• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elasticity and Thermodynamic Properties of EuS Related to Phase Transition

    2014-07-19 11:18:26QiangLiuFengPeng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年4期

    Qiang Liu,Feng Peng

    College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    Elasticity and Thermodynamic Properties of EuS Related to Phase Transition

    Qiang Liu,Feng Peng?

    College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    First-principles calculations of the crystal structures,phase transition,and elastic properties of EuS have been carried out with the plane-wave pseudopotential density functional theory method.The calculated values are in very good agreement with experimental data as well as some of the existing model calculations.The dependence of the elastic constants, the aggregate elastic modulus,and the elastic anisotropy on pressure have been investigated. Moreover,the variation of the Poisson’s ratio,Debye temperature,and the compressional and shear elastic wave velocities with pressure have been investigated for the f i rst time.Through the quasi-harmonic Debye model,the thermal expansions,heat capacities,Grneisen parameters and Debye temperatures dependence on the temperature and pressure are obtained in the pressure range from 0 GPa to 60 GPa and temperature range from 0 K to 800 K.

    EuS,First-principles,Pressure effect,Thermodynamic properties

    I.INTRODUCTION

    Rare-earth compounds attract considerable experimental and theoretical attention due to their interesting optical,magnetic and electronic properties[1-4]. Especially,europium chalcogenides have received renewed attention because of their technological importance[5-7]and their potential applications in spintronic and spin f i ltering devices[8].Horne et al.used the ab initio self-interaction corrected(SIC)method to discuss the electronic structure of the Eu chalcogenides and pnictides in both the divalent and trivalent states [8].Kunes and Pickett used the full potential linearized augmented planes waves(FP-LAPW)method to study the effective exchange parameters and the corresponding ordering temperatures of the(ferro)magnetic insulating Eu chalcogenides under ambient and elevated pressure conditions[9].Goncharenko et al.studied magnetic interactions of Eu chalcogenides using neutron dif f raction at very high pressures[10].The calculation of the band-structure and the structural stability of the high-pressure phases of Eu chalcogenides have been investigated by Singh et al.using the tight-binding linear muffin-tin orbital method within the atomic sphere approximation(ASA)[11,12].Svane et al.gave the light of pressure-induced valence transitions in rare earth chalcogenides[13].Recently,Rached et al.studied elastic properties of Eu chalcogenides using the fullpotential linear muffin-tin orbital(FP-LMTO)method [14].Temmerman et al.gave a review of pressure induced valence transitions in f-electron systems of Eu chalcogenides calculated with the self-interaction corrected local spin density(SIC-LSD)approximation[15]. Among the europium chalcogenides compounds very little information is available for EuS.In this work,we studied the elastic and the thermodynamic properties of EuS under pressure considering the phase transition. The high pressure phase transition and elastic properties of EuS from B1(NaCl)to B2(CsCl)are investigated in detail.All calculations are performed based on the plane-wave pseudopotential density-function theory (DFT).

    II.CALCULATED DETAILS AND THEORY

    A.Calculated details

    Vanderbilt-type non-local ultrasoft pseudopotentials (USPP)[16]are employed to describe the electron-ion interactions.The effects of exchange-correlation interaction are treated with the generalized gradient approximation(GGA)of Perdew-Burke-Ernzerhof(PBE) [17]considering the spin polarized.In the structure calculation,a plane wave basis set with energy cut-of f680.00 eV is used.Pseudo-atomic calculations are performed for S3s23p4and Eu4f75s25p66s2.For the Brillouin-zone sampling,the 12×12×12 Monkhorst-Pack mesh[18]is adopted.The self-consistent convergence of the total energy is 10-7eV/atom and the maximum force on the atom is 10-4eV/?A.All the total energy electronic structure calculations are implemented through the CASTEP code[19].

    TABLE I The lattice parameter a,bulk moduli B(in GPa), and the elastic constants cij(in GPa)at 0 K and 0 GPa for EuS.

    B.Structure property

    The energy-volume(E-V)curve can be obtained by f i tting the calculated E-Vresults to the Birch-Murnaghan EOS[20]:

    where E0is the equilibrium energy.Pressure P vs.the normalized volume Vnis obtained through the following equation:

    here B00and B0are the pressure derivative of the bulk modulus and zero pressure bulk modulus,respectively.

    To calculate the total energy EBMand the corresponding volume V for both phases,a series of different lattice parameters a are taken to obtain the total energy over a wide volume range from 0.6V0to 1.2V0,where V0is the zero pressure equilibrium primitive cell volume. Through these calculations,we can obtain the equilibrium a(Table I).It is found that a and B are in good agreement with experimental data[7,12]and other theoretical results[8,13,20,21],respectively.The ratio V/V0as a function of the applied pressure together with the experimental result is plotted in Fig.1.Our obtained data are consistent well with the experiment[7, 12].

    The estimation of the zero-temperature transition pressure between B1 and B2 structures of EuS can be obtained from the usual condition of equal enthalpies, in other words,P,at which enthalpy H=E+PV of both

    FIG.1 Variations of the normalized volume V/V0with the applied pressure P for EuS.

