microstructure and phase composition.Firstly,the grain size of SCFM is rather big(10-20μm),which is detrimental for oxygen permeation.For example,Zhang et al.reported the fl ux of SCF with average grain size of 14.8μm is only~66%of that at 900°C(4.1μm),which is attributed to the higher oxygen ionic conductivity in grain boundaries than inside grain[11].Therefore, it can be anticipated that the oxygen permeation fl ux through SCFM membrane can be improved by obtaining a smaller grain size.Secondly,the doping of high valence cations at Co sites is expected to decrease the concentration of oxygen vacancies,and the strong Mo-O also contributes the difficulty for oxygen di ff usion, therefore,the activation energy for oxygen permeation increases and the oxygen permeation fl ux decreases.

    FIG.5 Weight change of SCFM powder upon exposure to 71%CO2at 900°C.

    Figure 5 shows the weight quickly increases after the exposure to CO2and fi nally is stabilized with a weight gain of~9%.It is rather low compared with the theoretical weight gain of 22%when SCF is totally transformed into strontium carbonate and cobalt and iron oxides.Here,it is worth mentioning that the constant metal valence and no oxygen release from SrCo0.7Fe0.2Mo0.1O3-δare assumed at the atmosphere of CO2.The result implies that the crystal structure of SCFM is more stable than that of SCF,and the reaction between CO2and SCFM may be limited on the surface, rather than inside the bulk.Similarly,the weight gain of SCF and SrCo0.72Fe0.18Ti0.1O3-δmeasured by similar method is~19%and 8%at 950°C,respectively. Therefore,the doping of Mo can improve the chemical stability of SCF in CO2.

    For further investigation,the performance of oxygen permeation of SCFM in CO2was also studied.Figure 6 shows the oxygen permeation f l ux through SCFM membrane in different concentration of CO2.The oxygen permeation f l ux through SCFM membrane was 0.87μmol/cm2s under air/He gradient,and decreased to 0.82,0.67,0.46 and 0.21μmol/cm2s,when sweep gas was switched to 6%,8%,10%,100%CO2/N2,respectively.The degradation was fast and quickly reached equilibrium within 5 h.It was reported that the oxygen permeation f l ux through SCF membrane continuously decreased from 1.26μmol/cm2s to 0.18μmol/cm2s in 75 h after sweep gas was switched from He to 100%CO2[4],and the f l ux through SCF membrane didn’t reach a stable stage,so the f l ux was expected to degrade more if the measurement was continued.Thus,the chemical stability to CO2of SCFM is better than that of SCF. The enhanced chemical stability of SCFM is attributed to the higher bonding energy of Mo-O(607.3 kJ/mol) than that of Co-O(384.5 kJ/mol),leading to a lower tendency for O2-to donate electrons to charged carbon atom.It is worthy to mention that the oxygen permeation f l ux is totally recovered quickly when CO2is removed from the sweep gas(Fig.6),this phenomenon agrees with the results of weight change of SCFM powder upon exposure to CO2(Fig.5),indicating that Modoping successfully stabilizes the perovskite structure of SCF and improves its chemical stability to CO2.

    IV.CONCLUSION

    FIG.6 Time dependence of oxygen permeation f l ux through SCFM membrane in a sweep gas containing different content of CO2.It is also shown that the permeation f l ux is totally recovered quickly when CO2is removed from the sweep gas.

    Thephasecomposition,microstructure,oxygen permeationproperties,andchemicalstabilityof SrCo0.7Fe0.2Mo0.1O3(SCFM)are compared with those of SrCo0.8Fe0.2O3(SCF).Phase-pure SCFM was successfully prepared via a combined EDTA-citric method. Dense SCFM membrane was obtained with grain size 10-20μm.SCFM membrane shows a lower thermal expansion coefficient than that of SCF,indicating a more stable crystal structure than that of SCF.Because of the higher bonding energy of Mo-O,the oxygen permeation f l ux of SCFM is slightly decreased,on the other hand,the chemical stability of SCFM is improved to a large extent.

    V.ACKNOWLEDGMENTS

    ThisworkwassupportedbytheFundamentalResearchFundsfortheCentralUniversities (No.SWU113045 and No.XDJK2013C089).

