• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on Dissociation Mechanisms of Di-ethyl Berylliums and Di-t-butyl Berylliums

    2014-07-18 11:51:53LingbioMengYnZhoJiqingZhngJichengZhngWeidongWuZhuoWng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Ling-bio Meng,Yn Zho,Ji-qing Zhng,Ji-cheng Zhng,b,Wei-dong Wu,b,Zhuo Wng?

    a.Science and Technology on Plasma Physics Laboratory,Laser Fusion Research Center,China Academy of Engineering Physics,Mianyang 621900,China

    b.State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials,School of Materials Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,

    China

    (Dated:Received on November 22,2013;Accepted on February 10,2014)

    Theoretical Study on Dissociation Mechanisms of Di-ethyl Berylliums and Di-t-butyl Berylliums

    Ling-biao Menga,Yan Zhaoa,Ji-qiang Zhanga,Ji-cheng Zhanga,b,Wei-dong Wua,b,Zhuo Wanga?

    a.Science and Technology on Plasma Physics Laboratory,Laser Fusion Research Center,China Academy of Engineering Physics,Mianyang 621900,China

    b.State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials,School of Materials Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,

    China

    (Dated:Received on November 22,2013;Accepted on February 10,2014)

    The potential energy surfaces(PES)of unimolecular dissociation reactions for di-ethyl beryllium and di-t-butyl beryllium are investigated by B3LYP,CCSD(T),and G3B3 approaches. Possible reaction pathways through either the radical or transition state(TS)of the molecules are considered.The geometries,vibrational frequencies and relative energies for various stationary points are determined.From the study of energetics,the TS pathways arising from concerted molecular eliminations are indicated to be the main dissociation pathways for both molecules.The PES dif f erences of the dissociation reactions are investigated.The activation energies and rate constants will be helpful for investigating the predictive ability of the reaction in further theoretical and experimental research.

    Di-t-butyl beryllium,Dissociation reaction,Transition state,Rate constant, G3B3 theory

    I.INTRODUCTION

    Metal hydrides are of great scientif i c and technological interest in view of their potential applications such as in hydrogen storage,fuel cells,and internal combustion engines[1,2],as well as in inertial conf i nement fusion,e.g.,beryllium hydride(BeH2)[3].However,the syntheses and characterizations of the candidate systems for these metal hydrides are tedious,and thus hinder the ways to investigate these fascinating compounds.An alternative and complementary approach is to utilize quantum chemistry(QC)methods, it may help to orientate the synthesis process toward meaningful systems.The QC methods can provide reliable numerical estimation of properties of the candidate systems,improve the understanding of the phenomena happening in the synthesis,help the establishment of the relationships between the geometry structures and relevant properties of the species found in synthesis,and explore the microscopic interaction mechanism of the reactions during the synthesis process,etc.All of these can help to ameliorate the material syntheses process.

    di-t-Butyl beryllium(BeC2(CH3)6)has attracted a lot of research interests in the past years since it was indicated to be an important type of materials for the synthesis of the BeH2.For example,the preparation of BeH2may be done via the pyrolysis of the etherate or ether-free complex of this compound in the vapour phase,as well as the pyrolysis of the di-t-butyl beryllium-etherate complex dissolved in a high-boiling inert solvent[4-6].Due to the importance of di-t-butyl beryllium,the investigations on molecular geometrical structures and vibrational properties of this compound have been conducted in experiments[7,8].However, the ef f ort to probe relevant pyrolysis mechanism for this compound to form BeH2at the atomistic and electronic levels seems to be not yet referred to date,and therefore,how to elucidate this issue comes to be important.

    In this work,we report a detailed analysis on the unimolecule dissociation reactions of the di-t-butyl beryllium in vapor phases by means of QC f i rst principles calculations.The attraction of the vapour phase unimolecular study lies in the opportunity not only to study the intrinsic nature of this molecule,but also to probe relevant properties in relatively complicated environment as a meaningful model.Although it has never been used in the preparation of BeH2experimentally to the best of our knowledge,the di-ethyl beryllium(BeC2H4(CH3)2) compound is also studied in this work since it can be considered as an appropriate model system for comparison.It is interesting to analyze the dif f erences in dissociation reactions between two compounds as a function of the alkyl groups.Due to the tractable number of electrons in the molecule,di-ethyl and di-t-butyl berylliums are indeed amenable to high level QC calculations,and therefore,may also serve as a testing arena for the QCmethods in related systems.

    FIG.1 Conformations of di-ethyl beryllium and di-t-butyl beryllium.

    II.METHODS

    The full molecular geometries and harmonic vibrational frequencies of dif f erent species involved in the dissociation reactions of di-ethyl beryllium and di-t-butyl beryllium molecules,i.e.,the reactants,products,intermediates,and transition states,were obtained using the nonlocal hybrid three-parameter B3LYP density functional approach[9-11].This approach has been demonstrated to be a cost-ef f ective method in the structural determinations for such molecular systems in previous studies[12-15].Considering the efficiency and accuracy,the standard Wachters-Hay all-electron basis set 6-311++G(d,p)[16-18]was adopted.Harmonic vibrational frequency analyses were performed for the characterization of the stationary points,i.e.,the number of imaginary frequencies(0 or 1)was used to verify the species whether a minimum or a transition state.Connections between the reactants,intermediates,transition states,and products were conf i rmed by the intrinsic reaction coordinate(IRC)[19-21]calculations.Thermodynamic corrections were obtained by assuming the species as an ideal gas,considering harmonic vibrational frequencies,and using the rigid rotor approximation by standard statistical methods[22]with associated scale factor[23].