    FIG.2 Enthalpy H as a function of pressure P for EuS.

    phases is the same.Figure 2 shows the enthalpy as a function of the pressure for EuS.It indicates that the transition pressure from B1 to B2 is about 22.1 GPa. The datum agrees well with the experimental value of 21.5 GPa from Jayaraman et al.[7]and the calculated result of 21.1 GPa from Singh et al.[13].But it is lower than the value of 27 GPa from Rached et al.[14].

    C.Elasticity

    To calculate the elastic constants under hydrostatic pressures,the non-volume conserving strains are adopted because this method is consistent with our calculated elastic constants using the stress-strain coefficients,which are appropriate for the calculation of the elastic wave velocities.The elastic constants cijkl, with respect to the fi nite strain variables are de fi ned as [22-24]:

    where cijkldenotes the second-order derivatives with respect to the inf i nitesimal strain(Eulerian),and δ is the f i nite strain variable.For EuS(B1 or B2),there are three independent elastic constants,i.e.c11,c12,and c44.In our calculations,for all strains,δ=±0.0018, ±0.003,and±0.0006 are taken to calculate the total energies E for the strained crystal structure,respectively. To make comparison with experimental results under hydrostatic pressure,the elastic constants Cijmust be transformed into the observable cijdef i ned with respect to the f i nite strain variables[23-25].Cijis transformed into cijin the case of hydrostatic pressure P as follows:

    From the independent elastic constants above,the theoretical polycrystalline elastic modulus can be obtained. There are two approximation methods to calculate the polycrystalline modulus,namely the Voigt method[26] and the Reuss method[27].The Voigt GVand Reuss GRshear moduli are given by

    The shear modulus G and bulk modulus B can be estimated by

    The polycrystalline Young’s modulus E,anisotropy factor A,and the Poisson’s ratio σ are then calculated by

    The elastic Debye temperature Θ can be estimated from the average sound velocity vm,by the following equation [28]

    where h is Planck constant,kBis Boltzmann constant, NAis Avogadro number,n is the number of atoms in the molecule,M is the molecular weight,and ρ is the density.vmis approximately calculated from

    where vpand vsare the compressional and shear wave velocities,respectively,which can be obtained from Navier’s equation[29]

    III.RESULTS AND DISCUSSION

    A.Elasticity

    Our calculated cijof the EuS for two phases at zero pressure and zero temperature are listed in Table I.Our result is consistent with the data from Shapira et al. [21],but is inconsistent with the value from Rached et al.[14].In Table II,we present the pressure dependence on the cij,B,and G of EuS at di ff erent pressures. It is shown that c11varies substantially under applied pressure compared with the variations in c12and c44. c11represents elasticity in length.A longitudinal strain produces a change in c11.c12and c44are related to the elasticity in shape,which is a shear constant.A transverse strain causes a change in shape without a change in volume.Therefore,c12and c44are less sensitive to pressure as compared with c11.Moreover,B is sensitive to press as compared with G.

    As it is known,the elastic constants determine the response of the crystal to external forces.They play an important part in determining the strength of the material.The single crystal shear moduli for the{100} plane along the[010]direction and for the{110}plane along the[110]direction are simply given by

    They are listed in Table II together with Young’s modulus E and Eh100i,σ and A under applied pressures.

    For B1 phase,G{100}are always lower than G{110}from 0 GPa to 20 GPa,indicating that it is harder to shear on the{110}plane along the[110]direction than on the{100}plane along the[010]direction;for B2 phase, the result is contrary.G represents the resistance to plastic deformation,while B represents the resistance to fracture[30].B/G of polycrystalline phases is considered.A high(low)B/G value is associated with ductility(brittleness).The critical value which separates ductile and brittle materials is about 1.75.It is interesting to try to understand the microscopic originof this empirical parameter.For both two phases,when P>10 GPa,the calculated values of the B/G(>1.75) increase with pressures,which means that pressure can improve ductility.

    TABLE II The calculated elastic constants cij(in GPa),and aggregate elastic moduli(B,G,E,in GPa),the quotient of bulk to shear modulus B/G,the elastic anisotropic parameter,the Poisson’s ratio σ,the Debye temperature Θ(in K)of the EuS under pressure P(in GPa)at zero temperature.

    FIG.3 The calculated elastic velocities v vs.pressure P at 0 K.

    The Young’s modulus E and Poisson’s ratio σ are important for technological and engineering applications. E is def i ned as the ratio from stress to strain,and is used to provide a measure of the stif f ness of the solid, i.e.,the larger the value of E,the stiffer the material is.v provides more information about the characteristics of the bonding forces than any of the other elastic constants.The v=0.25 and 0.5 are the lower limit and upper limit for central force solids,respectively.In our case,v increases with the applied pressure for both phases(Table II).The obtained v values are very close to the value of 0.30 which indicates that the interatomic forces in the EuS are central forces.

    The elastic anisotropy of crystals has an important implication in engineering science since it is highly correlated with the possibility to induce microcracks in the materials[31].The anisotropy factor was evaluated to provide insight on the elastic anisotropy of the EuS.For a completely isotropic material,the A factor takes the value of 1,while values smaller or greater than unity measure the degree of elastic anisotropy.In the wide range of applied pressure,the obtained anisotropy factors are listed in Table II.One can f i nd that the B1-EuS exhibits low elastic anisotropy at zero pressure and the degree of the anisotropy increases with pressure;for B2-EuS,the degree of the anisotropy decreases with pressure.