    [1]J.Davison,Energy 32,1163(2007).

    [2]M.Balaguer,J.Garcia-Fayos,C.Solis,and J.M.Serra, Chem.Mater.25,4986(2013).

    [3]X.Y.Tan,K.Li,A.Thursfield,and I.S.Metcalfe, Catal.Today 131,292(2008).

    [4]Q.Zeng,Y.B.Zuo,C.G.Fan,and C.S.Chen,J. Membr.Sci.335,140(2009).

    [5]S.Fang,C.Chen,and L.Winnubst,Solid State Ionics 190,46(2011).

    [6]J.Yi,M.Schroeder,and M.Martin,Chem.Mater.25, 815(2013).

    [7]J.Yi,M.Schroeder,T.Weirich,and J.Mayer,Chem. Mater.22,6246(2010).

    [8]M.Schulz,R.Kriegel,and A.K¨ampfer,J.Membr.Sci. 378,10(2011).

    [9]M.Arnold,H.H.Wang,and A.Feldhof f,J.Membr. Sci.293,44(2007).

    [10]Y.Teraoka,H.M.Zhang,S.Furukawa,and N.Yamazoe,Chem.Lett.1743(1985).

    [11]K.Zhang,Y.L.Yang,D.Ponnusamy,A.J.Jacobson, and K.Salama,J.Mater.Sci.34,1367(1999).

    [12]Z.T.Wu,W.Q.Jin,and N.P.Xu,J.Membr.Sci.279, 320(2006).

    [13]J.X.Yi,S.J.Feng,Y.B.Zuo,W.Liu,and C.S.Chen, Chem.Mater.17,5856(2005).

    [14]W.Chen,Y.B.Zuo,C.S.Chen,and A.J.A.Winnubst,Solid State Ionics 181,971(2010).

    [15]J.L.Li,Q.Zeng,T.Liu,and C.S.Chen,Sep.Purif. Technol.77,76(2011).

    [16]C.G.Fan,Z.Q.Deng,Y.B.Zuo,W.Liu,and C.S. Chen,Solid State Ionics 166,339(2004).

    [17]G.Zhang,Z.Liu,N.Zhu,W.Jiang,X.Dong,and W. Jin,J.Membr.Sci.405-406,300(2012).

    [18]H.Zhao,D.Teng,X.Zhang,C.Zhang,and X.Li,J. Power Sources 186,305(2009).

    [19]R.D.Shannon,Acta Crystallogr.A 32,751(1976).

    [20]X.Dong,W.Jin,and N.Xu,Chem.Mater.22,3610 (2010).

    [21]O.Y.Podyacheva,Z.R.Ismagilov,A.N.Shmakov, M.G.Ivanov,A.N.Nadeev,S.V.Tsybulya,and V.A. Rogov,Catal.Today 147,270(2009).

    [22]S.McIntosh,J.F.Vente,W.G.Haije,D.H.A.Blank, and H.J.M.Bouwmeester,Solid State Ionics 177,1737 (2006).

    [23]S.McIntosh,J.F.Vente,W.G.Haije,D.H.A.Blank, and H.J.M.Bouwmeester,Chem.Mater.18,2187 (2006).

    [24]H.Kruidhof,H.J.M.Bouwmeester,R.H.E.Vondoorn,and A.J.Burggraaf,Solid State Ionics 63-65, 816(1993).

    [25]Z.P.Shao,G.X.Xiong,J.H.Tong,H.Dong,and W. S.Yang,Sep.Purif.Technol.25,419(2001).

    [26]X.L.Dong,Z.Xu,X.F.Chang,C.Zhang,and W.Q. Jin,J.Am.Ceram.Soc.90,3923(2007).

    [27]T.Nagai,W.Ito,and T.Sakon,Solid State Ionics 177, 3433(2007).

    [28]P.Y.Zeng,Z.P.Shao,S.M.Liu,and Z.P.Xu,Sep. Purif.Technol.67,304(2009).