    To pinpoint the energies of dif f erent species,especially for the energies related with the barrier heights and reaction heats,which are the most sensitive parameters in all reaction calculations,the high level corrected CCSD(T)[24]single-point calculations were performed at the B3LYP optimized geometries with the 6-311++G(d,p)basis set.Moreover,the G3B3 theory[25]was also employed in this work since it was indicated that the reaction barriers obtained by the G3B3 theory can be in good agreement with the experiments without any further adjustments of the energies[26].All the calculations described above were implemented with Gaussian 09 suite of programs[27].

    TABLE I Bond lengths and bond angles of molecular di-tbutyl beryllium.

    III.RESULTS

    A.Reactant conformations

    Figure1showsthestructuresofthereactant BeC2H4(CH3)2and BeC2(CH3)6molecules optimized at the B3LYP/6-311++G(d,p)level of theory.

    For the BeC2H4(CH3)2,our calculations identify two unique stable conformations,dif f er in the dihedral angels of C-C-C-C(53.7?and-141.9?),and are noted as the cis-BeC2H4(CH3)2and trans-BeC2H4(CH3)2, respectively.Relative electronic energies of these two conformations are calculated to be within 0.04 kcal/mol in all the three methods,where the cis-BeC2H4(CH3)2is slightly favorable in energy in the CCSD(T)and G3B3 approaches.The zero-point vibrational energies as well as the thermal corrections are found to be essentially the same for the cis-and trans-conformations. Thus,our calculations focus on the cis-BeC2H4(CH3)2, and the results of the trans-conf i guration are very analogical to those of the cis-species,which are just listed together without further discussion.

    For the BeC2(CH3)6,there is only one stable conformation located due to its high D3dsymmetry,in which the two side-C(CH3)3groups are stagger about 54.3?or-65.7?in the dihedral angels of C-C.Table I summarizes the main geometric structure parameters for the di-t-butyl beryllium.As presented in Table I, the calculated results are in good agreement with the available experimental observations[7],which conf i rms that the present methodology of computations in structural determinations is reliable and accurate.

    FIG.2 Structures of the transition states,intermediates,and products in paths of E and F.

    B.Dissociation pathways

    As illustrated in Fig.1,for the cis-BeC2H4(CH3)2, within all the fourteen covalent bonds,only four of them are inequipotential when considering the symmetry of the molecule,i.e.,C2-C3(represents C2-C3 and C9-C10),C2-Be(represents C2-Be and C10-Be), C3-H6(represents C3-H6,7,8 and C9-H11,12,13), and C2-H7(represents C2-H7,8 and C10-H14,15). Consequently,six distinct potential pathways have been considered for the dissociation reaction of the cis-BeC2H4(CH3)2based on the four unique bonds.In which,four pathways proceed through direct bond ruptures to product radicals,and two through concerted eliminations to form transition states.They are organized into the two following procedures.

    In procedure I,the following f i ve reaction pathways are considered(here one CH2CH3group is noted as a pseudo H?atom for the convenience):the rupture of C2-C3 bond(path A,Eq.(1)),the rupture of C2-Be bond(path B,Eq.(2)),the rupture of C3-H6 bond (path C,Eq.(3)),the rupture of C2-H7 bond(path D,Eq.(4)),H6 approaches Be-concerted 2,3-elimination reaction(path E,Eq.(5))as follows:

    FIG.3 Potential energy surface of cis-BeC2H4(CH3)2dissociation based on G3B3 relative energies(0 K)with the energy of cis-BeC2H4(CH3)2and HBeCH2CH3(HBeH?)set as zero(solid line:path E,dashed line:path F).

    Theoretically,there may be also a few other dissociation pathways in the following possible procedure depending on the products of procedure I.However,the A-D pathways are highly energetically unfavorable compared to the E pathway(as indicated in the following text). Therefore,we do not consider the cases of pathways in procedure II,only the one reaction path F based on E is included in procedure II,that is path F as follows,

    Thus,only E and F have been counted into for the case of di-t-butyl beryllium BeC2(CH3)6due to the similar bonding nature of the two molecules.

    Figure 2 shows the geometric structures for the transition states,intermediates,and products involved in the paths of E and F as optimized at the B3LYP/6-311++G(d,p)level.The stationary nature of the structures was conf i rmed by the harmonic vibrational frequency analyses,i.e.,the reactants,products,and intermediate possess all real frequencies,whereas the transition states possess only one imaginary frequency.The G3B3 energy prof i les of the potential energy surface for all considered dissociation reaction pathways are illustrated in Fig.3 and Fig.4 for the di-ethyl beryllium and di-t-butyl beryllium,respectively.Each of the reaction pathways is discussed,unless noted otherwise,the G3B3 energies are defaulted.More details for the results of the calculated energies at the B3LYP/6-311++G(d,p), CCSD(T)/6-311++G(d,p),and G3B3 levels,and the calculated enthalpies at the G3B3 level for all the involved species are summarized in Table II.

    C.Rate constants

    According to the transition state theory(TST)in its kinetic thermodynamic accustomed version[28],the rate constant,k(T),is determined by the following expression:

    FIG.4 Potential energy surface of BeC2(CH3)6dissociation based on G3B3 relative energies(0 K)with the energy of BeC2(CH3)6and HBeC(CH3)3(HBeH?)set as zero(solid line:path E,dashed line:path F).

