• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inf l uence of Ammonium Polyphosphate on Thermal Decomposition of Reconstituted Tobacco and CO Evolution

    2014-07-18 11:51:52ShaolinGeShikeSheYingXuMinNingChenghuiWangZhengfengTianShunZhouLanHuangZhaoZhangLiusiSheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Shao-lin Ge,Shi-ke She,Ying-o Xu,Min Ning?,Cheng-hui Wang,Zheng-feng Tian, Shun Zhou,Lan Huang,Zhao Zhang,Liu-si Sheng

    a.National Synchrotron Radiation Laboratory,School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230029,China

    b.Research and Development Centre,China Tobacco Anhui Industrial Co.,Ltd.,Hefei 230088,China (Dated:Received on December 4,2013;Accepted on January 10,2014)

    Inf l uence of Ammonium Polyphosphate on Thermal Decomposition of Reconstituted Tobacco and CO Evolution

    Shao-lin Gea,b,Shi-ke Sheb,Ying-bo Xub,Min Ningb?,Cheng-hui Wangb,Zheng-feng Tianb, Shun Zhoub,Lan Huangb,Zhao Zhangb,Liu-si Shenga?

    a.National Synchrotron Radiation Laboratory,School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230029,China

    b.Research and Development Centre,China Tobacco Anhui Industrial Co.,Ltd.,Hefei 230088,China (Dated:Received on December 4,2013;Accepted on January 10,2014)

    The thermal behaviors and burning characteristics of reconstituted tobacco(RT)are strongly related with evolved gaseous products.The ef f ect of ammonium polyphosphate(APP)as an additive of RT on the pyrolysis behavior and CO evolution was studied,emphasizing the role of heating velocity in reducing CO delivery of the mainstream smoke by APP. Thermogravimetric analysis(TGA)was employed to investigate the inf l uence of APP on RT thermal behavior.Slow and f l ash pyrolysis of RT were compared to discuss the role of heating rate in decreasing CO by APP.TGA results demonstrated that,in dependence on APP concentration,APP inf l uenced exothermal amount and weight loss rate during RT thermal decomposition,promoted the formation of char and retarded the thermal decomposition of RT.In addition,APP had a considerable inf l uence on the evolution of gaseous products during thermal decomposition of RT.Both CO delivery per cigarette and that per puf f in the smoking process were signif i cantly reduced in dependence on APP content in RT. Comparative analysis of CO evolution patterns in the f l ash and slow pyrolysis elucidated that heating rate played a key role in decreasing CO evolution by APP.The results suggest that APP is a potential burning additive for controlling CO delivery in mainstream smoke of RT.

    Thermal decomposition,Reconstituted tobacco,Ammonium polyphosphate, CO

    I.INTRODUCTION

    Reconstituted tobacco(RT)is used to improve smoke chemistry and taste quality,and serves as a utilization of tobacco dust discarded in factories for cost reduction. Introduction of RT in a cigarette leads to a reduction of benzo[a]pyrene,nicotine,phenols,and polyaromatic hydrocarbons in the smoke particulate matter[1-3]. Due to higher level of CO in mainstream smoke of RT [1],CO delivery in mainstream smoke of cigarette is rarely inf l uenced by RT.There is a growing interest in reducing CO delivery of RT.

    During the combustion processes of tobacco,CO is formed from the thermal decomposition,tobacco reaction with atmospheric oxygen,and the secondary reaction of primary products such as carbon dioxide and water[4].The contributions of pyrolysis and combustion to the formation of CO are found to be approximately 1/3 and 2/3,respectively[5].Many chemical burning additives,such as potassium organic salts[6], nano-sized Fe2O3[7],and mesoporous MCM-41 materials[8],were added to cigarette to modify the thermal behavior,burning characteristics and reduce CO in smoke.However,to our knowledge,there is little information on the change of thermal behavior of RT by chemical burning additives and subsequent inf l uence on evolved gas.

    Ammonium-containing phosphates have commonly been used in the manufacture of RT and other processed tobaccos for f l avoring,process conditioning and reduction of harshness and irritation[9].It is noteworthy that ammonium-containing phosphate can also be used as f l ame retardants to modify thermal behaviors of biomass and evolution patterns of pyrolysis gaseous products[10-12].In our previous work,it has been demonstrated that urea phosphate can modify the thermal behaviors and burning characteristics of RT,and decrease CO level in smoke[13].Recently we found that ammonium polyphosphate(APP)modif i ed thermal degradation and combustion behaviors of RT[14]. In this work,we pay main attention to determining whether CO delivery in mainstream smoke of RT varies in dependence on APP concentration and discussing the mechanism of CO removal by APP.

    II.EXPERIMENTS

    A.Materials

    RT was produced by a paper making process[15]. The samples were collected from a commercial RT factory in China.APP with an average degree of polymerization n>1000 was provided by Hangzhou JLS Flame Retardants Chemical Corporation,China.

