• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structures,DNA-binding,SAR,and Spectral Properties of Ruthenium Methylimidazole Complexes[Ru(MeIm)4L]2+(L=iip,tip,2ntz)

    2014-07-18 11:51:53GuodongLiLnmeiChenXinyuWngLingfengWuXinmingJieJinChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Guo-dong Li,Ln-mei Chen?,Xin-yu Wng,Ling-feng Wu,Xin-ming Jie,Jin-n Chen?

    a.School of Pharmacy,Guangdong Medical College,Zhanjiang 524023,China

    b.The First Clinical Medical College,Guangdong Medical College,Zhanjiang 524023,China

    c.Analysis Centre of Guangdong Medical College,Zhanjiang 524023,China

    (Dated:Received on July 20,2013;Accepted on March 20,2014)

    Electronic Structures,DNA-binding,SAR,and Spectral Properties of Ruthenium Methylimidazole Complexes[Ru(MeIm)4L]2+(L=iip,tip,2ntz)

    Guo-dong Lia,Lan-mei Chena?,Xin-yu Wangb,Ling-feng Wub,Xin-ming Jiec,Jin-can Chenc?

    a.School of Pharmacy,Guangdong Medical College,Zhanjiang 524023,China

    b.The First Clinical Medical College,Guangdong Medical College,Zhanjiang 524023,China

    c.Analysis Centre of Guangdong Medical College,Zhanjiang 524023,China

    (Dated:Received on July 20,2013;Accepted on March 20,2014)

    Theoretical studies on the electronic and geometric structures,the trend in DNA-binding affinities as well as the the structure-activity relationship(SAR)of a series of water-soluble Ru(II)methylimidazole complexes,i.e.[Ru(MeIm)4iip]2+(1)(MeIm=1-methylimidazole, iip=2-(1H-imidazo-4-group)-1H-imidazo[4,5-f][1,10]phenanthroline),[Ru(MeIm)4tip]2+(2) (tip=2-(thiophene-2-group)-1H-imidazo[4,5-f][1,10]phenanthroline),and[Ru(MeIm)42ntz]2+(3)(2ntz=2-(2-nitro-1,3-thiazole-5-group)-1H-imidazo[4,5-f][1,10]phenanthroline),were carried out using the density functional theory(DFT).The electronic structures of these Ru(II) complexes were analyzed on the basis of their geometric structures optimized in aqueous solution,and the trend in the DNA-binding constants(Kb)was reasonably explained.The results show that the replacement of imidazole ligand by thiophene ligand can ef f ectively improve the DNA-binding affinity of the complex.Meanwhile,it was found that introducing the stronger electronegative N atom and NO2group on terminal loop of intercalative ligand can obviously reduce the complex’s LUMO and HOMO-LUMO gap energies.Based on these f i ndings,the designed complex[Ru(MeIm)42ntz]2+(3)can be expected to have the greatest Kbvalue in complexes 1-3.In addition,the structure-activity relationships and antitumor mechanism were also carefully discussed,and the antimetastatic activity of the designed complex 3 was predicted.Finally,the electronic absorption spectra of this series of complexes in aqueous solution were calculated,simulated and assigned using DFT/TDDFT methods as well as conductor-like polarizable continuum model(CPCM),and were in good agreement with the experimental results.

    Ruthenium methylimidazole complex,DNA-binding,Structure-activity relationships,Spectral property,DFT calculation

    I.INTRODUCTION

    It is well known that many anticancer agents,antiviral agents and antiseptic agents take action through binding to DNA[1-3].There are mainly three binding modes when a drug binds to DNA:the electrostatic binding,the groove binding,and the intercalation binding.Among them,the intercalation binding is the most important binding mode when the transition metal drugs,especially the antitumor ruthenium complexes interact with DNA.

    Recently,more and more interests have been focused on the interaction and the binding mechanism between Ru(II)polypyridyl complexes and DNA [4-6],particularly on the well known[Ru(L1)2(L2)]2+(L1=phen or bpy;L2=polypyridyl)and their derivatives,which cannot only intercalate between the DNA base-pairs or form some outside binding,but alsocleavetheDNAdoublehelixef f ectively[2, 7-9].However,mostofthereportedRu(II) polypyridyl complexes are less soluble in water due to their big polycyclic heteroaromatic hydrophobic ligands.Recently,it has been reported the DNA-binding of a series of ruthenium methylimidazole complexes,such as[Ru(MeIm)4(L)]2+(L=phen,dpq,and dppz,phen=1,10-phenanthroline,dpq=pyrazino[2,3-f][1,10]phenanthroline,and dppz=dipyrido[3,2-a:20,30-c]phenazine)was with better aqueous solubility than thatofRu(II)polypyridylcomplexeswiththe general formula[Ru(L1)2(L2)]2+(L1=phen or bpy; L2=polypyridyl)[10-13].What is more important is that the Ru(II)-imidazole complexes have already been proven to possess antitumor activity and even are able to induce apoptosis in lung cancer A549 cells through intrinsic mitochondrial pathway[12,13].

    The distinctive antimetastatic activity and favorable DNA-binding abilities of water-soluble Ru(II)-imidazole complexes must be bound up with their characteristicsof electronic and geometric structures as well as the related properties.Therefore,clarif i cation of these correlations will be very helpful for comprehension of the action mechanisms of metal drugs,for regulation of interactions between the complexes and DNA,and further for the design of new clinic anticancer drugs and novel complexes with biochemical activities.