    TABLE II Relative energies E0and H298(in kcal/mol)of dif f erent species in dissociation reactions.

    where T is the reaction temperature,and kB,~,and R are the Boltzmann constant,Planck constant,and gas constant,respectively.The activation energy Eaand activation entropy Saare derived from the enthalpy and entropy dif f erences between the transition states and reactants,respectively.Figure 5 shows the calculated rate constants of path E and F for the cis-BeC2H4(CH3)2and BeC2(CH3)6at dif f erent reference temperatures. The calculated rate constants exhibit a typical non-Arrhenius behavior with the entropy term dependent upon the temperature.They are f i tted to the followingformula with three A,n,and B parameters:

    FIG.5 Calculated rate constants of path E and F for the diethyl beryllium BeC2H4(CH3)2(n=2)and di-t-butyl beryllium BeC2(CH3)6(n=6)at dif f erent temperatures.

    over the temperature range of 298-600 K for path E and F of cis-BeC2H4(CH3)2(Eq.(9)and Eq.(10))and BeC2(CH3)6(Eqs.(11)and Eq.(12))respectively as follows

    IV.DISCUSSION

    Sixpossibledissociationpathwaysforthecis-BeC2H4(CH3)2have been explored by the B3LYP, CCSD(T),and G3B3 approaches.The schematic profi le of the G3B3 PES for the dissociation is illustrated in Fig.3.From the presented PES,the most energy favorable dissociation pathway in procedure I is the isomerization of cis-BeC2H4(CH3)2,in which one of the H atoms on the Cα(C2 or C10)atom is shifted to the Be atom to form an intermediate IM1(C2H4···HBeH?) via the transition state TS1(see Fig.2 and Fig.3).The TS1 is a fi rst-order saddle point with an imaginary frequency of 548i cm-1and the IM1 is fully optimized with no imaginary frequency at the B3LYP/6-311++G(d,p) level of theory.Moreover,as may be seen from Fig.1 and Fig.2,there are signi fi cant changes in the associated bond angles and bond lengths,in going from the reactant cis-BeC2H4(CH3)2to the TS1 and in going from the TS1 to the intermediate IM1.The isomerization barrier height is 33.5 kcal/mol and the intermediate IM1 lies 25.6 kcal/mol above the reactant cis-BeC2H4(CH3)2.The intermediate IM1 produced from TS1 would have internal energy larger than the dissociation energy.Hence it will either ultimately fall apart to C2H4and HBeH?,or be stabilized by collision with a third body molecule.The IM1 is calculated to be 2.8 kcal/mol lower than its separated components,C2H4and HBeH?.Indeed,there are four dissociation pathways involving in the direct bond ruptures which produce free radicals.As shown in Fig.3,the energy barriers of these direct dissociations are from 77.6 kcal/mol to 91.1 kcal/mol,i.e.,higher than that of path E by 44 kcal/mol(T=0 K),a relatively huge quantity in kinetics and thermodynamics calculations. Even with the inclusion of the temperature ef f ect,these four pathways can be basically neglected at T<900 K. This is why we do not consider them in procedure II. As the path E to yield TS species essentially occurs within intra-molecule reactions,leads to the minimal pathway integral among the f i ve pathways,the favor of path E is in principle understandable.Similarly, in the procedure II,the possible dissociation pathway for the semi-f i nished product obtained in the f i rst procedure,CH3CH2BeH,is predicted to yield the f i nal products of C2H4and BeH2via the intermediate IM2 (C2H4···HBeH)and transition state TS2 of path F.

    It is meaningful to notice that the geometrical shapes are very similar between the di-ethyl beryllium and ethane(CH3CH3),with the BeCH2CH3of the di-ethyl beryllium substituted by the H?(i.e., BeC2H4(CH3)2→CH3CH2H?).However,the dissociation pathways of the two counterparts seem to be rather dif f erent.The pyrolysis of the ethane(about 900 K)is recognized to produce C2H4,H2and a bit CH4f i rst through the direct rupture of C-C bond[29,30](i.e., path A),and then via the combination or dissociation reactions among the so-obtained radicals.Indeed,there is no transition state like TS1 or TS2 found in the ethane case.However,as described above,the dominant dissociation pathway is indicated to be path E and F for the BeC2H4(CH3)2,and other pathways arising from the direct ruptures of covalent bonds are less consequential.The presence of transition states for the BeC2H4(CH3)2may be understood by the conventional chemical concept,that is,compared with the H atom with one s electron only,Be atom has additional p electrons so that has more capability to contact other atoms through the s and p hybridization simultaneously,to create new chemical bonds in a reaction.It may be seen by comparing the HOMOs of these two molecules. The contours of HOMO on H?(Be)and H of opposite Cαatom are adjacent in the CH3CH2H?,while the counterparts are away in the CH3CH3,and in the TS1 of the di-ethyl beryllium dissociation path E(see Fig.6).

    FIG.6 Molecular HOMOs of(a)cis-BeC2H4(CH3)2and (b)TS1.