    B.Sample preparation

    Aqueous suspensions of APP(60 mL)were sprayed on 400 g samples of the cut RT,which was designed to provide the controlled APP contents in the samples between 2.5%and 10%(dry sample basis).The control sample was sprayed with 60 mL of water.The samples were then dried for about 20 min at 45?C.Samples were grounded to pass through an 80 mesh screen to provide increased homogeneity for comparative purposes,prior to pyrolysis experiments.For analytical experiments of mainstream smoke,the samples were conditioned and made sample into a series of cigarette with identical design features.After conditioning at 22?C,60%R.H., each sample was selected by weight to keep the fractional volume of the cigarettes constant.

    C.Measurements

    1.Thermogravimetry and di ff erential scanning calorimetry

    RT samples were subjected to non-isothermal thermogravimetric analysis(TGA)using a Netzsch STA 449C TG/DSC.Samples of approximate 20 mg were placed in a standard aluminum pan and heated at a rate of 20?C/min,with temperature varying from 40?C to 1000?C.All tests were carried out in the atmosphere of 10%oxygen in nitrogen with a gas fl ow rate of 100 mL/min.Procured α-Al2O3was used as the reference material.

    2.TG-FTIR analysis

    The TG-FTIR instrument consists of a thermogravimetric analyzer(Netzsch,STA 449C)coupled with a Fourier-transforminfrared(FTIR)spectrometer (Thermo Scienti fi c,6700 FT-IR,Nicolet Instrument Co.,USA)by a thermogravimetric analysis interface (Nicolet Instrument Co.,USA).The pyrolysis conditions of TG-FTIR analysis were identical with that of TG-DSC.The lines that transferred the evolved gases from the TGA to the FTIR and the IR cell were maintained at 225 and 230?C,respectively.The FTIR was operated in the continuous scan mode covering 4000-500 cm-1at a resolution of 4 cm-1for the analysis of evolved gases.

    FIG.1 Ef f ect of APP on TG and DTG curves of RT.TPrepresents temperature at the maximum decomposition rate of RT.

    3.Flash pyrolysis-FTIR analysis

    Due to the very fast heating rate[16], fl ash pyrolysis(FPY)of RT was performed to simulate the heat rate during cigarette puffing.The experimental pyrolysis system and pyrolysis procedure was similar to that described previously[13].Temperatures up to 950?C were generated when the cigarette was pu ff ed [4],therefore 950?C,mimicking the temperature inside the cigarette burning zone,was set to investigate the in fl uence on CO.When the pyrolysis conditions in the tube reached the desired value,about 60 mg sample placed in the quartz boat was rapidly pushed to the fl at-temperature zone by the step-pushing pod,and the FTIR,operation parameters identical with that of TGFTIR analysis,was immediately operated to analyze evolved gases.The residence time was 5 min.

    4.Cigarette smoking

    A Borgwaldt RM20 machine was employed for cigarette smoking following International Standard (ISO)recommendations[17-19].The vapor phase of mainstream smoke was channeled into a polyethylene bag connected to a non-dispersive infrared CO analyzer for the measurement of CO in the mainstream smoke [20].

    III.RESULTS AND DISCUSSION

    A.Ef f ects of APP on TG and DTG curves of RT

    TG and DTG of RT treated with varying concentrations of APP are presented in Fig.1.The temperature of the maximum weight loss rate(TP)of every peak was obtained from the DTG curve.The midpoint temperature of the degradation(T-50%)and the solid residue left at 1000?C were obtained from theTG curve.The thermal decomposition characteristic parameters are listed in Table I.

    TABLE I Thermal decomposition characteristics of untreated and APR treated RT?.

    As shown in Fig.1,the typical thermal degradation process of RT could be divided into f i ve stages,which was consistent with our previous work[13].The f i rst stage took place in the temperature range of 40-145?C with a light weight loss of 5.5%,due to the loss of absorbed water and volatile species.The other four stages occured between 145 and 725?C corresponding to the four peaks in the DTG curve at 265.9,307.8,410.8, and 669.6?C,respectively.The four stages may be attributed to the thermal decomposition of cellulose,the combustion of the residual char,and the thermal decomposition of CaCO3and other salts.

    The thermal oxidative decomposition of RT treated with APP showes some similarities but also several dif f erences form that of untreated RT(see Fig.1 and Table I).The illegible low peak,around 266?C,gradually disappeared with the increase of APP addition. The temperature of the f i rst strong peak in DTG curve(TP2)varied independently APP concentration (Table I),but corresponding maximum weight loss rate (WLRmax)gradually decreased with the addition of UP(Fig.1).In dependence on APP concentration,the temperature of the second strong peak(TP3)increased rapidly and corresponding WLRmax declined.Furthermore,both the value of T-50%and residual mass at 1000?C signif i cantly increased with APP concentration.These results imply that APP improves the thermal stability of RTS,enhances char formation and hinders the combustion of residue char.The high efficiency of phosphorus f i re-retardants has been suggested to be the result of acidic degradation products which then promote the formation of non-porous insulating char [21].