    FIG.4 The calculated heat capacity CPof B1 structure of EuS vs.temperature T at ambient pressure P.The dashed line data are from phonon dispersion,and the solid line data are from quasi-harmonic Debye model.

    The obtained compressional,shear and average wave velocities are illustrated in Fig.3.It is shown that the vs,vp,and vmincrease gradually with pressure.However,vpis more sensitive to pressure than vsand vm.

    B.Thermodynamic properties

    Through the quasi-harmonic Debye model,the thermodynamic properties of EuS are obtained.The calculated details can be seen in our recent works[32-35]. To test the validity of quasi-harmonic Debye model,we calculated the phonon dispersion of B1-EuS by the linear response method and obtained the thermodynamic properties from the phonon dispersion.Figure 4 shows that heat capacities curves of B1-EuS vs.temperature from different methods f i t very well.So,the quasiharmonic Debye model is valid in this work.

    FIG.5 Pressure P(a)and temperature T(b)dependence of the isothermal bulk modulus B for EuS.

    FIG.6 Temperature T dependence of the heat capacity CPfor EuS.

    Figure 5 presents the relation of the isothermal bulk modulus as a function of temperature T up to 800 K at P=0,30,and 60 GPa,respectively.At lower pressures, the isothermal bulk modulus is nearly a constant when T<200 K,but it drops remarkably when T>200 K, which are in accordance with the relationships between the ratio V/V0and T as shown in Fig.1.It demonstrates that dramatic volume variation leads to the rapid decreases in the isothermal bulk modulus.One can f i nd that the effect of T on the isothermal bulk modulus is less important than that of P on it.

    The calculated heat capacity CPat constant pressure and heat capacity CVat constant volume with T at different P are shown in Fig.6.There is little difference between CPand CVat low temperatures.However,at high temperature,the CVapproaches to a constant,CPincreases monotonously with the increment of the temperature.The values follow the Debye model at low temperature(CV(T)-T3)and the classical behavior(CV(T)-3R for mono-atomic solids)is found at sufficiently high temperatures,obeying Dulong and Petit’s Rule.From Fig.6,one can also see that the heat capacity increases with the temperatures at the same pressure and decreases with the pressures at the same temperature,and the inf l uences of the temperature on the heat capacity are much more significant than that of the pressure on it.

    FIG.7VariationoftheDebyetemperatureΘand Gr¨uneisen parameter γ with pressure P.

    FIG.8 Temperature T(a)and pressure P(b)dependence of the thermal expansion coefficient α for EuS.

    The Debye temperature Θ is a fundamental parameter of a material which is link to many physical properties such as speci fic heat,elastic constants,and melting point[36].The Debye temperature and the Gru¨neisen parameter at various temperatures and di ff erent pressures are presented in Fig.7.Our calculated Debye temperature at T=0 K is 278.51 J/(mol K),which is in agreement with the results of 274.04 J/(mol K) from Eq.(12)and 276 J/(mol K)from Ref.[21]and 280 J/(mol K)from Ref.[37].From Fig.7,one can fi nd:(i)When the temperature keeps constant,the Debye temperature increases almost linearly with applied pressures;while the Gru¨neisen parameter decreases smoothly with pressures.(ii)When the pressure keeps constant,the Debye temperature decreases with the increasing temperatures;while the Gru¨neisen parameter increases with the increasing temperatures.In virtue of the fact that the e ff ect of increasing pressure on the material is the same as decreasing temperature of the material.(iii)The Debye temperature at the temperature of 800 K is lower than that at 300 K,which shows that the vibration frequency of the particles in EuS changes with the pressures and the temperatures.

    The thermal expansion coefficient α with T and P for EuS is presented in Fig.8.From Fig.8(a),α increaseswith T3at low temperature and gradually approaches a linear increase at high temperatures and then the increasing trend becomes gentler.The effects of pressure on α are very small at low temperatures;the effects are increasingly obvious as the temperature increases. As P increases,α decreases rapidly and the effects of T become less and less pronounced,resulting in linear high-temperature behaviour.It is noteworthy that the high-temperature dependence of α is not linear at low pressures(0 GPa);this is an indication of the inadequacy of the quasi-harmonic approximation at high temperature and low pressure.It can be found that α converges to a constant value at high temperature and pressure.However,from Fig.8(b),as the pressure increases,α decreases almost exponentially,and the higher the temperature is,the faster α decreases. It shows that the effect of temperature is much greater than that of pressure on α.

    IV.CONCLUSION

    The structural properties and phase transition and elastic constants of EuS at high pressure are computed by the ultrasoft pseudopotentials within the generalized gradient approximation in the frame of density functional theory.We carry out total energy calculations over a wide range of volume from 0.6V0to 1.2V0,and obtain the equilibrium ratio of the normalized volume V/V0for a given volume.The obtained pressure dependence on the normalized volume is in excellent agreement with the experimental result.