    Similar to the di-ethyl beryllium BeC2H4(CH3)2, the dominant dissociation reaction pathway for the di-t-butyl beryllium BeC2(CH3)6is via the path E and F(see Fig.4),to produce CH2C(CH3)2and BeH2.However,as shown in Fig.3 and Fig.4,for the BeC2(CH3)6in procedure I,the dissociation energy barrier is lower than the corresponding value of the BeC2H4(CH3)2by 3.8 kcal/mol,while the combination energy barrier of reverse reaction is higher than that of the BeC2H4(CH3)2by 2.4 kcal/mol.Moreover, in the procedure II,the dissociation energy barrier of BeC2(CH3)6is about half of the corresponding value of the BeC2H4(CH3)2.These dif f erences imply that it is relatively ef f ortless to form the important TS to perform dissociation reaction for the BeC2(CH3)6(see Fig.5),this indicates that the experimentally obtained beryllium hydride may be usually not by other alkyl beryllium compounds but the di-t-butyl beryllium dissociation.It is understandable as follows:as the increasing of the number of the substituting alkyl groups, the increased repulsion between H atoms leads to a H atom much easier to contact with the Be atom to form a transition state.Nevertheless,the calculations indicate that the reaction barriers of the two pathways are still large for the BeC2(CH3)6,lead to the conclusion that the dissociation reaction is not feasible at the low temperatures.Although the reaction barriers are hardly af f ected by the temperatures in the whole range of 298-598 K,the rate constant of dissociation reactions increase nine order of magnitude from the room temperature of 298.15 K to the experimental temperatures of 493 K(see Fig.5).It is reasonable to assume that these dissociation pathways are feasible at such temperature levels.

    As mentioned above,to highly accurately probe the PES prof i les of dissociation reactions,the energies of involved species have been calculated by three methods,i.e.B3LYP,CCSD(T),and G3B3,in this work. As seen in Fig.5,the relative energies of these species depend substantially on the computational methods, but the overall trends are similar for these methods. The CCSD(T)and G3B3 results are well close to each other within the indiscernible 1 kcal/mol for the important path E and F,mutually validating each other. Dissimilarly,the B3LYP yields comparable results in the relative energies of TS-reactant species compared to the G3B3 results,while there presents huge differences in the relative energies of product-reactant species between these two methods,where the underestimation in B3LYP relative to G3B3 approach may reach 10 kcal/mol(as occurring for the di-t-butyl beryllium).Indeed,the B3LYP method often engenders poor quantities when the energy calculations involved in the species with dif f erent scales,may be due to its relatively inferior treatment on electron correlation in theoretical (compared to the superior CCSD(T)and G3B3 here), so that the B3LYP predictions may be less trustworthy. Coincidently,previous study has demonstrated that the B3LYP method trends to considerably underestimate the experimental reaction enthalpy of the unimolecular dissociation(~10 kcal/mol)[26].It is expected that the further experimental results about di-t-butyl beryllium dissociation are referred to examine the theoretical conclusion in this work.

    V.CONCLUSION

    Extensive investigations on the potential energy profi les of unimolecular dissociation reactions of the diethyl and di-t-butyl berylliums have been performed by ab initio calculations.Possible reaction pathways including four direct bonding ruptures and two concerted eliminations for the molecules have been considered.The geometries,vibrational frequencies,and relative energies for various stationary points,and the reaction enthalpies and energy barriers are determined. Due to high reaction barriers,the dissociation reactions arising from direct bonding ruptures can be negligible. The TS reactions resulting from concerted eliminations (path E and path F)are indicated to be the main dissociation pathways for both two molecules.The PES di ff erences of dissociation reactions for two molecules have been discussed.The relative importance of the elementary pathways with low barriers and the reaction rate constant has been discussed quantitatively.The theoretical results will help in understanding the further experiments and validating the theoretical conjecture of this work by the experiments.

    VI.ACKNOWLEDGMENTS

    This work was supported by the National Nature Science Foundation of China(No.11104256)and the Open Project of State Key Laboratory Cultivation base for Nonmetal Composites and Functional Materials(No.11zxfk19).We thank Dr.Shuang-lin Hu from the Chemistry Department of Uppsala University in Sweden for helpful suggestion.We would also thank the Hefei National Laboratory for Physical Sciences at the Microscale in University of Science and Technology of China for the computational facilities(Gaussian 09).

    [1]W.Wang,Y.Chen,H.Pan,R.Xu,S.Li,L.Chen, C.Chen,and Q.Wang,J.Alloys.Compd.293,833(1999).

    [2]S.Lee,J.Kim,and H.Lee,J.Electrochem.Soc.149, 603(2002).

    [3]N.Borisenko,Y.Markushkin,and V.Perrunin,Fusion. Technol.28,161(2000).

    [4]G.Coates and F.Glockli,J.Chem.Soc.2526(1954).

    [5]E.Head,C.Holley,and S.Rabideau,J.Am.Chem. Soc.79,3687(1957).

    [6]J.Wood and B.Rouge,United States Patent No. US3743710 A for Preparation of Beryllium Hydride,via the website:www.google.com/patents/US3743710.

    [7]A.Almenningen,A.Haaland,and J.Nilsson,Acta Chem.Scand.32,972(1968).

    [8]G.E.Coates,P.D.Roberts,and A.J.Downs,J.Chem. Soc.A 1085(1967).

    [9]A.Becke,J.Chem.Phys.98,1372(1993).

    [10]C.Lee,W.Yang,and R.Parr,Phys.Rev.B 37,785 (1988).

    [11]P.J.Stephens,F.J.Devlin,C.F.Chabalowski,and M. J.Frisch,J.Phys.Chem.98,11623(1994).

    [12]M.Blomberg,P.Siegbahn,and M.Svensson,J.Chem. Phys.104,9546(1996).

    [13]C.Bauschlicher,A.Ricca,H.Partridge,and S. Langhof f,Recent Advances in Density Functional Theory,Part II,Singapore:World Scientif i c Publishing Co.,(1997).

    [14]A.Luna,M.Alcami,O.M′o,and M.Yanez,Chem. Phys.Lett.320,129(2000).