    B.Ef f ect of APP on DSC curves of the RT sheet

    Dif f erential scanning calorimetry(DSC)results with the inf l uence of APP on the pyrolysis of RT are shown in Fig.2.APP had considerable inf l uence on the two strong exothermic peaks of RT,especially the secondary exothermic peak.The secondary exothermic peak,attributed to the combustion of the residual char,gradu-ally shrinked with the increase of APP content in RT, although the peak in the DSC curve was not quantitative(Fig.2).The result f i ts the experimental data of TG and DTG,conf i rming APP inhibits the combustion of char.Moreover,the temperature at the end of combustion of residue char became progressively higher with the increase of APP addition(Fig.2).Therefore,it can be said that the addition of APP af f ected the oxidation of chars.The result further conf i rmed the f i re retardant performance of APP.

    TABLE II Inf l uence of APP on CO delivery in mainstream smoke of RT.

    C.Inf l uence of APP addition on CO in mainstream smoke of RT

    CO in cigarette smoke is mainly formed by thermal decomposition of tobacco and reaction of tobacco with atmospheric oxygen[22].CO delivery in mainstream smoke of RT is studied to investigate the role of APP treatment in reduction of CO.As shown in Table II,APP treatment signif i cantly inf l uences the CO level in mainstream smoke.2.5%and 5.0%APP reduced 22.68%and 32.17%CO content per cigarette respectively(RT sample added by 10.0%APP selfextinguished and CO delivery could not be determined). The reduction rate of CO per cigarette in mainstream smoke was proportional to the APP content in RT. What’s more important,the reduction rate of CO per puf fby APP was signif i cantly higher than that of CO per cigarette,for example 5.0%APP treatment reduced 58.30%CO content per puf f.Therefore APP is a potential burning additive to reduce CO delivery in main-stream smoke of RT.

    FIG.2 Ef f ect of APP addition on DSC curves of RT.

    FIG.4 The 3D surface graph for the FTIR spectra of the evolved gases produced by the pyrolysis of reconstituted tobacco.

    FIG.3 The inf l uence of APP on the Gram-Schmidt curves of the total FTIR absorbance intensity of evolved gases versus temperature gotten during the pyrolysis of RT.

    FIG.5 The inf l uence of APP treatments on CO evolution pattern in slow pyrolysis.

    D.Ef f ects of APP on evolution patterns of pyrolysis gaseous products

    Figure 3 shows the Gram-Schmidt curves of the total FTIR absorbance intensity of gaseous products during the pyrolysis of RT by TG-FTIR.Gaseous products evolution during the pyrolysis of untreated RT had three main unresolved peaks in the temperature range of 148-372,372-602,and 602-760?C,respectively. The absorbance intensity of the three peaks were considerably reduced with the addition of APP and the third peak faded away with the increase of APP content,especially 10.0%APP.These results indicate that APP is one of high efficient burning additives which control the gas evolution during RT thermal degradation. Comparison of Gram-Schmidt curve with TG and DTG curves indicated that the evolution patterns of gaseous products were consistent with the weight loss process of RT thermal degradation and that the prof i le of gases evolution coincided with that of DTG curve.These results suggest that the inf l uence of APP on gaseous products is closely related with the change of RT thermal behavior by APP.

    E.Ef f ects of APP on evolution patterns of CO in slow pyrolysis

    Thetypical 3D spectral output from the TG-FTIR analysis is shown in Fig.4,known as a waterfall spectrum.As can be observed,there are some mainabsorption regions(i.e.3780-3485,3100-2770, 2400-2224,2220-2000,1900-1600,1600-1500, 1500-1300,1100-930,and 760-590 cm-1)in the 3D FTIR spectrum,indicating that the pyrolysis process of RT is complicated.Although it is difficult to identify every species in the mixture of gas products for the interference of their IR absorbance,the characteristic peaks of CO at 2180 and 2108 cm-1is undoubted [23].CO evolution prof i les,shown in Fig.5,were constructed from the waterfall spectra by selecting a key characteristic IR absorbance of CO.The prof i les have been normalized to the sample weight(intensity per 60 mg of sample),so the comparisons for the inf l uenceof APP treatment can be made on the relative amount of CO.

    There are two temperature ranges of 216-376 and 376-600?C in CO evolution(Fig.5).As shown in Fig.5, APP had a slight e ff ect on the fi st peak of CO evolution regardless of the amount of APP,while the second peak of CO evolution varied systemically in dependence on the APP content in RT.From the areas of the peaks in the CO evolution curves,it is deduced that APP mainly enhances the CO evolution during the combustion of the residual char.However,it is noteworthy that the in fl uence of APP on CO evolution in thermal gravimetric analysis is contrary with that of APP addition on CO delivery in mainstream smoke of RT.The di ff erence in CO formation during slow pyrolysis and puffing process may be due to heating rates[24].It is well known that heating rates as high as 500 K/s are achieved during puffing[4].However,20 K/min was employed in thermal gravimetric analysis.A possible explanation for the contrary e ff ect of APP in slow pyrolysis and pu ffing process is that,during slow heating,the formation of non-porous particles in the presence of APP is probably limited,while during fast heating the process is extensive and the oxidation of char is inhibited.