    The aggregate elastic modulus(B,G,E),Poisson’s ratio and the shear anisotropic factor A of EuS at high pressure from 0 GPa to 60 GPa considering phase transition are also calculated.An analysis of the calculated parameters reveals the anisotropy in EuS.When P>10 GPa,the calculated values of the B/G(>1.75) increase with pressure,which indicates that pressure can improve ductility.The obtained Poisson’s ratios are very close to the value of 0.30,which means that the interatomic forces in the EuS are central forces.The compressional and shear wave velocities,and the Debye temperature are successfully obtained.The experimental values of the sound velocity,Poisson ratio,and Debye temperature under high pressure are not available for comparison yet,but considering the case of Refs.[38, 39],our predicted data should be credible.

    The other thermodynamic properties are predicted using the quasi-harmonic Debye model.It is found that the high temperature leads to a smaller adiabatic bulk modulus,a smaller Debye temperature,a larger Gr¨uneisen parameter,a larger heat capacity,and a bigger thermal expansion coefficient at constant pressure. But the high pressure gives birth to a lager isothermal bulk modulus,a larger Debye temperature,a smaller Gr¨uneisen parameter,a smaller heat capacity,and a smaller thermal expansion coefficient at constant temperature.The thermal expansion coefficient and heat capacity at constant volume are shown to converge to a nearly constant value at high pressures and temperatures.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.40804034 and No.11304141),the Natural Science Foundation of the Education Department of Henan Province of China (No.2011B140014),the Program for the Science and Technology Department of Henan Province of China (No.112102310641),and the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.13IRTSTHN020).

    [1]F.J.Ried,L.K.Matsan,J.F.Miller,and R.C.Maines, J.Phys.Chem.Solids 25,969(1964).

    [2]R.Didchenko and F.P.Gortsema,J.Phys.Chem. Solids 24,863(1963).

    [3]R.Akimoto,M.Kobayashi,and T.Suzuki,J.Phys. Soc.Jpn.62,1490(1993).

    [4]I.N.Goncharenko and I.Mirebeau,Europhys.Lett.37, 633(1997).

    [5]C.J.M.Rooymans,Solid State Commun.3,421 (1965).

    [6]A.Chatterjee,A.K.Singh,and A.Jayaraman,Phys. Rev.B 6,2285(1972).

    [7]A.Jayaraman,A.K.Singh,A.Chatterjee,and S.U. Devi,Phys.Rev.B 9,2513(1974).

    [8]M.Horne,P.Strange,W.M.Temmerman,Z.Szotek, A.Svane,and H.Winter,J.Phys.:Condens.Matter 16,5061(2004).

    [9]J.Kunes and W.E.Pickett,Physica B 359,205(2005).

    [10]I.N.Goncharenko and I.Mirebeau,Phys.Rev.Lett. 80,1082(1998).

    [11]D.Singh,M.Rajagopalan,and A.K.Bandyopadhyay, Solid State Commun.112,39(1999).

    [12]D.Singh,M.Rajagopalan,M.Husain,and A.K. Bandyopadhyay,Solid State Commun.115,323(2000).

    [13]A.Svane,P.Strange,W.M.Temmerman,Z.Szotek, H.Winter,and L.Petit,Phys.Stat.Sol.(b)223,105 (2001).

    [14]D.Rached,M.Ameri,M.Rabah,R.Khenata,A. Bouhemadou,N.Benkhettou,and M.D.el Hannani, Phys.Stat.Sol.(b)244,1988(2007).

    [15]W.M.Temmerman,A.Svane,L.Petit,M.L¨uders,P. Strange,and Z.Szotek,Phase Trans.80,415(2007).

    [16]D.Vanderbilt,Phys.Rev.B 41,7892(1990).

    [17]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [18]H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [19]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J. Pickard,P.J.Hasnip,S.J.Clark,and M.C.Payne,J. Phys.:Condens.Matter 14,2717(2002).

    [20]A.Svane,G.Santi,Z.Szotek,W.M.Temmerman,P. Strange,M.Horne,G.Vaitheeswaran,V.Kanchana,L. Petit,and H.Winter,Phys.Stat.Sol.(b)241,3185 (2004).

    [21]Y.Shapira and T.B.Reed,Conf.Proc.5,837(1971).

    [22]J.Wang,J.Li,S.Yip,S.Phillpot,and D.Wolf,Phys. Rev.B 52,12627(1995).

    [23]D.C.Wallace,Thermodynamics of Crystals,New York: John Wiley&Sons,20(1972).

    [24]B.B.Karki,G.J.Ackland,and J.Crain,J.Phys.: Condens.Matter 9,8579(1997).

    [25]T.H.K.Barron and M.L.Klein,Proc.Phys.Soc.85, 523(1965).

    [26]K.Tsubouchi and N.Mikoshiba,IEEE.Trans.Sonics Ultrason.Su-32,634(1985).

    [27]A.Reuss,Z.Angew.Math.Mech.9,49(1929).

    [28]G.V.Sin’ko and N.A.Smirnov,J.Phys.:Condens. Matter 14,6989(2002).

    [29]O.L.Anderson,J.Phys.Chem.Solids 24,909(1963). [30]S.F.Pugh,Philos.Mag.45,823(1954).

    [31]V.Tvergaard and J.W.Hutchinson,J.Am.Ceram. Soc.71,157(1988).