    Recently,the Ru(II)polypyridyl complexes have also attracted many theoretical chemists,since the density functional theory(DFT)[14-16]can better consider electron correlation energies and obviously reduce the computational expenses,and the time-dependent DFT (TDDFT)methods[17,18]can suit the calculations of the spectral properties of such a kind of complex, more and more theoretical computations applying DFT and TDDFT methods on Ru(II)complexes have been reported[8-11,19-24].We have also reported some DFT/TDDFT results on the electronic structures and spectral properties of some Ru(II)complexes[10,11, 22-24].Such theoretical studies on the level of molecular electronic structures of the complexes are very significant in understanding the trend in DNA-binding and related properties of the complexes and thus guiding functional molecular design or molecular modif i cation. Moreover,the computed results of spectral properties are in good agreement with the experimental ones,and thus provide considerable explanations and predictions for the experimental f i ndings[10,11,22-24].

    Inthiswork,thetheoreticalstudiesonthe water-soluble Ru(II)methylimidazole complexes,i.e. [Ru(MeIm)4iip]2+(1),[Ru(MeIm)4tip]2+(2),and [Ru(MeIm)42ntz]2+(3)by DFT method are carried out,the schematic structures of complexes 1-3 are shown in Fig.1.Complexes 1 and 2 have been synthesized and structurally characterized in our lab,while complex 3 is designed based on the theoretical f i ndings. The ef f ects of some substituents on the intercalative ligand on the geometric and electronic structures are investigated.We mainly focused on theoretically explaining the trend in DNA-binding affinities,and then inquirying of structure-activity relationships and antitumor mechanism of this series of complexes.In addition, the absorption spectra of these complexes in aqueous solution were also computed,simulated,and discussed by the TDDFT method.

    II.COMPUTATIONAL DETAILS

    From Fig.1,we can see that every title complexe forms from a Ru(II)ion,a main intercalative ligand (iip,tip or 2ntz),and four monodentate co-ligands (1-methylimidazole),and has no symmetry.In order to obtain a suitable calculation method,six dif f erent hybrid GGA exchange correlation functionals:B3LYP, BLYP,BP86,BPW91,TPSSh,and PBE1PBE with LanL2DZ,SDD and other dif f erent hybrid basis set were tested to f i nd a suitable functional for our investigated

    FIG.1 Schematic structures of the ruthenium methylimidazole complexes[Ru(MeIm)4iip]2+(1),[Ru(MeIm)4tip]2+(2),and[Ru(MeIm)42ntz]2+(3).

    systems.Since the crystal structures of the three title complexes have not been determined yet,the direct comparison between the computational results and the corresponding experimental data cannot be performed. So the analog[Ru(bpy)3]2+was used to test the calculation method.Comparing the calculated geometrical parameters of the[Ru(bpy)3]2+in vacuo and in aqueous solution with corresponding X-ray data[25]shown in Table I,we can clearly see that the error was the slightest when the complex was carried out using the density functional theory(DFT)at the level of PBE1PBE/SDD (D95V up to Ar and Stuttgart/Dresden ECPs on the remainder of the periodic table).Therefore,full geometry optimization of the three title complexes in ground state was carried out in aqueous solution using the DFT-PBE1PBE method and SDD basis set(SDD basis set for all the atoms).PBE1PBE is the exchangecorrelation functional of Perdew,Burke,and Ernzerhof(PBE)[26].The solvational calculations were carried out with a conductor polarizable continuum model (CPCM)[27,28]and employing a dielectric constant(εwater=78.39)for water.Moreover,in order to explore the solvent ef f ect on the geometrical structures and related properties,the calculations of these complexes in vacuo were also carried out by adopting the same method.

    TABLE I Selected bond lengths,bond angles,and dihedral angles of complex[Ru(bpy)3]2+calculated by dif f erent methods.

    For the obtained structures,the frequency calculations with the same method were also performed in order to verify the optimized structure to be an energy minimum.On the basis of the DFT optimized geometry,the electronic absorption spectra in aqueous solution were calculated with the TDDFT at the level of B3LYP/LanL2DZ(LanL2DZ basis set for all the atoms)[29,30].The CPCM model was applied to considering the solvent ef f ect in aqueous solution. Eighty singlet-excited-state energies of these complexes were calculated to reproduce electronic absorption spectra.All computations were performed with the Gaussian 09 quantum chemistry program package(revision B.01)[31].In addition,in order to clearly depict the detail of some frontier molecular orbitals of these complexes in ground state,their stereocontour graphs were drawn with the Molden v4.2 program[32]based on the DFT computational results.

    III.RESULTS AND DISCUSSION

    A.Computed geometrical structures characters of the Ru(II)methylimidazole complexes

    Table II gives the computational selected geometric parameters of the ground-state complexes 1-3 in vacuo and in aqueous solution.From computational geometric parameters in aqueous solution in Table II,we can see the following:f i rst,the coordination bond length (0.2047-0.2049 nm)of the main ligand for every one of complexes 1-3 is slightly shorter than that(0.2093 nm) of the co-ligands.Secondly,the mean bond length of the skeleton of the main ligand(C-C(N)m)and that of the co-ligands(C-C(N)co)for complexes 1-3 are almost unchanged,and the former is only slightly longer than the latter for every one of complexes 1-3.Thirdly,although all related dihedral angles(listed in Table II)in the main-ligand of these complexes are close to 180?, there is a detectable dif f erence among the dihedral angles(α)of complexes 1-3,which are 174.5?,179.5?, and 179.7?,respectively.Such a fact shows that the planarity of the main-ligand of the complex 1 is worse than those of complexes 2 and 3,and thus the steric hindrance of its main-ligand intercalating between DNA-base-pairs must be bigger than those of later complexes (see Fig.2).In addition,α calculated for complex 1 in aqueous solution(174.5?)is much larger than those in vacuo(155.5?).Therefore,it is suggested that the solvent ef f ect plays a valuable role in modifying the geometrical structures characters of this kind of Ru(II) complex.