    [15]W.Koch and M.C.Holthausen,A Chemist’s Guide to Density Functional Theory,2nd Edn.,Germany: Wiley-VCH Verlag Weinheim,(2001).

    [16]A.J.Wachters,J.Chem.Phys.52,1033(1970).

    [17]P.J.Hay,J.Chem.Phys.66,4377(1977).

    [18]K.Raghavachari and G.W.Trucks,J.Chem.Phys.91, 1062(1989).

    [19]K.Fukui,Acc.Chem.Res.14,363(1981).

    [20]M.Page and J.Jr.Mclver,J.Chem.Phys.88,922 (1988).

    [21]C.Gonzalez and H.B.Schlegel,J.Phys.Chem.94, 5523(1990).

    [22]D.McQuarrie,StatisticalMechanics,NewYork: Harper and Row,(1986).

    [23]A.Scott and L.Radom,J.Phys.Chem.100,16502 (1996).

    [24]K.Raghavachari,G.W.Trucks,J.A.Pople,and M. Head-Gordon,Chem.Phys.Lett.157,479(1989).

    [25]A.G.Baboul,L.A.Curtiss,P.C.Redfern,and K. Raghavachari,J.Chem.Phys.110,7650(1999).

    [26]M.Zhang,Z.Lin,and C.Song,J.Chem.Phys.126, 034307(2007).

    [27]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Jr.Montgomery,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A.1, New York:Gaussian Inc.,(2009).

    [28]M.J.Pilling and P.W.Seakins,Reaction Kinetics,New York:Oxford University Press,(1995).

    [29]K.J.Laidler and B.W.Wojciechowshi,Proc.R.Soc. Lond.A 206,91(1961).

    [30]C.P.Qiunn,Proc.R.Soc.Lond.A 275,190(1962).

    ?Author to whom correspondence should be addressed.E-mail:wangzhuo@caep.cn,FAX:+86-816-2480851