    [32]F.Peng,Q.Liu,H.Z.Fu,and X.D.Yang,Solid State Commun.149,56(2009).

    [33]F.Peng,H.Z.Fu,and X.D.Yang,Solid State Commun.145,91(2008).

    [34]F.Peng,Y.Han,H.Z.Fu,and X.Cheng,Phys.Stat. Sol.(b)245,2743(2008).

    [35]F.Peng,H.Z.Fu,and X.D.Yang,Phys.B 403,2851 (2008).

    [36]P.Ravindran,L.Fast,P.A.Korzhavyi,B.Johansson,J.Wills,and O.Eriksson,J.Appl.Phys.84,4891 (1998).

    [37]E.M.Dudnik,G.V.Lashkarev,Y.B.Paderno,and V. A.Obolonchik,Inorg.Mater.2,833(1966).

    [38]T.Iitaka and T.Ebisuzaki,Phys.Rev.B 64,012103 (2001).

    [39]O.G¨ulseren and R.E.Cohen,Phys.Rev.B 65,064103 (2002).

    ceived on March 16,2014;Accepted on May 8,2014)

    ?Author to whom correspondence should be addressed.E-mail:pengfengscu@gmail.com,Tel.:+86-379-62960015,FAX:+86-379-65526093

    久久精品国产综合久久久| 人人妻人人澡人人爽人人夜夜| 最近2019中文字幕mv第一页| 亚洲免费av在线视频| 18在线观看网站| 波野结衣二区三区在线| 免费观看av网站的网址| 美女大奶头黄色视频| 一级毛片 在线播放| 91精品伊人久久大香线蕉| 国产一级毛片在线| 免费在线观看完整版高清| 天天操日日干夜夜撸| 精品久久久久久电影网| av电影中文网址| 国产爽快片一区二区三区| 亚洲第一青青草原| 超色免费av| 国产男女内射视频| 亚洲欧美中文字幕日韩二区| 80岁老熟妇乱子伦牲交| 汤姆久久久久久久影院中文字幕| 欧美少妇被猛烈插入视频| 色婷婷久久久亚洲欧美| 国产xxxxx性猛交| 欧美日韩一区二区视频在线观看视频在线| 成人国产av品久久久| 最近2019中文字幕mv第一页| 国产成人午夜福利电影在线观看| 男女边摸边吃奶| 成人三级做爰电影| 老司机亚洲免费影院| 国产野战对白在线观看| 99国产综合亚洲精品| 日韩不卡一区二区三区视频在线| 一二三四中文在线观看免费高清| 久久久久久久国产电影| 亚洲人成77777在线视频| 最黄视频免费看| xxxhd国产人妻xxx| 国产精品久久久久久精品古装| 午夜免费男女啪啪视频观看| 大香蕉久久成人网| 亚洲精品久久午夜乱码| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线进入| 欧美久久黑人一区二区| 男女高潮啪啪啪动态图| 韩国高清视频一区二区三区| 久久久欧美国产精品| 老鸭窝网址在线观看| 一级片'在线观看视频| 日本欧美国产在线视频| 午夜福利一区二区在线看| 美女大奶头黄色视频| √禁漫天堂资源中文www| 欧美日韩av久久| 亚洲第一av免费看| 国产免费福利视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 又黄又粗又硬又大视频| 精品视频人人做人人爽| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| av不卡在线播放| 丝袜喷水一区| 人成视频在线观看免费观看| 国产精品一区二区在线不卡| 老司机靠b影院| 亚洲男人天堂网一区| 免费人妻精品一区二区三区视频| 国产一区二区 视频在线| 在线观看www视频免费| 免费在线观看完整版高清| 两性夫妻黄色片| 黄色怎么调成土黄色| 国产成人欧美| 久久精品人人爽人人爽视色| 各种免费的搞黄视频| 女性被躁到高潮视频| 免费少妇av软件| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区四区五区乱码 | 老司机影院成人| 亚洲第一av免费看| 亚洲精品视频女| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 成人亚洲欧美一区二区av| 操美女的视频在线观看| 我要看黄色一级片免费的| 国产精品麻豆人妻色哟哟久久| 男女之事视频高清在线观看 | 久久热在线av| 黄色 视频免费看| 国产在线免费精品| 亚洲精品乱久久久久久| 久热爱精品视频在线9| 亚洲人成网站在线观看播放| 波多野结衣一区麻豆| 大片电影免费在线观看免费| 国产成人免费无遮挡视频| 国产成人a∨麻豆精品| 热re99久久国产66热| 日本欧美国产在线视频| 