    [29]K.Zhang,R.Ran,Z.Shao,Z.Zhu,Y.Jin,and S.Liu, Ceram.Int.36,635(2010).

    ceived on March 16,2014;Accepted on June 16,2014)

    ?Authors to whom correspondence should be addressed.E-mail:shuming@cec.sc.edu,chunlinsong@swu.edu.cn,Tel.:+1-803-7770007,+86-18883327083

    欧美日韩亚洲国产一区二区在线观看 | 久久精品成人免费网站| 精品国产一区二区三区久久久樱花| 久久99一区二区三区| 最黄视频免费看| 大码成人一级视频| 国产99久久九九免费精品| 亚洲午夜精品一区,二区,三区| 少妇粗大呻吟视频| 国产精品二区激情视频| 亚洲色图 男人天堂 中文字幕| 国产成人啪精品午夜网站| 一边亲一边摸免费视频| 国产片特级美女逼逼视频| 国产深夜福利视频在线观看| 欧美日本中文国产一区发布| 男女边摸边吃奶| 国产成人欧美在线观看 | 国产精品二区激情视频| 午夜av观看不卡| 一边亲一边摸免费视频| a级毛片在线看网站| 国产一区亚洲一区在线观看| 国产成人91sexporn| 久久精品人人爽人人爽视色| 日韩,欧美,国产一区二区三区| 天天影视国产精品| 国产黄色视频一区二区在线观看| 久久精品亚洲av国产电影网| av线在线观看网站| 亚洲自偷自拍图片 自拍| 99国产精品99久久久久| av一本久久久久| 日本猛色少妇xxxxx猛交久久| xxx大片免费视频| 91麻豆av在线| 男女边吃奶边做爰视频| 欧美日韩亚洲国产一区二区在线观看 | 少妇精品久久久久久久| 中文字幕人妻丝袜制服| 中文精品一卡2卡3卡4更新| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩黄片免| 久久天堂一区二区三区四区| 最新的欧美精品一区二区| 欧美另类一区| 性色av一级| 18禁国产床啪视频网站| 波多野结衣一区麻豆| 国产视频首页在线观看| 悠悠久久av| 亚洲国产日韩一区二区| 国产成人免费观看mmmm| 成年人午夜在线观看视频| 久久国产精品男人的天堂亚洲| 人体艺术视频欧美日本| 777米奇影视久久| 久久久久网色| 另类亚洲欧美激情| 永久免费av网站大全| 国产成人欧美在线观看 | 日韩大码丰满熟妇| 亚洲欧美日韩高清在线视频 | 亚洲国产精品成人久久小说| 男女无遮挡免费网站观看| 中文字幕人妻丝袜制服| 丰满人妻熟妇乱又伦精品不卡| 777久久人妻少妇嫩草av网站| 久久狼人影院| 亚洲人成电影观看| 午夜福利视频精品| av在线app专区| 精品国产一区二区三区久久久樱花| 一级毛片 在线播放| 丰满少妇做爰视频| 自线自在国产av| 色网站视频免费| 十分钟在线观看高清视频www| 99久久综合免费| 亚洲伊人色综图| 丝袜美腿诱惑在线| 一级毛片电影观看| 欧美 日韩 精品 国产| 女人久久www免费人成看片| 女警被强在线播放| 国产精品熟女久久久久浪| 巨乳人妻的诱惑在线观看| 男女免费视频国产| 9色porny在线观看| av线在线观看网站| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 一级黄色大片毛片| 五月开心婷婷网| 免费不卡黄色视频| av不卡在线播放| 成年动漫av网址| 视频在线观看一区二区三区| 色视频在线一区二区三区| 免费在线观看影片大全网站 | 青青草视频在线视频观看| 热re99久久精品国产66热6| 99国产精品免费福利视频| 观看av在线不卡| 亚洲国产欧美网| tube8黄色片| 欧美在线一区亚洲| 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 