    bbb黄色大片| 国产又色又爽无遮挡免费看| 久久这里只有精品19| 在线永久观看黄色视频| 中文字幕色久视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一码二码三码区别大吗| 黑人巨大精品欧美一区二区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 91av网站免费观看| 99国产极品粉嫩在线观看| 日韩大尺度精品在线看网址 | 国产xxxxx性猛交| 咕卡用的链子| 两人在一起打扑克的视频| 久9热在线精品视频| 少妇裸体淫交视频免费看高清 | 国产熟女xx| 中出人妻视频一区二区| 男女下面插进去视频免费观看| 波多野结衣av一区二区av| 精品久久久久久久久久免费视频 | 夜夜夜夜夜久久久久| 欧美日韩乱码在线| 19禁男女啪啪无遮挡网站| 免费高清在线观看日韩| 日韩欧美一区视频在线观看| 国产深夜福利视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产欧美一区二区综合| 纯流量卡能插随身wifi吗| 国产成人精品久久二区二区免费| 亚洲欧美激情综合另类| 一夜夜www| 国产精品久久久人人做人人爽| 变态另类成人亚洲欧美熟女 | 在线观看免费午夜福利视频| av有码第一页| 欧美日本亚洲视频在线播放| www日本在线高清视频| 夫妻午夜视频| 国产色视频综合| 久久精品影院6| 久久久久亚洲av毛片大全| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产乱子伦精品免费另类| 成年版毛片免费区| 一级毛片女人18水好多| 欧美日韩视频精品一区| 啦啦啦 在线观看视频| 999久久久国产精品视频| 一本大道久久a久久精品| 成人三级做爰电影| 久久久久国内视频| 午夜福利,免费看| www.自偷自拍.com| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产美女av久久久久小说| 韩国av一区二区三区四区| 成年人黄色毛片网站| 视频区欧美日本亚洲| 国产又色又爽无遮挡免费看| 日本黄色视频三级网站网址| 成人精品一区二区免费| 亚洲男人的天堂狠狠| 日韩欧美在线二视频| 国产成人啪精品午夜网站| 欧美丝袜亚洲另类 | 久久久精品欧美日韩精品| 日本五十路高清| 在线十欧美十亚洲十日本专区| 久久久久精品国产欧美久久久| 亚洲精品av麻豆狂野| 国产亚洲精品久久久久久毛片| 午夜免费成人在线视频| ponron亚洲| 丰满的人妻完整版| 日韩精品青青久久久久久| 日韩欧美国产一区二区入口| 亚洲欧美精品综合一区二区三区| 高清av免费在线| 五月开心婷婷网| 一进一出好大好爽视频| 国产蜜桃级精品一区二区三区| 久久精品国产清高在天天线| 亚洲精品久久成人aⅴ小说| 日本免费一区二区三区高清不卡 | 亚洲男人的天堂狠狠| 麻豆av在线久日| 黄色女人牲交| 亚洲欧美日韩无卡精品| 免费观看精品视频网站| 亚洲人成电影观看| 亚洲av日韩精品久久久久久密| 99精品欧美一区二区三区四区| 国产精品自产拍在线观看55亚洲| av在线天堂中文字幕 | 亚洲一区高清亚洲精品| 国产精品一区二区免费欧美| 久久国产精品人妻蜜桃| 在线观看免费高清a一片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久电影中文字幕| 久久草成人影院| 国产欧美日韩一区二区精品| 国产精品秋霞免费鲁丝片| 两人在一起打扑克的视频| bbb黄色大片| 无人区码免费观看不卡| av超薄肉色丝袜交足视频| 欧美日韩亚洲综合一区二区三区_| 亚洲精品久久成人aⅴ小说| 波多野结衣高清无吗| 亚洲自拍偷在线| 亚洲熟妇熟女久久| 99国产精品一区二区蜜桃av| 别揉我奶头~嗯~啊~动态视频| 99精品久久久久人妻精品| 香蕉国产在线看| 亚洲一码二码三码区别大吗| 99热只有精品国产| 国产成年人精品一区二区 | 一区在线观看完整版| a级毛片在线看网站| 一夜夜www| 久久人妻福利社区极品人妻图片| 亚洲熟妇熟女久久| 日韩欧美一区视频在线观看| 久热这里只有精品99| 精品国产一区二区三区四区第35| ponron亚洲| 日本黄色视频三级网站网址| 成人特级黄色片久久久久久久| 久久久久久人人人人人| 侵犯人妻中文字幕一二三四区| 丝袜美足系列| 搡老熟女国产l中国老女人| 在线观看舔阴道视频| 丝袜美足系列| 亚洲国产欧美网| 亚洲欧美日韩高清在线视频| 久久人人爽av亚洲精品天堂| 级片在线观看| 操美女的视频在线观看| 97超级碰碰碰精品色视频在线观看| 两个人免费观看高清视频| 1024香蕉在线观看| 99国产综合亚洲精品| 18禁美女被吸乳视频| 日韩视频一区二区在线观看| 免费高清在线观看日韩| 一夜夜www| 99精品久久久久人妻精品| 国产成人啪精品午夜网站| 午夜福利影视在线免费观看| 一二三四在线观看免费中文在| 亚洲国产精品999在线| 国产成人精品在线电影| 一级作爱视频免费观看| 国产精品久久电影中文字幕| 高清在线国产一区| 免费av中文字幕在线| 国内久久婷婷六月综合欲色啪| 制服人妻中文乱码| 老司机福利观看| 人妻丰满熟妇av一区二区三区| 香蕉久久夜色| 一本大道久久a久久精品| 亚洲五月婷婷丁香| 这个男人来自地球电影免费观看| 在线观看午夜福利视频| 超色免费av| 女警被强在线播放| 两人在一起打扑克的视频| 国产aⅴ精品一区二区三区波| 精品久久久精品久久久| 一进一出抽搐gif免费好疼 | 国产有黄有色有爽视频| 交换朋友夫妻互换小说| 亚洲一卡2卡3卡4卡5卡精品中文| 啪啪无遮挡十八禁网站| 亚洲成a人片在线一区二区| 亚洲精品国产色婷婷电影| 亚洲精品国产色婷婷电影| 一级毛片女人18水好多| 欧美精品啪啪一区二区三区| 国产视频一区二区在线看| 欧美一区二区精品小视频在线| 日本五十路高清| 久久中文看片网| 天堂√8在线中文| 琪琪午夜伦伦电影理论片6080| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产精品麻豆| 欧美激情高清一区二区三区| 