18禁动态无遮挡网站| 国产精品香港三级国产av潘金莲 | 日韩 欧美 亚洲 中文字幕| av视频免费观看在线观看| 香蕉丝袜av| 免费在线观看黄色视频的| 伦理电影免费视频| 校园人妻丝袜中文字幕| 午夜91福利影院| 欧美成人午夜精品| 欧美日韩亚洲高清精品| 丝瓜视频免费看黄片| 亚洲第一青青草原| 黄频高清免费视频| 观看av在线不卡| 国产精品欧美亚洲77777| netflix在线观看网站| 热re99久久精品国产66热6| 亚洲国产毛片av蜜桃av| 大香蕉久久网| 母亲3免费完整高清在线观看| 日韩一卡2卡3卡4卡2021年| 色综合欧美亚洲国产小说| 夫妻午夜视频| 久久 成人 亚洲| 99久久99久久久精品蜜桃| 超碰97精品在线观看| 国产一区有黄有色的免费视频| 日本黄色日本黄色录像| 天天操日日干夜夜撸| 日韩制服骚丝袜av| 亚洲av电影在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 亚洲欧美激情在线| 国产成人系列免费观看| 国产xxxxx性猛交| 欧美久久黑人一区二区| 女性被躁到高潮视频| 丝瓜视频免费看黄片| 欧美黑人欧美精品刺激| 亚洲欧美一区二区三区黑人| 如日韩欧美国产精品一区二区三区| xxx大片免费视频| 9色porny在线观看| 丝袜脚勾引网站| 超碰97精品在线观看| h视频一区二区三区| 国产成人精品在线电影| 操出白浆在线播放| 男人爽女人下面视频在线观看| av在线老鸭窝| 啦啦啦 在线观看视频| 成年人免费黄色播放视频| 日韩一本色道免费dvd| 91国产中文字幕| 中国三级夫妇交换| 黑人欧美特级aaaaaa片| 99久久99久久久精品蜜桃| 女人被躁到高潮嗷嗷叫费观| 精品一区在线观看国产| 中文字幕精品免费在线观看视频| 晚上一个人看的免费电影| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线免费精品| 满18在线观看网站| 性少妇av在线| 啦啦啦中文免费视频观看日本| av不卡在线播放| 老熟女久久久| av有码第一页| 婷婷色综合大香蕉| 久久久久久久久免费视频了| 亚洲欧美一区二区三区国产| 丝袜喷水一区| 欧美日本中文国产一区发布| 久久99精品国语久久久| 男女边吃奶边做爰视频| 免费在线观看视频国产中文字幕亚洲 | 天天操日日干夜夜撸| 青春草亚洲视频在线观看| 国产精品一区二区精品视频观看| 无遮挡黄片免费观看| 久久久欧美国产精品| 国产av精品麻豆| 最黄视频免费看| 亚洲精品乱久久久久久| 国产在视频线精品| 建设人人有责人人尽责人人享有的| 国产又爽黄色视频| 久久人妻熟女aⅴ| 久久久精品国产亚洲av高清涩受| 久久99热这里只频精品6学生| 欧美日韩av久久| 一级爰片在线观看| 国产成人精品福利久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人手机| 亚洲,欧美精品.| 久久久精品国产亚洲av高清涩受| 国产精品免费视频内射| 香蕉丝袜av| 国产精品女同一区二区软件| 久久久久久人人人人人| 亚洲国产看品久久| 老司机影院毛片| 日本色播在线视频| 欧美日韩亚洲国产一区二区在线观看 | 巨乳人妻的诱惑在线观看| 中文字幕人妻丝袜一区二区 | 免费不卡黄色视频| 在线观看国产h片| 国产在视频线精品| 国产精品久久久久久人妻精品电影 | 黄色视频不卡| 国产免费现黄频在线看| 哪个播放器可以免费观看大片| 欧美中文综合在线视频| 精品少妇久久久久久888优播| 啦啦啦啦在线视频资源| 欧美黑人精品巨大| 一级片免费观看大全| 啦啦啦视频在线资源免费观看| 欧美在线黄色| 成人国产麻豆网| 97精品久久久久久久久久精品| 亚洲av日韩精品久久久久久密 | 久久精品久久精品一区二区三区| 午夜福利一区二区在线看| 菩萨蛮人人尽说江南好唐韦庄| 少妇人妻精品综合一区二区| 男女之事视频高清在线观看 | 老司机亚洲免费影院| 欧美日本中文国产一区发布| 国产日韩一区二区三区精品不卡| 久久婷婷青草| 亚洲精品乱久久久久久| 国产精品蜜桃在线观看| 丝袜人妻中文字幕| 97人妻天天添夜夜摸| 免费高清在线观看日韩| 啦啦啦在线免费观看视频4| 亚洲精品久久成人aⅴ小说| 精品国产一区二区久久| 国产精品久久久久久精品古装| 国产女主播在线喷水免费视频网站| 美女福利国产在线| 不卡视频在线观看欧美| 亚洲情色 制服丝袜| av在线老鸭窝| 操美女的视频在线观看| 国产爽快片一区二区三区| 日韩大码丰满熟妇| 男人爽女人下面视频在线观看| 久久久国产精品麻豆| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品在线美女| 欧美亚洲 丝袜 人妻 在线| 夜夜骑夜夜射夜夜干| 国产在线视频一区二区| 综合色丁香网| 两个人免费观看高清视频| 性少妇av在线| 老熟女久久久| 成人国产麻豆网| 丰满饥渴人妻一区二区三| 最近最新中文字幕大全免费视频 | 涩涩av久久男人的天堂| av免费观看日本| 少妇 在线观看| 成年美女黄网站色视频大全免费| 男男h啪啪无遮挡| 久久亚洲国产成人精品v| 