你懂的网址亚洲精品在线观看| 少妇的丰满在线观看| 亚洲欧美中文字幕日韩二区| 欧美老熟妇乱子伦牲交| 久久久精品国产亚洲av高清涩受| 色婷婷久久久亚洲欧美| 欧美黄色片欧美黄色片| 大话2 男鬼变身卡| 青青草视频在线视频观看| 亚洲国产成人一精品久久久| 国产伦人伦偷精品视频| 我的亚洲天堂| 日韩制服丝袜自拍偷拍| 99国产精品一区二区蜜桃av | 女性生殖器流出的白浆| 一边亲一边摸免费视频| 中文字幕制服av| 午夜福利在线免费观看网站| 2018国产大陆天天弄谢| 亚洲国产欧美日韩在线播放| 看免费成人av毛片| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久精品电影小说| 国产一卡二卡三卡精品| 精品一区二区三区四区五区乱码 | 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 高清欧美精品videossex| 精品视频人人做人人爽| 久久精品久久久久久噜噜老黄| 女人爽到高潮嗷嗷叫在线视频| 精品视频人人做人人爽| 国产黄色免费在线视频| 亚洲精品av麻豆狂野| av在线app专区| 伊人亚洲综合成人网| 久久国产精品人妻蜜桃| 成人国产一区最新在线观看 | 国产视频一区二区在线看| 国产又爽黄色视频| 欧美精品高潮呻吟av久久| 丝袜喷水一区| 亚洲男人天堂网一区| 亚洲av国产av综合av卡| 久9热在线精品视频| 国产高清videossex| 黄色a级毛片大全视频| 美女福利国产在线| 国产亚洲av片在线观看秒播厂| 成年美女黄网站色视频大全免费| 多毛熟女@视频| 悠悠久久av| 中文字幕另类日韩欧美亚洲嫩草| 国产日韩一区二区三区精品不卡| 亚洲 国产 在线| 性色av乱码一区二区三区2| svipshipincom国产片| 老司机在亚洲福利影院| 岛国毛片在线播放| 亚洲国产欧美在线一区| 国产成人欧美| 大话2 男鬼变身卡| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 麻豆av在线久日| 亚洲精品av麻豆狂野| 精品亚洲成a人片在线观看| 亚洲av欧美aⅴ国产| 看免费av毛片| 国产主播在线观看一区二区 | 99久久人妻综合| 天天操日日干夜夜撸| 校园人妻丝袜中文字幕| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 精品高清国产在线一区| 久久久欧美国产精品| 亚洲人成电影免费在线| 亚洲欧美一区二区三区国产| 老司机影院毛片| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 国产福利在线免费观看视频| 一级毛片女人18水好多 | 日韩av免费高清视频| 亚洲av综合色区一区| 黄频高清免费视频| 久久99热这里只频精品6学生| 涩涩av久久男人的天堂| 免费观看a级毛片全部| 免费在线观看视频国产中文字幕亚洲 | 久久久精品免费免费高清| 欧美成狂野欧美在线观看| 丰满少妇做爰视频| 啦啦啦 在线观看视频| 成年女人毛片免费观看观看9 | 日韩人妻精品一区2区三区| 黄色a级毛片大全视频| videos熟女内射| 汤姆久久久久久久影院中文字幕| 一级毛片我不卡| 国产又色又爽无遮挡免| 中文字幕色久视频| 妹子高潮喷水视频| av网站免费在线观看视频| 少妇猛男粗大的猛烈进出视频| 美女中出高潮动态图| 久9热在线精品视频| 成年人午夜在线观看视频| 在线精品无人区一区二区三| 一边亲一边摸免费视频| 日本91视频免费播放| 青草久久国产| 国产黄色视频一区二区在线观看| 亚洲人成77777在线视频| 国产高清videossex| 人人妻,人人澡人人爽秒播 | 国产老妇伦熟女老妇高清| 久久av网站| 色婷婷av一区二区三区视频| 免费看av在线观看网站| 天天操日日干夜夜撸| 少妇猛男粗大的猛烈进出视频| av视频免费观看在线观看| 只有这里有精品99| 又粗又硬又长又爽又黄的视频| 中文字幕av电影在线播放| 91成人精品电影| 母亲3免费完整高清在线观看| 久久九九热精品免费| 熟女少妇亚洲综合色aaa.