    F.E ff ects of APP on evolution patterns of CO in the fl ash pyrolysis

    In order to investigate the role of heating rate in decreasing the CO delivery of mainstream smoke by APP, the pyrolysis conditions occurring in the fl ash pyrolysis experiments were performed to simulate the heating rate during cigarette puffing.As shown in Fig.6,the peak of CO evolution during the fl ash pyrolysis gradually shrinked with the increase of APP content in RT. From the total peak area of CO,it could be said that APP decreased CO concentration during fl ash pyrolysis, which was consistent with e ff ects of APP on CO level in mainstream smoke of RT but contrary to that in slow pyrolysis.These results elucidated that the heating rate was one of the most important factors in decreasing CO amount by APP.This phenomenon is similar to the fi ndings in the study of reducing CO evolution by urea phosphate[13].

    IV.CONCLUSION

    In this work,APP was evaluated for its potential as CO reduction additive of RT and the mechanism of CO removal by APP were discussed.Pyrolysis tests revealed that APP decreased weight loss rate of RT, enhanced the formation of char and retarded thermal behaviors of RT depending on APP concentration.Furthermore,DSC curves were in fl uenced by APP,especially the secondary exothermic peak,which con fi rmed fi re retardant efficacy of APP.

    FIG.6 The inf l uence of APP treatments on CO evolution pattern in f l ash pyrolysis.

    The Gram-Schmidt curves of the total FTIR absorbance intensity of gaseous products indicated that, as an highly efficient burning additive,APP signif icantly inhibited the evolution of pyrolysis gaseous products during RT thermal degradation.CO delivery per cigarette in mainstream smoke was gradually reduced proportionally to the APP content in RT.What’s more important,comparative analysis of CO evolution patterns in the f l ash and slow pyrolysis elucidated that the heating rate was one of the most important factors in decreasing CO evolution by APP.APP enhanced the formation of no-porous particles in f l ash pyrolysis and puffing process hindering the oxidation of char and subsequently inhibited the CO evolution.

    V.ACKNOWLEDGMENTS

    ThisworkwassupportedbyChinaTobacco AnhuiIndustrialCorporation(No.20121006and No.20091002)and China National Tobacco Corporation(No.110200901002).

    [1]R.F.Shehadeh,http://www.legacy.library.ucsf.edu/tid /bzu03f00/pdf.

    [2]T.M.Halter and T.I.Ito,J.Natl.Cancer.Inst.48, 1867(1972).

    [3]W.S.Schlotzhauer and O.T.Chortyk,Beitr.Tabakforsch.8,84(1975).

    [4]R.R.Baker,Prog.Energ.Combust.Sci.32,373(2006). [5]A.A.Rostami,M.R.Hajaligo,P.Li,S.Rabiei,and M.S.Rostami,Beitr.Tabakforsch.20,439(2003).

    [6]C.Liu and A.Parry,Beitr.Tabakforsch.20,341(2003).

    [7]P.Li,Nanotechnology in Catalysis,vol.2,New York: Kluwer Academic/Plenum Publishers,515(2003).

    [8]A.Marcilla,M.Beltran,A.G′omez-Siurana,I.Martinez,and D.Berenguer,Thermochim.Acta 518,47 (2011).

    [9]M.S.Stavanja,G.M.Curtin,P.H.Ayres,E.R. Bombick,M.F.Borgerding,W.T.Morgan,C.D.Gar-ner,D.H.Pence,and J.E.Swauger,Exp.Toxicol. Pathol.59,339(2008).

    [10]A.Tzamtzis,A.Pappa,and A.Mourikis,Polym.Degrad.Stabil.66,55(1999).

    [11]N.P.G.Suardana,M.S.Ku,and J.K.Lim,Mater. Design.32,1990(2011).

    [12]S.Nam,B.D.Condon,D.V.Parikh,Q.Zhao,M.S. Cintr′on,and C.Madison,Polym.Degrad.Stabil.96, 2010(2011).

    [13]S.L.Ge,Y.B.Xu,Z.F.Tian,S.Zhou,S.K.She,Y. H.Hu,and L.S.Sheng,J.Anal.Appl.Pyrol.99,178 (2013).

    [14]S.Zhou,M.Ning,Y.B.Xu,Y.H.Hu,J.S.Shu,C. H.Wang,S.L.Ge,Z.F.Tian,S.K.She,and Q.He, J.Anal.Appl.Pyrol.100,223(2013).

    [15]R.L.Prowse,http://www.legacy.library.ucsf.edu/tid/ fpy74a99/pdf.

    [16]R.R.Baker and L.J.Bishop,J.Anal.Appl.Pyrol.71, 223(2004).

    [17]ISO3308:RoutineAnalyticalCigaretteSmoking Machine-Def i nitions and Standard Conditions,International Organization for Standardization,Geneva, Switzerland,(1991).

    [18]ISO 3402:Tobacco and Tobacco Products-Atmosphere for Conditioning and Testing,International Organization for Standardization,Geneva,Switzerland,(1991).

    [19]ISO 4387:Cigarettes-Determination of Total and Nicotine Free Dry Particulate Matter Using a Routine Analytical Smoking Machine,International Organization for Standardization,Geneva,Switzerland,(1991).

    [20]J.P.Christopher,M.Cathy,J.L.Beven,and H.F. Dymond,Analyst 113,1509(1988).