    B.Theoretical explanation of DNA-binding behaviors

    The intrinsic binding constants Kbof the complexes 1 and 2 to calf thymus(CT)DNA,which quantitatively express their DNA-binding affinities,have been experimentally measured.The results show that the trend in DNA-binding constants(Kb)of the two complexes isKb(1)(6.1×105L/mol)<Kb(2)(7.2×105L/mol)[12]. Such a trend can be reasonably explained by the DFT computations and the frontier molecular orbital theory[33].At the same time,the DNA-binding constant Kb(3)of the complex 3 can be predicted by the calculated results.Some frontier molecular orbital(MO) energies are listed in Table III,while MO contour plots are shown in Fig.3.

    TABLE II Calculated selected bond lengths,bond angles and dihedral angles of complexes 1-3.

    TABLE III Energies(εi)and HOMO-LUMO gap of some frontier molecular orbitals of complexes 1-3 calculated in aqueous solution.

    FIG.2 Optimized structures for complexes 1 and 2 in aqueous solution.

    As well-known,there are π-π stacking interactions between the ruthenium complex and DNA-base-pairs while the complex binds to DNA in an intercalation(or part intercalation)mode[6,7].Moreover,many theoretical studies have shown that the factors a ff ecting DNA-binding affinity of these complexes are the planarity,the energy and population of the lowest unoccupied molecular orbital(LUMO,even,and LUMO+x) of the intercalated molecule[8,10,11,22-24].

    FIG.3 The contour plots of some related frontier molecular orbitals of complex 1 in aqueous solution.Those of complexes 2 and 3 are given in Fig.S1 in supplementary material.

    TABLE IV Cytotoxicities(IC50)of complexes 1,2,and cisplatin against selected human cancer and normal cell lines(HBE) [34].

    The above-mentioned trend in DNA-binding affinities,i.e.,Kb(1)<Kb(2),can be explained as follows: fi rst,the energies of the LUMO+x(x=0-2)of these complexes are all negative and rather low(see Table III),and thus it suggests these complexes are very excellent electron acceptors in their DNA-binding.Secondly,the LUMO energies(εLUMO)follow the sequence of(1,-2.30 eV)≈(2,-2.33 eV)>(3,-3.99 eV).Moreover,from Fig.3 and Fig.S1(see supplementary material),we can see that the components of the LUMO+x (x=0-2)come mainly from p orbitals of C and N atoms in intercalative ligands,they can be characterized by π-components.A lower LUMO energy of complex is advantageous on accepting the electrons from DNA base pairs in an intercalative mode,because electrons or“electron-cloud”can transfer from HOMO of DNA-base-pairs to LUMO of the complex via orbital interaction.So we can predict that the trend in DNA-binding constants(Kb)of these complexes is Kb(3)>Kb(2)≈Kb(1)via the analysis in LUMO energies.Thirdly,from the geometric parameters of these complexes(see Table II and Fig.2),although the planarity and conjugated area of the main-ligand-skeletons of complexes 1-3 are not substantially dif f erent,the steric hindrance of the main ligand of complex 1 in the intercalative mode should be larger than those of complexes 2 and 3,because the important dihedral angle α (N1-C2-C3-N4)of main-ligand of complex 1 is obviously smaller than those of other two complexes in aqueous solution.So we can predict that the DNA-binding constant of complex 1 should be the smallest.In a word,considering both factors of LUMO energy and steric hindrance,the trend in DNA-binding affinities, i.e.,Kb(1)<Kb(2),can be reasonably explained.Meanwhile,we can predict that the value of DNA-binding constant of designed complex 3 should be the largest in complexes 1-3,for its LUMO energy is the lowest and the planarity of its main ligand corresponds to that of complex 2 but the conjugated area of its main ligand is larger.

    C.The inquiry of structure-activity relationships and antitumor mechanism

    The IC50values of complexes 1 and 2 determined in a series of human tumor cell lines by our group are given in Table IV[34].From Table IV,we can see clearly that the trend in the antitumor activities(expressed by A,the lower the IC50value,the higher the A is)of the two ruthenium methylimidazole complexes is A(1)<A(2).Moreover,complex 2 exhibited lower cytotoxicity towards normal cells compared with cisplatin and characterized the biological activities of a new class drugs.

    It is commonly believed that DNA is the main target of many antitumor ruthenium agents[35].Ruthenium complexes can be designed to target particular sequences or structural features of the DNA double helix,and it has been found that the structure of DNA can also be greatly inf l uenced upon the binding of these complexes[36].Many anticancer agents,antiviral agents,and antiseptic agents take action through binding to DNA.The DNA-binding of drugs can be attributed to the hydrophobic interaction,electrostatic forces,hydrogen bond,and so on.In our experiments,it has been found that these Ru(II)methylimidazole complexes possess some common characteristics,e.g.,such complexes can bind to DNA in an intercalation mode,and their Kbare rather high (6.1×105-7.2×105L/mol).Therefore,the interaction between the complexes and DNA in an intercalative mode may be the most important cause which endows the complexes with an excellent antitumor activity.

    For cisplatin,the aquation process is believed to be the key activation step before the drug reaches its intracellular target[37],since the aqua complexes are generally much more reactive towards DNA bases than the parental chloro complex[38].Dif f erent from cisplatin, the studied ruthenium methylimidazole complexes are coordination-saturated,and they have no leaving group, while the most important structural feature of them is that they contain planar aromatic moieties(intercalative ligand)and can bind to DNA in an intercalation binding mode.Therefore,their strong DNA-binding affinities may account for the excellent antitumor activities of these complexes.Because of the strong DNA-binding affinities,they can easily interact with the DNA of tumor cells,even make them be cleaved or unbinded, and thus reduce the proteolytic activities of tumors and arrest the cell cycles.Such a mechanism is the same as that proposed for acridine,bleomycin,and daunorubicin[39,40].

    From the above ideas,we can discuss the inquiry of structure-activity relationships from DNA-binding affinities,the HOMO-LUMO gap as well as the hydrophobic parameter.