欧美日韩亚洲国产一区二区在线观看 | 免费看av在线观看网站| 亚洲精品日韩在线中文字幕| 日韩 亚洲 欧美在线| 亚洲第一区二区三区不卡| av卡一久久| 免费在线观看完整版高清| 国产精品免费大片| 搡老岳熟女国产| 精品久久久久久电影网| 亚洲图色成人| 人人妻人人澡人人看| 性色av一级| 久久99精品国语久久久| 中文字幕色久视频| 女人高潮潮喷娇喘18禁视频| 日韩伦理黄色片| 少妇 在线观看| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 九草在线视频观看| 亚洲欧洲日产国产| 日韩欧美一区视频在线观看| xxx大片免费视频| 十八禁高潮呻吟视频| 最黄视频免费看| 性色av一级| 亚洲精品视频女| a级毛片黄视频| 免费观看人在逋| 丁香六月欧美| 成年人免费黄色播放视频| 中国国产av一级| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 久久久精品免费免费高清| 18禁裸乳无遮挡动漫免费视频| 九九爱精品视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 如何舔出高潮| 成人黄色视频免费在线看| 最近2019中文字幕mv第一页| 亚洲激情五月婷婷啪啪| 精品少妇一区二区三区视频日本电影 | 精品午夜福利在线看| 国产乱人偷精品视频| 久久久久精品久久久久真实原创| 久久人人97超碰香蕉20202| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 这个男人来自地球电影免费观看 | 69精品国产乱码久久久| 久久久久久人人人人人| 久久久久精品久久久久真实原创| 男人舔女人的私密视频| 操出白浆在线播放| 免费黄网站久久成人精品| 观看av在线不卡| 亚洲精品中文字幕在线视频| 国产黄频视频在线观看| 一区二区三区激情视频| 久久天躁狠狠躁夜夜2o2o | avwww免费| 亚洲成国产人片在线观看| av线在线观看网站| 在线观看免费午夜福利视频| 亚洲国产欧美日韩在线播放| 日韩伦理黄色片| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 999久久久国产精品视频| 婷婷色综合大香蕉| 伊人久久大香线蕉亚洲五| 国产欧美日韩综合在线一区二区| www.自偷自拍.com| 国产成人91sexporn| 18禁观看日本| 少妇人妻久久综合中文| 极品少妇高潮喷水抽搐| 亚洲成国产人片在线观看| 无遮挡黄片免费观看| 亚洲免费av在线视频| 国产日韩欧美亚洲二区| 狂野欧美激情性xxxx| 国产日韩欧美亚洲二区| 大码成人一级视频| 一区二区日韩欧美中文字幕| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区 | 99re6热这里在线精品视频| 亚洲一区二区三区欧美精品| 成人免费观看视频高清| 国产精品一国产av| 夜夜骑夜夜射夜夜干| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久电影网| 九色亚洲精品在线播放| 欧美人与善性xxx| 精品国产一区二区久久| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频| 久久久国产一区二区| 日韩视频在线欧美| 亚洲国产中文字幕在线视频| 亚洲欧美成人精品一区二区| 久久99热这里只频精品6学生| 不卡视频在线观看欧美| 亚洲成人手机| 黄频高清免费视频| 午夜激情av网站| 视频在线观看一区二区三区| 免费看av在线观看网站| 成人国产麻豆网| 亚洲伊人色综图| 亚洲国产av新网站| 在线观看一区二区三区激情| 日韩av免费高清视频| 考比视频在线观看| 国产成人av激情在线播放| 久久久久精品人妻al黑| 精品卡一卡二卡四卡免费| 国产成人精品在线电影| 亚洲精品国产av成人精品| 成年美女黄网站色视频大全免费| 九色亚洲精品在线播放| 亚洲美女黄色视频免费看| 国产成人欧美| 日韩一卡2卡3卡4卡2021年| 无遮挡黄片免费观看| 亚洲国产欧美在线一区| 在线观看一区二区三区激情| 激情五月婷婷亚洲| 国产探花极品一区二区| 卡戴珊不雅视频在线播放| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| 叶爱在线成人免费视频播放| 下体分泌物呈黄色| 国产精品成人在线| 丝瓜视频免费看黄片| 最近最新中文字幕免费大全7| 日韩视频在线欧美| 成人18禁高潮啪啪吃奶动态图| 免费在线观看完整版高清| 久久青草综合色| 在线天堂中文资源库| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 99久国产av精品国产电影| 母亲3免费完整高清在线观看| 一边摸一边做爽爽视频免费| 一区在线观看完整版| 丝瓜视频免费看黄片| 久久久久视频综合| 80岁老熟妇乱子伦牲交| 看免费av毛片| 欧美日韩亚洲综合一区二区三区_| 女性被躁到高潮视频| 