亚洲七黄色美女视频| 国产精品偷伦视频观看了| av福利片在线| 性少妇av在线| 三级毛片av免费| 成熟少妇高潮喷水视频| 最新美女视频免费是黄的| 亚洲欧美日韩高清在线视频| 一级毛片精品| 久久久久久久久中文| 欧美乱色亚洲激情| 国产视频一区二区在线看| 大型黄色视频在线免费观看| 丁香欧美五月| 精品一品国产午夜福利视频| 国产av一区二区精品久久| 岛国视频午夜一区免费看| 老汉色av国产亚洲站长工具| 久久香蕉国产精品| 国产精品自产拍在线观看55亚洲| 久久天躁狠狠躁夜夜2o2o| 69av精品久久久久久| 久久九九热精品免费| 视频区图区小说| 91麻豆av在线| 午夜久久久在线观看| 久久人妻av系列| 国产激情欧美一区二区| 99国产精品99久久久久| 欧美人与性动交α欧美软件| 成年版毛片免费区| 国产99白浆流出| 国产精品影院久久| 欧美在线黄色| 在线免费观看的www视频| 亚洲中文av在线| 亚洲国产欧美一区二区综合| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 十分钟在线观看高清视频www| svipshipincom国产片| 免费观看精品视频网站| 女人爽到高潮嗷嗷叫在线视频| 在线十欧美十亚洲十日本专区| 中文亚洲av片在线观看爽| 精品电影一区二区在线| 亚洲片人在线观看| 十八禁网站免费在线| 国内毛片毛片毛片毛片毛片| 国产黄色免费在线视频| 在线观看免费午夜福利视频| 亚洲成国产人片在线观看| 日韩国内少妇激情av| 国产av在哪里看| 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频精品一区| 男男h啪啪无遮挡| 97碰自拍视频| 日本a在线网址| 亚洲人成伊人成综合网2020| 丰满人妻熟妇乱又伦精品不卡| 搡老熟女国产l中国老女人| 亚洲欧美精品综合一区二区三区| 天天躁夜夜躁狠狠躁躁| 在线观看一区二区三区| 成年人免费黄色播放视频| 人成视频在线观看免费观看| 久99久视频精品免费| 人妻久久中文字幕网| 美女福利国产在线| 欧美日韩精品网址| 国产三级在线视频| 亚洲男人天堂网一区| 久久99一区二区三区| 欧美乱妇无乱码| 亚洲欧美精品综合久久99| 亚洲精品久久午夜乱码| 国产免费男女视频| 黑人巨大精品欧美一区二区蜜桃| 久久国产乱子伦精品免费另类| 亚洲av成人av| 亚洲黑人精品在线| 国产欧美日韩综合在线一区二区| 国产人伦9x9x在线观看| 色播在线永久视频| 亚洲美女黄片视频| 99热只有精品国产| 久久99一区二区三区| 日本一区二区免费在线视频| 免费久久久久久久精品成人欧美视频| 一本大道久久a久久精品| 男人舔女人的私密视频| 日本 av在线| 淫秽高清视频在线观看| 嫁个100分男人电影在线观看| 十分钟在线观看高清视频www| 国产在线精品亚洲第一网站| 一本大道久久a久久精品| 亚洲一区二区三区色噜噜 | 99精品欧美一区二区三区四区| 男女之事视频高清在线观看| 国产av又大| 日本三级黄在线观看| 亚洲av片天天在线观看| 在线观看www视频免费| av欧美777| 久久中文字幕一级| 国产欧美日韩一区二区精品| 国产高清国产精品国产三级| 欧美人与性动交α欧美软件| www.自偷自拍.com| 亚洲av日韩精品久久久久久密| 亚洲aⅴ乱码一区二区在线播放 | 一级片免费观看大全| 精品一区二区三区四区五区乱码| 国产成人av激情在线播放| 亚洲五月色婷婷综合| 欧美在线黄色| 日韩欧美免费精品| 久久香蕉激情| 国产aⅴ精品一区二区三区波| av免费在线观看网站| 新久久久久国产一级毛片| 一二三四社区在线视频社区8| 国产黄色免费在线视频| 欧美成人免费av一区二区三区| 中文字幕av电影在线播放| 日本黄色视频三级网站网址| 日韩欧美一区二区三区在线观看| 日韩欧美免费精品| 久久久国产成人精品二区 | 欧美在线黄色| 99国产综合亚洲精品| 国产成人av教育| 亚洲在线自拍视频| 一区二区三区激情视频| av在线播放免费不卡| 国内毛片毛片毛片毛片毛片| 一级作爱视频免费观看| 9色porny在线观看| 亚洲色图综合在线观看| 日韩精品中文字幕看吧| 午夜激情av网站| 999久久久国产精品视频| 91精品三级在线观看| 久久久久国内视频| 久久伊人香网站| 久久久久国产精品人妻aⅴ院| 亚洲美女黄片视频| 俄罗斯特黄特色一大片| 99久久精品国产亚洲精品| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 宅男免费午夜| 久久久久久久久久久久大奶| 精品日产1卡2卡| 欧美人与性动交α欧美软件| 欧美日本亚洲视频在线播放| 久久久精品欧美日韩精品| 99热国产这里只有精品6| 伦理电影免费视频| 少妇 在线观看| 亚洲精品久久成人aⅴ小说| 日日干狠狠操夜夜爽| 国产精品亚洲av一区麻豆| 午夜日韩欧美国产| 波多野结衣高清无吗| 国产av一区在线观看免费| 日韩免费高清中文字幕av| av中文乱码字幕在线| 最近最新免费中文字幕在线| 大码成人一级视频| 热99国产精品久久久久久7| 国产在线观看jvid| 一夜夜www| 人妻久久中文字幕网| 久久精品亚洲精品国产色婷小说| 无遮挡黄片免费观看| 中文字幕人妻丝袜制服| 很黄的视频免费| 成人精品一区二区免费| 成人av一区二区三区在线看| 久久精品影院6| 如日韩欧美国产精品一区二区三区| 日韩欧美在线二视频| 色老头精品视频在线观看| 精品久久久久久,| 国产有黄有色有爽视频| 亚洲人成伊人成综合网2020| 看黄色毛片网站| 97碰自拍视频| 女性生殖器流出的白浆| 在线观看日韩欧美| 午夜免费鲁丝| 天堂俺去俺来也www色官网| 亚洲精品一二三| 午夜福利在线观看吧| 午夜成年电影在线免费观看| 久久精品亚洲熟妇少妇任你| 丁香欧美五月| 男女之事视频高清在线观看| 国产成人欧美在线观看| 中文字幕精品免费在线观看视频| 欧美一区二区精品小视频在线| 欧美日本中文国产一区发布| 成年人黄色毛片网站| 黄片播放在线免费| 国产激情欧美一区二区| 少妇 在线观看| 日韩欧美一区二区三区在线观看| 啪啪无遮挡十八禁网站| 午夜免费激情av| 黄色丝袜av网址大全| 