    Firstly,thetrendinDNA-bindingaffinitiesof twotitleRu(II)methylimidazolecomplexes,i.e., Kb(1)<Kb(2),is in agreement with that of A,i.e., A(1)<A(2).

    Secondly,?εL-Hof a compound molecule is generally an important factor characterizing the reactivity of the molecule on the kinetics[41],i.e.,the smaller?εL-H,the greater the reactivity of the molecule is. The trend in?εL-Hbeing?εL-H(2)<?εL-H(1)is also in agreement with that in the anticancer-activity(A). Therefore,it clearly shows that the energies of?εL-Hfor the title complexes are important factors af f ecting their anticancer-activities.The lower energy of LUMO and smaller HOMO-LUMO gap of the complexes must be advantageous on improving their anticancer-activities.

    Thirdly,the hydrophobic parameter(usually expressed as lgP)has been investigated as a factor relevant to anticancer activity of metal-based drugs for many years,because lgP af f ects the absorption of pharmaceutical molecules.In general,the absorbed velocity of the drugs exhibits a linear relationship within a certain varied extent of the lgP.A correlation between increased hydrophobicity and increased cytotoxic activity has been reported for several classes of organic and metal-base drugs[42-46].

    For our system,although the lgP data of the Ru(II) methylimidazole complexes are not experimentally measured,the lgP and ClgP data of the main ligand can be obtained from chemoffice software.Since the ancillary ligands of the studied complexes 1-3 are the same,the lgP(or ClgP)data of the main ligand can be used to qualitatively analyze the trend in the hydrophobic values of the whole complexes.The lgP(and ClgP)of the main ligand are listed in Table V.From Table V,we can see that the order of the lgP(and ClgP)of the mainligand is lgP(2)>lgP(3)>lgP(1).It means that complex 2 has a rather excellent fat-solubility than that of complex 1.Since many antimetastatic agents usually perform their activity in some organic solvents[47,48], the higher lgP(and ClgP)of 2 should be a considerable factor for its higher cytotoxicity.

    TABLE V The lgP and ClgP data of the intercalative ligand of complexes 1-3.

    D.Prediction for activity of designed complex 3

    The designed complex 3 is calculated using the same method and basis set(PBE1PBE/SDD),the geometric and electronic structures parameters as well as the hydrophobic parameter are listed in Tables II,III,and V respectively.It can be observed that:(i)the geometric structure of complex 3 is similar to that of complex 2.Moreover,the plane area of the intercalative ligand of complex 3 is larger than that of complex 2.(ii)The energies(εL)of the LUMO are in sequence of εL(3)<εL(2)<εL(1),and the trend in?εL-His?εL-H(3)<?εL-H(2)<?εL-H(1).(iii)The hydrophobic parameter(lgP and ClgP)of the main ligand are in sequence of lgP(2)>lgP(3)>lgP(1).Based on the above discussion on the DNA-binding behaviors and structure-activity relationship of the title complexes 1, 2 as well as the structural character of complex 3,we can predict that complex 3 has high anticancer activity which is even higher than that of complex 2.

    In general,factors af f ecting the antimetastatic activity are very complicated.Many factors might af f ect the biological activity,e.g.,the coordination to possible biological target(DNA,etc.)[13,49],dif f erences of uptake and transport into cells among the metal-base drugs molecules[33,49-51],and other physicochemical properties,etc.Here,we have only made a prediction theoretically for the designed complex 3,and these results are awaiting experimental verif i cation.

    E.Theoretical explanation of electronic absorptionspectral properties

    Since the electronic absorption spectra play a very important role in the study of interaction between the complex and DNA,especially a singlet metal-to-ligand charge transfer(1MLCT)which is very widely applied in bioinorganic chemistry,it is necessary and signif i cant to clarify the detail of these spectral properties theoretically.The TDDFT approach is a very good tool forcomputing the wavelengths and revealing the spectral properties of the complexes.Based on the experimental work,the complete electronic absorption spectra of the title complexes in aqueous solution were minutely studied,simulated and discussed with the TDDFT at the level of B3LYP/LanL2DZ combined with CPCM model.The calculated wavelengths in the range of 250-600 nm,oscillator strengths(f≥0.07),main orbital transition contributions(≥25%)and related orbital characters(see Fig.3 and Fig.S1)of the complexes 1-3,as well as the experimental values are given in Table VI and Table S1 in supplementary material.In addition,the simulated absorption spectra in aqueous solution are given in Fig.4.

    TABLE VICalculated wave lengths(λmax),oscillator strengths(f≥0.07),and main orbital transition contributions(≥25%)of complex 1 in aqueous solution as well as the experimental values.

    As shown in Table VI,for complex 1,in the range of 250-550 nm,there a strong transition at 521.5 nm (f=0.070)with1MLCT(metal-to-ligand)character comes mainly fromtransition,such a band can be mainly responsible to the experimental one at 523 nm.The experimental band at 456 nm can be assigned to a band at 440.8 nm(f=0.106)also with a metal-to-ligand transition(feature. Besides these two1MLCT transitions,there also a strong band at 347.6 nm(f=0.135)with1LL(ligandto-ligand)character comes mainly from intraligand iip π→π?transition.The experimental broad band at 276 nm can be assigned to a superposition of these f i ve bands at 295.8 nm(f=0.480),287.6 nm (f=0.116),277.6 nm(f=0.152),276.2 nm(f=0.265), and 261.8 nm(f=0.318).These bands mainly involve the orbital transitions of HOMO-3→LUMO+2, HOMO-8→LUMO,HOMO-6→LUMO+1,and HOMO-9→LUMO,and they can be respectively characterized byand

    FIG.4 Simulated electronic absorption spectra(dash line) with TDDFT method considering solvent ef f ect with CPCM method at the level of B3LYP/LANL2DZ for(a)complex 1,(b)complex 2,and(c)complex 3 in aqueous solution as well as the experimental spectra(solid line).