| 在线 av 中文字幕| 亚洲欧美色中文字幕在线| 亚洲av电影在线进入| 国产一区二区在线观看av| 久久 成人 亚洲| 建设人人有责人人尽责人人享有的| 久久亚洲国产成人精品v| 欧美黄色淫秽网站| 午夜视频精品福利| 亚洲av国产av综合av卡| 欧美日韩精品网址| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久午夜乱码| 亚洲视频免费观看视频| 一本—道久久a久久精品蜜桃钙片| 成人免费观看视频高清| 各种免费的搞黄视频| 久久久久久久大尺度免费视频| 最近最新中文字幕大全免费视频 | 久久中文字幕一级| 中文字幕高清在线视频| 蜜桃在线观看..| 91麻豆av在线| 久久久国产欧美日韩av| 99热国产这里只有精品6| 精品少妇一区二区三区视频日本电影| 永久免费av网站大全| 王馨瑶露胸无遮挡在线观看| 黄色一级大片看看| 久久99热这里只频精品6学生| 午夜福利一区二区在线看| 老司机午夜十八禁免费视频| 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| 中文字幕精品免费在线观看视频| 久久女婷五月综合色啪小说| 丁香六月欧美| www.av在线官网国产| 国产人伦9x9x在线观看| 国产精品久久久人人做人人爽| 爱豆传媒免费全集在线观看| 男女午夜视频在线观看| 久久精品久久久久久噜噜老黄| 建设人人有责人人尽责人人享有的| 在线看a的网站| 亚洲av片天天在线观看| 国产欧美亚洲国产| 色视频在线一区二区三区| 考比视频在线观看| 欧美国产精品一级二级三级| 久久精品熟女亚洲av麻豆精品| 色婷婷av一区二区三区视频| 乱人伦中国视频| 午夜av观看不卡| 亚洲欧美日韩另类电影网站| 午夜福利在线免费观看网站| 国产精品 欧美亚洲| 欧美日韩视频高清一区二区三区二| 精品久久蜜臀av无| 9热在线视频观看99| 国产在线免费精品| 免费av中文字幕在线| 成年av动漫网址| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 秋霞在线观看毛片| 女性生殖器流出的白浆| 国产国语露脸激情在线看| 午夜激情av网站| 欧美在线黄色| 观看av在线不卡| 高清欧美精品videossex| 蜜桃在线观看..| 国产成人91sexporn| 欧美国产精品va在线观看不卡| 日韩,欧美,国产一区二区三区| 高清av免费在线| 男人爽女人下面视频在线观看| 亚洲久久久国产精品| 女人精品久久久久毛片| 国产视频一区二区在线看| 亚洲视频免费观看视频| 亚洲天堂av无毛| 国产成人精品久久二区二区免费| 久久国产精品男人的天堂亚洲| 欧美日韩成人在线一区二区| 91精品国产国语对白视频| 国产成人系列免费观看| 日韩av在线免费看完整版不卡| 亚洲,一卡二卡三卡| 国产精品麻豆人妻色哟哟久久| 亚洲精品日韩在线中文字幕| 美女福利国产在线| 男女无遮挡免费网站观看| 日本色播在线视频| 9191精品国产免费久久| 亚洲人成网站在线观看播放| 亚洲伊人久久精品综合| 亚洲欧美激情在线| 人体艺术视频欧美日本| 国产一区二区 视频在线| 午夜福利视频在线观看免费| 爱豆传媒免费全集在线观看| 久久国产精品男人的天堂亚洲| 首页视频小说图片口味搜索 | 日本午夜av视频| 亚洲精品国产区一区二| 亚洲一卡2卡3卡4卡5卡精品中文| 三上悠亚av全集在线观看| 亚洲色图 男人天堂 中文字幕| 久久久精品区二区三区| 日本色播在线视频| 伊人久久大香线蕉亚洲五| 国产欧美日韩综合在线一区二区| 国产爽快片一区二区三区| 亚洲天堂av无毛| 国产一级毛片在线| 久久精品久久久久久噜噜老黄| 