    [21]K.Kishore and K.Mohandas,Fire Meter.2,54(1982).

    [22]S.Gedevanishvili,S.Paldey,and F.Rasouli,J.Anal. Appl.Pyrol.76,70(2006).

    [23]P.Buryan and M.Staf f,J.Therm.Anal.Calorim.93, 637(2008).

    [24]P.H.Brunner and P.V.Roberts,Carbon 18,217 (1980).

    ?Authors to whom correspondence should be addressed.E-mail:lssheng@ustc.edu.cn,ningminah@aliyun.com

    亚洲久久久久久中文字幕| 纵有疾风起免费观看全集完整版| 国产av国产精品国产| 两个人的视频大全免费| 熟女人妻精品中文字幕| 少妇的逼好多水| 伦理电影大哥的女人| 青春草视频在线免费观看| 亚洲国产最新在线播放| 深夜a级毛片| 久久亚洲国产成人精品v| 少妇人妻精品综合一区二区| 日产精品乱码卡一卡2卡三| 国产欧美日韩一区二区三区在线 | 亚洲av国产av综合av卡| 国产成人精品久久久久久| 人人妻人人看人人澡| 中文乱码字字幕精品一区二区三区| 国产精品一及| 国产有黄有色有爽视频| 国产色爽女视频免费观看| 久久久久网色| 听说在线观看完整版免费高清| 网址你懂的国产日韩在线| 国产色婷婷99| 欧美成人精品欧美一级黄| 麻豆成人午夜福利视频| 久久97久久精品| 欧美成人a在线观看| 久久99热这里只有精品18| 最近最新中文字幕大全电影3| 激情 狠狠 欧美| 免费av毛片视频| 舔av片在线| av.在线天堂| 看黄色毛片网站| 亚洲av成人精品一区久久| 国产成人精品一,二区| 性色avwww在线观看| av卡一久久| 视频中文字幕在线观看| 亚洲欧美日韩无卡精品| 欧美老熟妇乱子伦牲交| 黄色怎么调成土黄色| 日本wwww免费看| 日本午夜av视频| 成年免费大片在线观看| 国产亚洲最大av| 免费av毛片视频| 国产黄片美女视频| 国产日韩欧美在线精品| 亚洲精品亚洲一区二区| av在线app专区| 亚洲国产最新在线播放| 欧美日韩视频高清一区二区三区二| 亚洲色图综合在线观看| 国产黄片视频在线免费观看| av在线天堂中文字幕| 欧美国产精品一级二级三级 | 免费观看的影片在线观看| 大码成人一级视频| 少妇丰满av| 国产精品偷伦视频观看了| 国产精品成人在线| 97人妻精品一区二区三区麻豆| 亚洲精品乱码久久久久久按摩| 中文字幕av成人在线电影| 一区二区三区精品91| 亚洲av成人精品一二三区| 国产精品精品国产色婷婷| 卡戴珊不雅视频在线播放| 高清欧美精品videossex| 最近2019中文字幕mv第一页| 国产在线一区二区三区精| 99久久精品一区二区三区| 亚洲国产日韩一区二区| 交换朋友夫妻互换小说| 黄片无遮挡物在线观看| 97人妻精品一区二区三区麻豆| 亚洲国产av新网站| 国产一区二区亚洲精品在线观看| 欧美性猛交╳xxx乱大交人| 女人十人毛片免费观看3o分钟| 2021少妇久久久久久久久久久| 久久精品国产亚洲网站| 久久久久久久大尺度免费视频| 伊人久久国产一区二区| 国产大屁股一区二区在线视频| 大又大粗又爽又黄少妇毛片口| 建设人人有责人人尽责人人享有的 | 国产成人免费无遮挡视频| 国产精品精品国产色婷婷| 国产片特级美女逼逼视频| 欧美丝袜亚洲另类| 高清欧美精品videossex| 性色avwww在线观看| 久久97久久精品| 免费观看无遮挡的男女| 欧美性感艳星| 九九爱精品视频在线观看| 啦啦啦啦在线视频资源| 国产精品久久久久久精品古装| 欧美3d第一页| 久久精品久久久久久久性| 亚洲精品成人av观看孕妇| 激情 狠狠 欧美| 久久久国产一区二区| 久久久国产一区二区| 久久久国产一区二区| 国产av不卡久久| 有码 亚洲区| 九色成人免费人妻av| 国产欧美另类精品又又久久亚洲欧美| 日本午夜av视频| 亚洲自拍偷在线| 国产亚洲5aaaaa淫片| 亚洲精品,欧美精品| 亚洲av国产av综合av卡| 精品久久久久久久久亚洲| 国产成年人精品一区二区| 18禁裸乳无遮挡动漫免费视频 | av线在线观看网站| 国产探花在线观看一区二区| 不卡视频在线观看欧美| 亚洲成人av在线免费| 在线看a的网站| 蜜臀久久99精品久久宅男| 少妇丰满av| 美女国产视频在线观看| 国产成年人精品一区二区| 激情 狠狠 欧美| 国产成人a∨麻豆精品| 久久久久网色| 久久99热6这里只有精品| 一级爰片在线观看| 亚洲欧美成人精品一区二区| 全区人妻精品视频| 欧美日韩在线观看h| av免费在线看不卡| 哪个播放器可以免费观看大片| 亚洲精品亚洲一区二区| 身体一侧抽搐| 岛国毛片在线播放| 