    Similar analysis can be applied to complex 2(see Table S1).First,the experimental band at 523 nm which can be assigned to a band at 525.2 nm(f=0.078) comes mainly fromtransition.The experimental band at 456 nm can be also assigned to a band at 447.3 nm(f=0.101)with a metal-to-ligand transition(dRu→feature.Secondly,besides these two1MLCT transitions,there are also three strong transitions at 385.5 nm(f=0.091),354.0 nm(f=0.304), and 326.8 nm(f=0.746)with1LL(ligand-to-ligand) character coming mainly from intraligand tiptransition.Thirdly,the experimental band o at 287 nm can also be assigned to a superposition of these two bands at 285.4 nm(f=0.151)and 282.2 nm (f=0.167),and both of them can be characterized by

    From the simulated spectrum of complex 3 in aqueous solution(see Table S1 and Fig.4(c)),we can see that there are main two strong absorption bands observedat 530.0 and 274 nm.The broad band at 530.0 nm can be mainly attributed to a superposition of two bands (536.1 and 520.5 nm)with a metal-to-ligandtransition feature.The other sharp band at 274.0 nm can be assigned to a superposition of three bands(270.6, 270.2,and 274.3 nm)with a ligand-to-ligand transitionfeature.

    In summary,the calculated results show that the TDDFT method combined with the CPCM model at B3LYP/LanL2DZ level can reliably reproduce the electronic absorption spectra of such a kind of complex,and the largest absolute error is~16 nm(see Table VI and Table S1).Moreover,comparing the spectra of complexes 1 and 2 with that of designed complex 3,it is interesting to f i nd that the1MLCT band of complex 3 obviously red shifts relative to the those of complexes 1 and 2,and it is in agreement with the fact that?εL-Hof complex 3 is obviously smaller than those of complexes 1 and 2(see Table III).

    IV.CONCLUSION

    TheDFTstudiesofaseriesofcomplexes [Ru(MeIm)4(L)]2+(L=iip,tip,2ntz)1-3 show that the substituents on the intercalative ligands have important ef f ects on the electronic structures,trend in the DNA-binding affinities,antimetastatic activity and spectral properties of these complexes.Based on the discussion on the DNA-binding behaviors and structure-activity relationship of the title complexes 1,2 as well as the structural character of complex 3,the antimetastatic activity of the designed complex 3 has been predicted with high anticancer activity which is even better than that of complex 2.In particular,it is interesting to f i nd that?εL-Hof complex 3 decreases more than those of complexes 1 and 2,and thus its observable red shift in corresponding1MLCT band can be reasonable explained.

    Supplementary material:Calculated wavelengths (λmax),oscillator strengths(f≥0.07),and main orbital transition contributions(≥25%)of absorption spectra of complexes 2 and 3 in aqueous solution(Table S1), and the contour plots of some related frontier molecular orbitals of complexes 2 and 3 in aqueous solution (Fig.S1).

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.20903027),the Natural Science Foundation of Guangdong Province of China(No.9452402301001941),the Medical Scientif i c Research Foundation of Guangdong Province of China (No.B2013297),and the University Student in Guangdong Province Innovation and Entrepreneurship Training Program(No.1057112019 and No.1057112013).

    [1]M.J.Clarke,F.Zhu,and D.R.Frasca,Chem.Rev. 99,2511(1999).

    [2]M.J.Clarke,Coord.Chem.Rev.232,69(2002).

    [3]J.Liu,W.J.Mei,A.W.Xu,C.P.Tan,and L.N.Ji, Transition Met.Chem.28,500(2003).

    [4]L.M.Wilhelmsson,F.Westerlund,P.Lincoln,and B. Nord′en,J.Am.Chem.Soc.124,12092(2002).

    [5]K.E.Erkkila,D.T.Odom,and J.K.Barton,Chem. Rev.99,2777(1999).

    [6]L.N.Ji,X.H.Zou,and J.G.Liu,Coord.Chem.Rev. 216-217,513(2001).

    [7]G.Sava,A.Bergamo,S.Zorzet,B.Gava,C.Casarsa, M.Cocchietto,A.Furlani,V.Scarcia,B.Serli,E.Iengo, E.Alessio,and G.Mestroni,Eur.J.Cancer 38,427 (2002).

    [8]S.Shi,J.Liu,J.Li,K.C.Zheng,C.P.Tan,L.M. Chen,and L.N.Ji,J.Chem.Soc.Dalton Trans.11, 2038(2005).

    [9]L.F.Tan,J.L.Shen,J.Liu,L.L Zeng,L.H.Jina,and C.Weng,Dalton Trans.41,4575(2012).

    [10]L.M.Chen,J.Liu,J.C.Chen,C.P.Tan,S.Shi,K. C.Zheng,and L.N.Ji,J.Inorg.Biochem.102,330 (2008).

    [11]L.M.Chen,J.Liu,J.C.Chen,S.Shi,C.P.Tan,K.C. Zheng,and L.N.Ji,J.Mol.Struct.881,156(2008).

    [12]X.C.Yang,Y.N.Liu,S.T.Yao,Y.Xia,Q.Li,W.J. Zheng,L.M.Chen,and J.Liu,J.Coord.Chem.64, 1491(2011).

    [13]L.L.Zeng,Y.Xiao,J.Liu,and L.F.Tan,J.Mol. Struct.1019,183(2012).

    [14]A.D.Becke,J.Chem.Phys.98,1372(1993).

    [15]A.G¨orling,Phys.Rev.A 54,3912(1996).

    [16]J.B.Foresman,?.Frisch,Exploring Chemistry with Electronic Structure Methods,2nd Edn.,Pittsburgh, PA:Gaussian Inc.,(1996).

    [17]J.B.Foresman,M.Head-Gordon,J.A.Pople,and M. J.Frisch,J.Phys.Chem.96,135(1992).