在线亚洲精品国产二区图片欧美| 国产成人一区二区三区免费视频网站 | 免费在线观看完整版高清| 中国国产av一级| a级片在线免费高清观看视频| 男女高潮啪啪啪动态图| 国产伦理片在线播放av一区| 高潮久久久久久久久久久不卡| 免费在线观看完整版高清| 国产一区二区 视频在线| 尾随美女入室| 亚洲色图综合在线观看| 久久精品人人爽人人爽视色| 一级毛片我不卡| 国产熟女欧美一区二区| 免费日韩欧美在线观看| 天天躁夜夜躁狠狠久久av| 国产黄色视频一区二区在线观看| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美| 日韩伦理黄色片| www.自偷自拍.com| av片东京热男人的天堂| 亚洲国产毛片av蜜桃av| www.精华液| 亚洲人成网站在线观看播放| 国产成人av激情在线播放| 国产欧美日韩精品亚洲av| 亚洲色图综合在线观看| 精品久久久久久久毛片微露脸 | 亚洲精品成人av观看孕妇| 1024视频免费在线观看| 亚洲三区欧美一区| 男人操女人黄网站| 亚洲av在线观看美女高潮| 女人精品久久久久毛片| 精品视频人人做人人爽| 久久午夜综合久久蜜桃| 成年人免费黄色播放视频| 真人做人爱边吃奶动态| 人体艺术视频欧美日本| 中文乱码字字幕精品一区二区三区| 国产女主播在线喷水免费视频网站| 精品福利观看| 欧美日韩成人在线一区二区| 纯流量卡能插随身wifi吗| 亚洲人成电影免费在线| 国产亚洲精品第一综合不卡| 熟女少妇亚洲综合色aaa.| 少妇被粗大的猛进出69影院| 青青草视频在线视频观看| 啦啦啦 在线观看视频| 精品高清国产在线一区| 免费观看av网站的网址| 一级毛片女人18水好多 | www.自偷自拍.com| 亚洲欧美精品自产自拍| 久久99热这里只频精品6学生| 久久国产精品男人的天堂亚洲| 桃花免费在线播放| 激情视频va一区二区三区| 国产免费福利视频在线观看| 精品久久久精品久久久| 啦啦啦 在线观看视频| 欧美少妇被猛烈插入视频| 欧美av亚洲av综合av国产av| 香蕉国产在线看| 我要看黄色一级片免费的| 国产成人欧美在线观看 | 欧美少妇被猛烈插入视频| 欧美激情 高清一区二区三区| 两个人看的免费小视频| av有码第一页| 久久精品亚洲熟妇少妇任你| 日韩人妻精品一区2区三区| 建设人人有责人人尽责人人享有的| 久9热在线精品视频| 天天躁夜夜躁狠狠躁躁| 爱豆传媒免费全集在线观看| 亚洲国产精品成人久久小说| 国产精品久久久久久人妻精品电影 | 777米奇影视久久| 午夜福利一区二区在线看| 久久热在线av| www.av在线官网国产| 91九色精品人成在线观看| 满18在线观看网站| 国产精品国产三级国产专区5o| 国产熟女午夜一区二区三区| 亚洲国产精品国产精品| 一边亲一边摸免费视频| 尾随美女入室| 中文字幕高清在线视频| 久久精品国产亚洲av高清一级| 久久久久国产精品人妻一区二区| 日本av免费视频播放| 18禁观看日本| 久久久久视频综合| 午夜免费男女啪啪视频观看| 亚洲 欧美一区二区三区| 免费高清在线观看日韩| a级毛片黄视频| 国产成人影院久久av| 丝袜在线中文字幕| 99热网站在线观看| 精品人妻在线不人妻| 久久人人爽av亚洲精品天堂| 亚洲人成77777在线视频| 中文乱码字字幕精品一区二区三区| 国产精品国产三级专区第一集| 国产欧美日韩一区二区三区在线| 国产成人免费观看mmmm| av视频免费观看在线观看| 久久99热这里只频精品6学生| 成在线人永久免费视频| 男人爽女人下面视频在线观看| 在线观看免费日韩欧美大片| 韩国精品一区二区三区| 日韩av免费高清视频| 中文字幕人妻丝袜一区二区| 久久精品国产综合久久久| 男女免费视频国产| 免费看av在线观看网站| 最新在线观看一区二区三区 | 一本—道久久a久久精品蜜桃钙片| 午夜福利一区二区在线看| av国产精品久久久久影院| 