亚洲精品一二三| 夜夜爽夜夜爽视频| 久久久久久久国产电影| 国产69精品久久久久777片| 国产精品久久久久久精品电影小说 | 水蜜桃什么品种好| 久久精品久久久久久久性| 国产亚洲av嫩草精品影院| 国产免费视频播放在线视频| 最近手机中文字幕大全| 国语对白做爰xxxⅹ性视频网站| 国产乱来视频区| 亚洲成人久久爱视频| 尤物成人国产欧美一区二区三区| 最近中文字幕高清免费大全6| 久久人人爽人人片av| 国产精品久久久久久久久免| 久热这里只有精品99| 美女脱内裤让男人舔精品视频| 视频区图区小说| 亚洲精品国产色婷婷电影| 91精品伊人久久大香线蕉| 丰满少妇做爰视频| 国产片特级美女逼逼视频| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美激情在线99| 2021少妇久久久久久久久久久| 男女那种视频在线观看| 成人高潮视频无遮挡免费网站| 欧美日韩精品成人综合77777| 最近最新中文字幕免费大全7| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 黄色欧美视频在线观看| 美女xxoo啪啪120秒动态图| 国产av国产精品国产| 国产成人午夜福利电影在线观看| 中文字幕人妻熟人妻熟丝袜美| av在线老鸭窝| 91狼人影院| 三级经典国产精品| 色哟哟·www| 亚洲精品自拍成人| 91久久精品电影网| 国产亚洲5aaaaa淫片| 日韩中字成人| 国产成年人精品一区二区| 欧美另类一区| 色播亚洲综合网| 久久午夜福利片| 老司机影院成人| 免费看av在线观看网站| 国产欧美日韩一区二区三区在线 | 熟女人妻精品中文字幕| 干丝袜人妻中文字幕| 高清视频免费观看一区二区| 岛国毛片在线播放| 亚洲激情五月婷婷啪啪| 一区二区av电影网| 久久人人爽人人爽人人片va| 舔av片在线| 美女内射精品一级片tv| 禁无遮挡网站| 免费在线观看成人毛片| 亚洲美女搞黄在线观看| 精品久久久噜噜| 在线天堂最新版资源| 寂寞人妻少妇视频99o| 99热国产这里只有精品6| 亚洲av电影在线观看一区二区三区 | 成人二区视频| 麻豆成人av视频| 2021天堂中文幕一二区在线观| 久久久久久久精品精品| 狂野欧美白嫩少妇大欣赏| 观看免费一级毛片| 免费观看av网站的网址| 日韩av免费高清视频| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| 制服丝袜香蕉在线| 免费电影在线观看免费观看| 日韩欧美精品免费久久| 国产欧美日韩一区二区三区在线 | 欧美日韩一区二区视频在线观看视频在线 | 少妇人妻久久综合中文| 国语对白做爰xxxⅹ性视频网站| 免费黄频网站在线观看国产| 欧美最新免费一区二区三区| 久久久久精品久久久久真实原创| 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻不卡中文字幕| 日韩成人伦理影院| 国产亚洲5aaaaa淫片| 深爱激情五月婷婷| 日本黄色片子视频| 久久亚洲国产成人精品v| 中文字幕久久专区| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 久久久久九九精品影院| tube8黄色片| 永久网站在线| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩制服骚丝袜av| 能在线免费看毛片的网站| 丝袜喷水一区| 你懂的网址亚洲精品在线观看| 大片电影免费在线观看免费| 精品人妻熟女av久视频| 日韩一区二区视频免费看| 国产高潮美女av| 久久精品综合一区二区三区| 久久久久精品性色| 国产欧美日韩精品一区二区| 国内少妇人妻偷人精品xxx网站| 麻豆国产97在线/欧美| 亚洲国产精品成人久久小说| 99久久精品一区二区三区| 亚洲一区二区三区欧美精品 | 麻豆成人av视频| 日本色播在线视频| 一二三四中文在线观看免费高清| 中文字幕制服av| 国产人妻一区二区三区在| 丝袜喷水一区| 七月丁香在线播放| 精品99又大又爽又粗少妇毛片| 午夜日本视频在线| 国产精品久久久久久精品电影小说 | 国产有黄有色有爽视频| 好男人视频免费观看在线| 在线观看av片永久免费下载| 六月丁香七月| 岛国毛片在线播放| 国产高清有码在线观看视频| 伦精品一区二区三区| 男女边吃奶边做爰视频| 一级毛片aaaaaa免费看小| 久久99热这里只有精品18| 嘟嘟电影网在线观看| 男的添女的下面高潮视频| 一区二区三区乱码不卡18| 亚洲,欧美,日韩| 在线免费十八禁| 老司机影院毛片| 久久97久久精品| 波多野结衣巨乳人妻| 五月玫瑰六月丁香| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久小说| 亚洲精品第二区| 制服丝袜香蕉在线| 毛片女人毛片| 