免费一级毛片在线播放高清视频 | 国产精品永久免费网站| 国产精品一区二区精品视频观看| 在线观看一区二区三区| 欧美在线一区亚洲| 久久久国产一区二区| 免费日韩欧美在线观看| 亚洲自拍偷在线| 国产伦人伦偷精品视频| 久久精品国产99精品国产亚洲性色 | 欧美日韩亚洲高清精品| www.999成人在线观看| 国产欧美日韩一区二区精品| 日日夜夜操网爽| 自线自在国产av| 90打野战视频偷拍视频| aaaaa片日本免费| 中文字幕精品免费在线观看视频| 天天影视国产精品| 久久久久久久久久久久大奶| 高清在线国产一区| 亚洲 欧美 日韩 在线 免费| 88av欧美| 一进一出抽搐动态| netflix在线观看网站| 国产av在哪里看| 日本a在线网址| 伦理电影免费视频| 日本免费一区二区三区高清不卡 | 男女下面进入的视频免费午夜 | 岛国在线观看网站| 男女下面进入的视频免费午夜 | 无限看片的www在线观看| 国产欧美日韩精品亚洲av| 免费久久久久久久精品成人欧美视频| 免费在线观看影片大全网站| 丝袜美腿诱惑在线| 最新美女视频免费是黄的| 欧美日韩一级在线毛片| 久久香蕉国产精品| x7x7x7水蜜桃| 咕卡用的链子| 美女午夜性视频免费| 日韩高清综合在线| 亚洲精品av麻豆狂野| 中文亚洲av片在线观看爽| 亚洲av成人av| 亚洲免费av在线视频| 亚洲午夜精品一区,二区,三区| 一进一出好大好爽视频| 99在线视频只有这里精品首页| 91在线观看av| avwww免费| 久久性视频一级片| 真人做人爱边吃奶动态| 在线观看一区二区三区激情| 日韩人妻精品一区2区三区| 久久国产精品人妻蜜桃| 97碰自拍视频| 国产成人精品久久二区二区91| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| 久久人妻熟女aⅴ| 中文字幕最新亚洲高清| 999精品在线视频| 天天添夜夜摸| 成人18禁在线播放| 悠悠久久av| 黑丝袜美女国产一区| 精品午夜福利视频在线观看一区| 一级a爱视频在线免费观看| 日本黄色日本黄色录像| 夫妻午夜视频| 啦啦啦免费观看视频1| 日本撒尿小便嘘嘘汇集6| 欧美日韩黄片免| 日日干狠狠操夜夜爽| 一级毛片高清免费大全| 欧美激情极品国产一区二区三区| 欧美最黄视频在线播放免费 | 在线看a的网站| 欧美国产精品va在线观看不卡| 天堂中文最新版在线下载| 咕卡用的链子| 91麻豆精品激情在线观看国产 | 老熟妇乱子伦视频在线观看| 亚洲精品美女久久久久99蜜臀| 日本撒尿小便嘘嘘汇集6| 在线观看66精品国产| 午夜福利免费观看在线| 法律面前人人平等表现在哪些方面| 女人被躁到高潮嗷嗷叫费观| 亚洲狠狠婷婷综合久久图片| 一级片'在线观看视频| 国产三级在线视频| 三级毛片av免费| 欧美日韩亚洲高清精品| 亚洲狠狠婷婷综合久久图片| 女警被强在线播放| 欧美日韩黄片免| 视频在线观看一区二区三区| 日韩国内少妇激情av| 亚洲精品一二三| av片东京热男人的天堂| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 91大片在线观看| 日韩成人在线观看一区二区三区| 午夜精品在线福利| 久久久久国产精品人妻aⅴ院| 日本黄色日本黄色录像| 老司机福利观看| 好男人电影高清在线观看| 久久久久久久精品吃奶| 一级毛片精品| 1024香蕉在线观看| 成年女人毛片免费观看观看9| 身体一侧抽搐| 久久亚洲真实| 在线观看舔阴道视频| 国产精品一区二区三区四区久久 | 久久 成人 亚洲| 婷婷六月久久综合丁香| 99久久国产精品久久久| 亚洲三区欧美一区| 亚洲精品中文字幕一二三四区| 国产精品野战在线观看 | 亚洲成国产人片在线观看| 黄色 视频免费看| 亚洲黑人精品在线| 亚洲国产欧美网| 欧美黄色片欧美黄色片| 美女扒开内裤让男人捅视频| 好男人电影高清在线观看| 高清毛片免费观看视频网站 | 自线自在国产av| 成人手机av| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 精品国产乱子伦一区二区三区| 美女午夜性视频免费| 热99re8久久精品国产| 在线观看舔阴道视频| 99热只有精品国产| 午夜久久久在线观看| 欧美av亚洲av综合av国产av| 久99久视频精品免费| 黄网站色视频无遮挡免费观看| 最近最新中文字幕大全免费视频| 色综合婷婷激情| 亚洲av成人av| 91大片在线观看| 国产主播在线观看一区二区| 极品人妻少妇av视频| 不卡一级毛片| a在线观看视频网站| 午夜激情av网站| 日日干狠狠操夜夜爽| 咕卡用的链子| 国产精品日韩av在线免费观看 | 亚洲avbb在线观看| 涩涩av久久男人的天堂| 久久香蕉激情| 欧美亚洲日本最大视频资源| 久久久久国内视频| 午夜激情av网站| а√天堂www在线а√下载| 午夜91福利影院| 国产精品九九99| 日韩大尺度精品在线看网址 | 欧美在线黄色| 亚洲一区高清亚洲精品| 久久久久亚洲av毛片大全| 99在线视频只有这里精品首页| 亚洲三区欧美一区| 1024视频免费在线观看| 欧美日韩精品网址| 亚洲一码二码三码区别大吗| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看的高清视频| 人妻丰满熟妇av一区二区三区| 在线永久观看黄色视频| www.精华液| 国产一区在线观看成人免费| 久久精品国产99精品国产亚洲性色 | 国产精品成人在线| 精品一区二区三区视频在线观看免费 | cao死你这个sao货| 黑人巨大精品欧美一区二区mp4| 成人手机av| 国产精品综合久久久久久久免费 | 精品国产超薄肉色丝袜足j| www.999成人在线观看| 久久久久久久久中文| 91麻豆精品激情在线观看国产 | 亚洲国产精品999在线| 老司机午夜福利在线观看视频| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9| 一区福利在线观看| 成人18禁在线播放| 人人妻人人爽人人添夜夜欢视频| 中文字幕av电影在线播放| 成人免费观看视频高清| 丁香六月欧美| 大陆偷拍与自拍| 两性午夜刺激爽爽歪歪视频在线观看 |