视频在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 赤兔流量卡办理| 久久av网站| 黄片播放在线免费| 国产毛片在线视频| 亚洲欧洲精品一区二区精品久久久 | 国产成人av激情在线播放| 国产精品麻豆人妻色哟哟久久| 欧美日韩一级在线毛片| 欧美日韩精品网址| 叶爱在线成人免费视频播放| 欧美久久黑人一区二区| 欧美变态另类bdsm刘玥| 精品午夜福利在线看| 九九爱精品视频在线观看| 日本色播在线视频| 黄网站色视频无遮挡免费观看| 日韩av不卡免费在线播放| 欧美国产精品va在线观看不卡| 最近中文字幕2019免费版| av卡一久久| 19禁男女啪啪无遮挡网站| 9191精品国产免费久久| 国产一区二区激情短视频 | 老司机影院毛片| 丰满迷人的少妇在线观看| 赤兔流量卡办理| 国产成人啪精品午夜网站| 成年动漫av网址| 可以免费在线观看a视频的电影网站 | 永久免费av网站大全| 侵犯人妻中文字幕一二三四区| 日本午夜av视频| 在线观看人妻少妇| 夫妻午夜视频| 国产成人精品福利久久| 免费日韩欧美在线观看| 91国产中文字幕| 国产深夜福利视频在线观看| 美女扒开内裤让男人捅视频| 捣出白浆h1v1| 日本欧美国产在线视频| 黄片无遮挡物在线观看| 九九爱精品视频在线观看| 中文精品一卡2卡3卡4更新| 国产伦理片在线播放av一区| 久久精品国产综合久久久| 男的添女的下面高潮视频| 国产一级毛片在线| 国产一区亚洲一区在线观看| 亚洲国产精品999| 成人18禁高潮啪啪吃奶动态图| 免费看不卡的av| 天堂8中文在线网| 亚洲中文av在线| 亚洲成人手机| 色94色欧美一区二区| 日日摸夜夜添夜夜爱| 久久久久精品人妻al黑| 校园人妻丝袜中文字幕| 国产亚洲av高清不卡| 国产欧美亚洲国产| 观看美女的网站| 久久精品国产亚洲av涩爱| 日本av手机在线免费观看| 国产精品二区激情视频| 午夜免费鲁丝| 国产在线免费精品| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 亚洲色图综合在线观看| 日本黄色日本黄色录像| 国产99久久九九免费精品| 18禁国产床啪视频网站| 国产精品免费大片| 国产xxxxx性猛交| 爱豆传媒免费全集在线观看| 国产亚洲av片在线观看秒播厂| 亚洲一级一片aⅴ在线观看| 精品少妇久久久久久888优播| 亚洲精品国产av蜜桃| 亚洲美女黄色视频免费看| 国产亚洲一区二区精品| 国产精品 国内视频| www日本在线高清视频| 精品国产露脸久久av麻豆| 精品少妇内射三级| 伦理电影大哥的女人| 久久97久久精品| 性高湖久久久久久久久免费观看| 啦啦啦视频在线资源免费观看| 性高湖久久久久久久久免费观看| 嫩草影院入口| 香蕉丝袜av| 久久久久网色| 男女边摸边吃奶| 在线观看www视频免费| 欧美日韩福利视频一区二区| 一区福利在线观看| 美女福利国产在线| 午夜日本视频在线| 国产日韩欧美亚洲二区| 黑人欧美特级aaaaaa片| 欧美xxⅹ黑人| 女的被弄到高潮叫床怎么办| 日本色播在线视频| 亚洲专区中文字幕在线 | 一级,二级,三级黄色视频| 女人爽到高潮嗷嗷叫在线视频| 夫妻性生交免费视频一级片| 色播在线永久视频| 色网站视频免费| 在现免费观看毛片| 久久免费观看电影| 国产精品一二三区在线看| 免费观看a级毛片全部| 日韩制服丝袜自拍偷拍| 操美女的视频在线观看| 午夜影院在线不卡| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 成人三级做爰电影| 国产精品.久久久| 欧美 亚洲 国产 日韩一| 欧美在线一区亚洲| 性色av一级| 国产精品人妻久久久影院| 看免费成人av毛片| 亚洲欧美精品综合一区二区三区| 视频区图区小说| 热99久久久久精品小说推荐| 国产在视频线精品| av免费观看日本| 一区二区日韩欧美中文字幕| av国产久精品久网站免费入址| 亚洲精品,欧美精品| 日本欧美视频一区| 最近中文字幕高清免费大全6| 男的添女的下面高潮视频| 亚洲伊人色综图| 黑人欧美特级aaaaaa片| 国产成人精品久久二区二区91 | 18在线观看网站| 国产亚洲av片在线观看秒播厂| 午夜免费鲁丝| 老鸭窝网址在线观看| 精品人妻一区二区三区麻豆| 人人妻人人添人人爽欧美一区卜| 男的添女的下面高潮视频| 国产乱人偷精品视频| 国产成人av激情在线播放| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品一区三区| 久久99一区二区三区| 乱人伦中国视频| 人人澡人人妻人| 精品福利永久在线观看| 黑人巨大精品欧美一区二区蜜桃| 两个人看的免费小视频| 天天操日日干夜夜撸| 女人高潮潮喷娇喘18禁视频| xxxhd国产人妻xxx| 亚洲激情五月婷婷啪啪| 欧美av亚洲av综合av国产av | 欧美精品一区二区大全| 韩国精品一区二区三区| 久久人人爽av亚洲精品天堂| 国产福利在线免费观看视频| 亚洲图色成人| 天堂8中文在线网| 天天躁夜夜躁狠狠久久av| 一个人免费看片子| 黄色毛片三级朝国网站| 久久免费观看电影| 国产成人系列免费观看|