成人亚洲精品一区在线观看 | 一级毛片我不卡| 大香蕉久久网| 嫩草影院新地址| 看黄色毛片网站| 又粗又硬又长又爽又黄的视频| 高清在线视频一区二区三区| 日本wwww免费看| 一级av片app| 国产黄色免费在线视频| 秋霞在线观看毛片| 午夜福利在线在线| 久久久久国产精品人妻一区二区| 777米奇影视久久| 国产乱人偷精品视频| 免费看a级黄色片| 亚洲国产色片| 国产爱豆传媒在线观看| 水蜜桃什么品种好| 日韩av在线免费看完整版不卡| 久久久久网色| 我的老师免费观看完整版| 最近手机中文字幕大全| 亚洲电影在线观看av| 毛片一级片免费看久久久久| 精品酒店卫生间| 69人妻影院| 色5月婷婷丁香| 国产精品爽爽va在线观看网站| 日韩视频在线欧美| 国产精品国产三级国产av玫瑰| 免费黄网站久久成人精品| 国产真实伦视频高清在线观看| 久久精品国产亚洲网站| 2021天堂中文幕一二区在线观| 午夜激情福利司机影院| 欧美亚洲 丝袜 人妻 在线| 久久精品夜色国产| 91午夜精品亚洲一区二区三区| 国产片特级美女逼逼视频| 插逼视频在线观看| 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 国产黄片美女视频| 欧美亚洲 丝袜 人妻 在线| 国产精品一区www在线观看| 日本免费在线观看一区| 日本一二三区视频观看| 夜夜看夜夜爽夜夜摸| 最后的刺客免费高清国语| 99久久九九国产精品国产免费| 视频中文字幕在线观看| 免费av不卡在线播放| 嫩草影院精品99| 18+在线观看网站| 欧美少妇被猛烈插入视频| 青春草视频在线免费观看| 18禁裸乳无遮挡动漫免费视频 | 男女国产视频网站| 91精品一卡2卡3卡4卡| 狂野欧美激情性xxxx在线观看| 国产伦精品一区二区三区四那| 国产成人精品婷婷| 成人一区二区视频在线观看| 国产亚洲午夜精品一区二区久久 | 校园人妻丝袜中文字幕| 国产一区二区三区综合在线观看 | 在线亚洲精品国产二区图片欧美 | 黄色欧美视频在线观看| 国产男人的电影天堂91| 边亲边吃奶的免费视频| 日韩 亚洲 欧美在线| 日韩人妻高清精品专区| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 极品教师在线视频| 精品国产乱码久久久久久小说| 欧美日韩亚洲高清精品| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 亚洲欧洲国产日韩| 国产综合懂色| xxx大片免费视频| 欧美97在线视频| 少妇的逼好多水| 日韩一区二区视频免费看| 欧美国产精品一级二级三级 | 久久久久久久亚洲中文字幕| 国产亚洲91精品色在线| 久久这里有精品视频免费| 国产黄a三级三级三级人| 99久久精品一区二区三区| 激情五月婷婷亚洲| 久久久久久久久久成人| 一区二区三区四区激情视频| 三级男女做爰猛烈吃奶摸视频| 国产黄片视频在线免费观看| 观看免费一级毛片| 亚洲成人精品中文字幕电影| 2021少妇久久久久久久久久久| 日本黄大片高清| 简卡轻食公司| av在线观看视频网站免费| 成人鲁丝片一二三区免费| 亚洲自拍偷在线| 欧美成人精品欧美一级黄| 国内揄拍国产精品人妻在线| 免费黄频网站在线观看国产| 国产国拍精品亚洲av在线观看| 男人添女人高潮全过程视频| 久久ye,这里只有精品| 色5月婷婷丁香| 国产黄片视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 日本一二三区视频观看| 国产永久视频网站| 国产精品一二三区在线看| 日本与韩国留学比较| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 人体艺术视频欧美日本| 成年人午夜在线观看视频| 成人毛片a级毛片在线播放| 久久久久国产精品人妻一区二区| 欧美日韩在线观看h| 国产91av在线免费观看| 成人国产麻豆网| 色视频www国产| 卡戴珊不雅视频在线播放| 精品酒店卫生间| 成人无遮挡网站| 你懂的网址亚洲精品在线观看| 成人无遮挡网站| 色综合色国产| 观看美女的网站| kizo精华| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 草草在线视频免费看| 成人鲁丝片一二三区免费| 国产永久视频网站| 日韩亚洲欧美综合| 99久久九九国产精品国产免费| 亚洲欧美日韩卡通动漫| 肉色欧美久久久久久久蜜桃 | 午夜日本视频在线| 如何舔出高潮| 九九久久精品国产亚洲av麻豆| 又爽又黄a免费视频| 自拍欧美九色日韩亚洲蝌蚪91 | 免费少妇av软件| 一级片'在线观看视频| 国产午夜精品一二区理论片| 少妇裸体淫交视频免费看高清| 在线观看一区二区三区| 在线观看人妻少妇| 国产精品三级大全| 伦精品一区二区三区| 午夜福利视频精品| 成年女人看的毛片在线观看| 