    [18]I.Ciof i ni,P.P.Lain′e,F.Bedioui,and C.Adamo,J. Am.Chem.Soc.126,10763(2004).

    [19]L.C.Xu,S.Shi,J.Li,S.Y.Liao,K.C.Zheng,and L. N.Ji,Dalton Trans.2,291(2008).

    [20]L.C.Xu,J.Li,Y.Shen,K.C.Zheng,and L.N.Ji,J. Phys.Chem.A 111,273(2007).

    [21]J.L.Yao,X.Gao,W.L.Sun,S.Shi,and T.M.Yao, Dalton Trans.42,5661(2013).

    [22]J.Li,L.C.Xu,J.C.Chen,K.C.Zheng,and L.N.Ji, J.Phys.Chem.A 110,8174(2006).

    [23]J.Li,J.C.Chen,L.C.Xu,K.C.Zheng,and L.N.Ji, J.Organomet.Chem.692,831(2007).

    [24]X.W.Liu,J.C.Chen,X.Hu,H.Li,K.C.Zheng,and L.N.Ji,Helv.Chim.Acta.91,1374(2008).

    [25]C.J.Murphy,M.R.Arkin,Y.Jenking,N.D.Ghatlia, S.H.Bossmann,N.J.Turro,and J.K.Barton,Science 262,1025(1993).

    [26]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [27]V.Barone and M.Cossi,J.Phys.Chem.A 102,1995 (1998).

    [28]M.Cossi,N.Rega,G.Scalmani,and V.Barone,J. Comp.Chem.24,669(2003).

    [29]P.J.Hay and W.R.Wadt,J.Chem.Phys.82,270 (1985).

    [30]W.R.Wadt and P.J.Hay,J.Chem.Phys.82,284 (1985).

    [31]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V. Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji, M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov, J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M. Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida, T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven, J.A.Jr.Montgomery,J.E.Peralta,F.Ogliaro,M. Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V. N.Staroverov,T.Keith,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision B.01, Wallingford:Gaussian Inc.,(2010).

    [32]G.Schaftenaar,Molden V4.2,Program CAOS/CAMM Center Nijmegen Toernooiveld,The Netherlands:Nijmegen,(1991).

    [33]I.Fleming,Frontier Orbital and Organic Chemical Reaction,New York:Wiley,(1976).

    [34]X.X.Yang,L.M.Chen,Y.N.Liu,Y.G.Yang,T.F. Chen,W.J.Zheng,J.Liu,and Q.Y.He,Biochimie 94,345(2012).

    [35]W.H.Ang and P.J.Dyson,Eur.J.Inorg.Chem.20, 4003(2006).

    [36]K.A.Marx,R.Kruger,and M.J.Clarke,Md.Cell. Biochem.86,155(1998).

    [37]M.Howe-Grant and S.J.Lippard,Met.Ions Biol.Syst. 11,63(1980).

    [38]S.Suvachittanont and R.van Eldik,Inorg.Chem.33, 895(1994).

    [39]Y.N.V.Gopal,N.Konuru,and A.K.Kondapi,Arch. Biochem.Biophys.401,53(2002).

    [40]A.K¨ung,T.Pieper,and B.K.Keppler,J.Chromatogr. B 759,81(2001).

    [41]J.I.Aihara,Theor.Chem.Acc.102,134(1999).

    [42]J.C.Chen,L.Qian,Y.Shen,L.M.Chen,and K.C. Zheng,Chin.J.Chem.24,1531(2006).

    [43]J.C.Chen,L.M.Chen,S.Y.Liao,L.Qian,and K.C. Zheng,Chin.J.Chem.Phys.22,285(2009).

    [44]W.J.Wu,J.C.Chen,K.C.Zheng,and F.C.Yun, Chin.J.Chem.Phys.18,936(2005).

    [45]M.G.Mendoza-Ferri,C.G.Hartinger,R.E.Eichinger, N.Stolyarova,K.Severin,M.A.Jakupec,A.A. Nazarov,and B.K.Keppler,Organometallics 27,2405 (2008).

    [46]S.H.van Rijt,A.Mukherjee,A.M.Pizarro,and P.J. Sadler,J.Med.Chem.53,840(2010).

    [47]F.Charmantray,M.Demeunynck,D.Carrez,A.Croisy, A.Lansiaux,C.Bailly,and P.Colson,J.Med.Chem. 46,967(2003).

    [48]F.R.Mu,E.Hamel,D.J.Lee,D.E.Pryor,and M. Cushman,J.Med.Chem.46,1670(2003).

    [49]Y.J.Liu,C.H.Zeng,Z.H.Liang,J.H.Yao,H.L. Huang,Z.Z.Li,and F.H.Wu,Eur.J.Med.Chem. 45,3087(2010).

    [50]C.P.Tan,S.S.Lai,S.H.Wu,S.Hu,L.J.Zhou,Y. Chen,M.X.Wang,Y.P.Zhu,W.Lian,W.L.Peng, L.N.Ji,and A.L.Xu,J.Med.Chem.53,7613(2010).

    [51]C.P.Tan,S.H.Wu,S.S.Lai,M.X.Wang,Y.Chen, L.J.Zhou,Y.P.Zhu,W.Lian,W.L.Peng,L.N.Ji, and A.L.Xu,Dalton Trans.40,8611(2011).