欧美激情高清一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | 精品久久蜜臀av无| 亚洲国产精品999| 91精品国产国语对白视频| 久久99一区二区三区| 久久久久久免费高清国产稀缺| 国产成人一区二区三区免费视频网站 | 精品免费久久久久久久清纯 | 在线av久久热| 80岁老熟妇乱子伦牲交| 91精品国产国语对白视频| 大型av网站在线播放| 亚洲av综合色区一区| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三 | 欧美日韩av久久| 观看av在线不卡| 天天影视国产精品| 人人妻人人添人人爽欧美一区卜| 少妇裸体淫交视频免费看高清 | 亚洲成人免费av在线播放| 国产高清videossex| 久久久国产精品麻豆| 色婷婷久久久亚洲欧美| 免费观看a级毛片全部| 亚洲国产毛片av蜜桃av| 久久久久久久久免费视频了| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 久久久欧美国产精品| 丝袜美足系列| 亚洲精品日韩在线中文字幕| 精品人妻1区二区| 亚洲精品国产色婷婷电影| 视频区欧美日本亚洲| 欧美日韩精品网址| 国产极品粉嫩免费观看在线| 亚洲精品久久成人aⅴ小说| 亚洲 欧美一区二区三区| 在线看a的网站| 悠悠久久av| 大片电影免费在线观看免费| 国产在线免费精品| 水蜜桃什么品种好| 亚洲国产av影院在线观看| 午夜免费男女啪啪视频观看| 久久精品国产综合久久久| 亚洲精品久久久久久婷婷小说| av天堂在线播放| 久久午夜综合久久蜜桃| 一级毛片黄色毛片免费观看视频| 亚洲av综合色区一区| xxx大片免费视频| 亚洲精品美女久久av网站| 男人爽女人下面视频在线观看| 最黄视频免费看| 欧美黑人精品巨大| 国产成人精品久久二区二区免费| 亚洲av国产av综合av卡| 91成人精品电影| 天堂8中文在线网| 肉色欧美久久久久久久蜜桃| 欧美日韩黄片免| 亚洲综合色网址| 美女高潮到喷水免费观看| 国产精品99久久99久久久不卡| 亚洲欧洲国产日韩| 亚洲精品一二三| 高清欧美精品videossex| 男人操女人黄网站| 一区福利在线观看| 精品卡一卡二卡四卡免费| 最新的欧美精品一区二区| 午夜福利视频在线观看免费| 一级毛片女人18水好多 | 久久久久久久大尺度免费视频| 午夜久久久在线观看| 午夜福利免费观看在线| 麻豆乱淫一区二区| 成年女人毛片免费观看观看9 | 青春草亚洲视频在线观看| 狠狠婷婷综合久久久久久88av| 婷婷成人精品国产| 日韩av免费高清视频| 色94色欧美一区二区| 午夜两性在线视频| 久久久久视频综合| 国产一区二区激情短视频 | 尾随美女入室| 欧美精品啪啪一区二区三区 | 日韩av免费高清视频| 人人妻人人澡人人爽人人夜夜| 国产亚洲av高清不卡| 国产成人免费观看mmmm| 国产欧美日韩精品亚洲av| 欧美精品亚洲一区二区| 一级毛片 在线播放| 老汉色av国产亚洲站长工具| 日韩 亚洲 欧美在线| 七月丁香在线播放| 国产欧美日韩精品亚洲av| 日韩 亚洲 欧美在线| 国产97色在线日韩免费| 亚洲精品美女久久av网站| 亚洲专区国产一区二区| 十分钟在线观看高清视频www| 日本黄色日本黄色录像| 亚洲国产精品成人久久小说| 亚洲伊人久久精品综合| 亚洲精品美女久久久久99蜜臀 | 亚洲人成电影免费在线| 热99久久久久精品小说推荐| 欧美 亚洲 国产 日韩一| 99热国产这里只有精品6| 亚洲精品一二三| 成年人午夜在线观看视频| 极品人妻少妇av视频| 精品人妻熟女毛片av久久网站| 一级a爱视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| www.av在线官网国产| 国产精品国产三级国产专区5o| 国产极品粉嫩免费观看在线| 亚洲欧美色中文字幕在线|