最近的中文字幕免费完整| 人人妻人人澡人人爽人人夜夜| 久久影院123| 一区二区av电影网| 99热这里只有是精品50| 舔av片在线| 99久久九九国产精品国产免费| 高清欧美精品videossex| 国产爱豆传媒在线观看| 国产精品久久久久久久久免| 禁无遮挡网站| 精品国产露脸久久av麻豆| 午夜老司机福利剧场| 国产白丝娇喘喷水9色精品| 国产高清有码在线观看视频| 国产精品一区二区在线观看99| 久久久精品欧美日韩精品| 91精品一卡2卡3卡4卡| 男女国产视频网站| 97超碰精品成人国产| 欧美国产精品一级二级三级 | 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 色吧在线观看| 国产亚洲一区二区精品| 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月| 免费少妇av软件| 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 你懂的网址亚洲精品在线观看| 日韩欧美精品免费久久| 色5月婷婷丁香| 色哟哟·www| 男人添女人高潮全过程视频| 高清av免费在线| 又黄又爽又刺激的免费视频.| 日韩三级伦理在线观看| 精品一区二区三卡| 国产av不卡久久| 九九爱精品视频在线观看| av国产免费在线观看| 最近的中文字幕免费完整| 久久久久久九九精品二区国产| 午夜福利视频1000在线观看| 国产伦在线观看视频一区| xxx大片免费视频| 亚洲美女搞黄在线观看| 日日啪夜夜撸| 男人和女人高潮做爰伦理| 久久鲁丝午夜福利片| 久久久久久久午夜电影| 亚洲av在线观看美女高潮| 黄片无遮挡物在线观看| 久久久久精品性色| 一级毛片黄色毛片免费观看视频| 欧美性感艳星| 97超碰精品成人国产| 亚洲精品国产色婷婷电影| 人人妻人人看人人澡| 高清日韩中文字幕在线| 国产精品一二三区在线看| 欧美亚洲 丝袜 人妻 在线| 99热这里只有是精品在线观看| 免费看a级黄色片| 美女视频免费永久观看网站| 3wmmmm亚洲av在线观看| 欧美成人午夜免费资源| 色吧在线观看| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 久久99热这里只频精品6学生| 看十八女毛片水多多多| 2021少妇久久久久久久久久久| 欧美精品人与动牲交sv欧美| 狂野欧美白嫩少妇大欣赏| av播播在线观看一区| 狠狠精品人妻久久久久久综合| 国产成人91sexporn| 国产日韩欧美在线精品| 丰满乱子伦码专区| 国产精品国产av在线观看| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 国产精品嫩草影院av在线观看| 午夜日本视频在线| 成人鲁丝片一二三区免费| 亚洲美女视频黄频| 免费黄频网站在线观看国产| 少妇的逼好多水| 久久亚洲国产成人精品v| 欧美zozozo另类| 国产精品一区二区在线观看99| 国产亚洲精品久久久com| 欧美精品一区二区大全| 人妻系列 视频| 国产午夜精品久久久久久一区二区三区| 中文字幕制服av| 精品一区二区免费观看| 欧美97在线视频| 嫩草影院入口| 在线播放无遮挡| 午夜免费鲁丝| 亚洲av二区三区四区| 六月丁香七月| 国产精品一区二区三区四区免费观看| 欧美日韩国产mv在线观看视频 | 欧美精品人与动牲交sv欧美| 三级国产精品片| 久久精品久久久久久噜噜老黄| 免费黄网站久久成人精品| 国产精品一及| 80岁老熟妇乱子伦牲交| 国产黄a三级三级三级人| 国产成人午夜福利电影在线观看| 深爱激情五月婷婷| www.av在线官网国产| 欧美激情在线99| 亚洲电影在线观看av| 人妻少妇偷人精品九色| 亚洲精品视频女| 极品教师在线视频| 精品国产三级普通话版| 国产日韩欧美在线精品| 狂野欧美激情性xxxx在线观看| 欧美人与善性xxx| 国产黄片视频在线免费观看| 国产毛片a区久久久久| 丰满少妇做爰视频| 1000部很黄的大片| 免费黄色在线免费观看| 一区二区三区精品91| 欧美日韩亚洲高清精品| 最近最新中文字幕免费大全7| 男女无遮挡免费网站观看| 亚洲精品国产成人久久av| 人人妻人人爽人人添夜夜欢视频 | 人妻系列 视频| 亚洲成人中文字幕在线播放| 国产亚洲一区二区精品| av国产免费在线观看| 最近最新中文字幕大全电影3| 久久精品综合一区二区三区| 特级一级黄色大片| 一级毛片我不卡| 亚洲av中文av极速乱| 特大巨黑吊av在线直播| 免费不卡的大黄色大毛片视频在线观看| 久久久精品免费免费高清| 天美传媒精品一区二区| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区国产| av播播在线观看一区| 尤物成人国产欧美一区二区三区| 日本猛色少妇xxxxx猛交久久| 欧美+日韩+精品| 成人无遮挡网站|