    ?Authors to whom correspondence should be addressed.E-mail:jincanchen@126.com,lanmeichen@126.com

    国产成人freesex在线| 看十八女毛片水多多多| 欧美日韩国产mv在线观看视频 | 联通29元200g的流量卡| 亚洲图色成人| 国产色婷婷99| 久久亚洲国产成人精品v| 日本熟妇午夜| 热99在线观看视频| 国产高潮美女av| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区av在线| 久久这里只有精品中国| 亚洲内射少妇av| 国产一区亚洲一区在线观看| 少妇丰满av| 美女黄网站色视频| 夫妻午夜视频| 国产一区二区亚洲精品在线观看| 欧美另类一区| 男女边吃奶边做爰视频| 国产一区二区亚洲精品在线观看| 国产在视频线精品| 乱系列少妇在线播放| 色尼玛亚洲综合影院| 国产伦一二天堂av在线观看| 永久网站在线| 成人国产麻豆网| 激情 狠狠 欧美| 美女cb高潮喷水在线观看| 2021少妇久久久久久久久久久| 国产黄色视频一区二区在线观看| 亚洲av电影不卡..在线观看| 一级av片app| 亚洲国产精品国产精品| 婷婷色综合www| 国产精品久久久久久av不卡| 日日干狠狠操夜夜爽| 我要看日韩黄色一级片| 啦啦啦中文免费视频观看日本| 好男人在线观看高清免费视频| 成年av动漫网址| 99久久精品一区二区三区| 国产伦精品一区二区三区四那| 久久久久久久久中文| 少妇熟女aⅴ在线视频| av.在线天堂| 免费观看在线日韩| 日韩国内少妇激情av| 精品酒店卫生间| 亚洲第一区二区三区不卡| 亚洲精品aⅴ在线观看| 男人舔奶头视频| 国产一区二区在线观看日韩| 国产亚洲午夜精品一区二区久久 | 性色avwww在线观看| 国产麻豆成人av免费视频| 三级毛片av免费| 国产精品女同一区二区软件| 亚洲高清免费不卡视频| 在线免费观看不下载黄p国产| 91精品国产九色| 国产一区有黄有色的免费视频 | 亚洲熟女精品中文字幕| 精品一区二区免费观看| 久久久久久久久大av| 亚洲熟女精品中文字幕| 美女主播在线视频| 男女下面进入的视频免费午夜| 国产精品av视频在线免费观看| 一级片'在线观看视频| 欧美一区二区亚洲| 丰满少妇做爰视频| 好男人在线观看高清免费视频| 建设人人有责人人尽责人人享有的 | 午夜激情欧美在线| 熟妇人妻久久中文字幕3abv| 国产精品av视频在线免费观看| 18禁在线无遮挡免费观看视频| 国产在视频线在精品| 色网站视频免费| 亚洲国产精品专区欧美| 亚洲精品国产av成人精品| 国产综合懂色| 22中文网久久字幕| 国产av国产精品国产| 亚洲精品国产av蜜桃| 精品酒店卫生间| 99久久精品热视频| 久久久色成人| 久久亚洲国产成人精品v| av播播在线观看一区| 一夜夜www| 欧美日韩亚洲高清精品| 国产av码专区亚洲av| 最近最新中文字幕免费大全7| 插阴视频在线观看视频| 免费黄频网站在线观看国产| 国内精品美女久久久久久| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 久久久欧美国产精品| 日本与韩国留学比较| 青青草视频在线视频观看| 国产精品伦人一区二区| 精品国产一区二区三区久久久樱花 | 观看免费一级毛片| 国内精品美女久久久久久| 国国产精品蜜臀av免费| 久久久久性生活片| 亚洲av二区三区四区| 99热网站在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品人妻久久久久久| 国产一区二区三区av在线| 日韩av在线大香蕉| 国产高清三级在线| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 欧美极品一区二区三区四区| 亚洲成色77777| 亚洲av男天堂| 日韩一区二区三区影片| 久久久久久久久久人人人人人人| 亚洲内射少妇av| 国产乱来视频区| 亚洲最大成人中文| 七月丁香在线播放| 99热6这里只有精品| 尾随美女入室| 亚洲怡红院男人天堂| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添av毛片| 亚洲国产av新网站| av女优亚洲男人天堂| 中文字幕av在线有码专区| 国产爱豆传媒在线观看| 91在线精品国自产拍蜜月| 亚洲不卡免费看| 欧美日韩一区二区视频在线观看视频在线 | 深夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 中文在线观看免费www的网站| 中文天堂在线官网| 亚洲欧美日韩卡通动漫| 伦精品一区二区三区| 三级经典国产精品| 又粗又硬又长又爽又黄的视频| 51国产日韩欧美| 国产成人一区二区在线| av免费在线看不卡| 久久久久性生活片| 精品熟女少妇av免费看| 国产黄片视频在线免费观看| 亚洲人成网站高清观看| 久久久午夜欧美精品| 久久99热这里只频精品6学生| 亚洲精品乱码久久久v下载方式| 你懂的网址亚洲精品在线观看| 亚洲内射少妇av| 成人二区视频| 纵有疾风起免费观看全集完整版 | 精品国内亚洲2022精品成人| 免费观看a级毛片全部| av国产久精品久网站免费入址| 久久精品熟女亚洲av麻豆精品 | 男人爽女人下面视频在线观看| 日韩在线高清观看一区二区三区| 99热网站在线观看| 欧美丝袜亚洲另类| 人体艺术视频欧美日本| 我要看日韩黄色一级片| 又黄又爽又刺激的免费视频.| 国产永久视频网站| 嫩草影院新地址| 国产在线一区二区三区精| 寂寞人妻少妇视频99o| 亚洲最大成人av| 亚洲精品国产av蜜桃| 国产午夜福利久久久久久| 激情五月婷婷亚洲| 丝袜喷水一区| 日韩欧美精品v在线| 国产精品久久久久久av不卡| 日韩欧美一区视频在线观看 | 国产亚洲av片在线观看秒播厂 | 日本一二三区视频观看| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 免费看日本二区| 精品国产露脸久久av麻豆 | 99热这里只有是精品50| 久久精品国产自在天天线| 久久国内精品自在自线图片| 欧美激情国产日韩精品一区| 国产精品三级大全| 精品亚洲乱码少妇综合久久| 2021天堂中文幕一二区在线观| 欧美日韩国产mv在线观看视频 | av在线老鸭窝| 少妇丰满av| 亚洲欧美中文字幕日韩二区| h日本视频在线播放| 国产国拍精品亚洲av在线观看| 国产精品蜜桃在线观看| 国产精品综合久久久久久久免费| av卡一久久| 美女被艹到高潮喷水动态| 黄片wwwwww| 亚洲精品日本国产第一区| 亚洲,欧美,日韩| av免费在线看不卡| 中文字幕制服av| 国产免费福利视频在线观看| 午夜福利视频精品| 国产精品99久久久久久久久| 欧美另类一区| 国产日韩欧美在线精品| 久久精品久久久久久噜噜老黄| 在线 av 中文字幕| 大陆偷拍与自拍| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 边亲边吃奶的免费视频| 18禁裸乳无遮挡免费网站照片| 成人午夜精彩视频在线观看| 久久久成人免费电影| 老司机影院成人| 国产毛片a区久久久久| 午夜激情久久久久久久| 日本三级黄在线观看| 22中文网久久字幕| 一区二区三区免费毛片| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 亚洲精品国产av蜜桃| 日韩人妻高清精品专区| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情欧美在线| 全区人妻精品视频| 女人十人毛片免费观看3o分钟| 干丝袜人妻中文字幕| 身体一侧抽搐| av国产久精品久网站免费入址| 亚洲性久久影院| 日韩欧美三级三区| 熟妇人妻不卡中文字幕| 国产 一区精品| 国产精品嫩草影院av在线观看| 国产探花极品一区二区| 男女国产视频网站| 免费观看精品视频网站| 国产精品国产三级国产av玫瑰| 91精品国产九色| 在线观看av片永久免费下载| 18禁裸乳无遮挡免费网站照片| 99re6热这里在线精品视频| xxx大片免费视频| 精品99又大又爽又粗少妇毛片| 中文字幕av成人在线电影| 亚洲高清免费不卡视频| 黄色一级大片看看| 免费看美女性在线毛片视频| 欧美高清成人免费视频www| 色吧在线观看| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 中文天堂在线官网| 好男人在线观看高清免费视频| 看十八女毛片水多多多| 搡老妇女老女人老熟妇| 欧美高清成人免费视频www| 亚洲自偷自拍三级| 久久久a久久爽久久v久久| 精品人妻视频免费看| 国产黄色视频一区二区在线观看| 亚洲精品aⅴ在线观看| av国产久精品久网站免费入址| 欧美人与善性xxx| 2018国产大陆天天弄谢| 国产一区有黄有色的免费视频 | 韩国高清视频一区二区三区| 中文字幕av成人在线电影| 亚洲精品国产av成人精品| 国产毛片a区久久久久| 亚洲av电影在线观看一区二区三区 | 亚洲欧美成人精品一区二区| 国产成人福利小说| 亚洲人成网站高清观看| 热99在线观看视频| 精品99又大又爽又粗少妇毛片| 人人妻人人澡欧美一区二区| 欧美xxxx性猛交bbbb| 全区人妻精品视频| 久久久久九九精品影院| .国产精品久久| 久久99热这里只频精品6学生| 看黄色毛片网站| 777米奇影视久久| 高清在线视频一区二区三区| 男女下面进入的视频免费午夜| 免费看av在线观看网站| 亚洲自拍偷在线| 三级毛片av免费| 我的老师免费观看完整版| 美女内射精品一级片tv| 99久久九九国产精品国产免费| 美女xxoo啪啪120秒动态图| 国产激情偷乱视频一区二区| 亚洲欧洲日产国产| 国产淫语在线视频| 亚洲国产欧美在线一区| 亚洲精品一区蜜桃| 美女国产视频在线观看| 直男gayav资源| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 国产极品天堂在线| 在线免费观看不下载黄p国产| 欧美xxⅹ黑人| 五月天丁香电影| 三级男女做爰猛烈吃奶摸视频| 日本av手机在线免费观看| 久久久欧美国产精品| 有码 亚洲区| 午夜精品一区二区三区免费看| 99久久精品热视频| 国产乱人偷精品视频| eeuss影院久久| 成年免费大片在线观看| 国产av在哪里看| 少妇人妻精品综合一区二区| 久久热精品热| 三级毛片av免费| 欧美精品一区二区大全| 亚洲国产精品成人久久小说| 午夜福利高清视频| 成人av在线播放网站| 肉色欧美久久久久久久蜜桃 | 伊人久久国产一区二区| 亚洲怡红院男人天堂| 免费黄网站久久成人精品| 五月伊人婷婷丁香| 亚洲久久久久久中文字幕| av国产免费在线观看| 99热这里只有是精品在线观看| 男人舔奶头视频| 国产麻豆成人av免费视频| ponron亚洲| 午夜精品在线福利| 日本黄大片高清| 日本欧美国产在线视频| 一区二区三区高清视频在线| 最近2019中文字幕mv第一页| 男女边摸边吃奶| 在线免费十八禁| 午夜福利网站1000一区二区三区| 中文乱码字字幕精品一区二区三区 | 综合色av麻豆| 免费看不卡的av| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 激情五月婷婷亚洲| av在线亚洲专区| 搡老乐熟女国产| 国产在线男女| 亚洲av电影在线观看一区二区三区 | 久久久久国产网址| 国产av国产精品国产| 久久鲁丝午夜福利片| 欧美日韩视频高清一区二区三区二| 国产伦一二天堂av在线观看| 一区二区三区四区激情视频| 国产精品一区二区三区四区免费观看| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久电影| 亚洲最大成人手机在线| 91久久精品电影网| 亚洲人与动物交配视频| 亚洲乱码一区二区免费版| 三级国产精品片| 久久久午夜欧美精品| 麻豆精品久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 啦啦啦啦在线视频资源| 国产不卡一卡二| 中文字幕制服av| 国内揄拍国产精品人妻在线| 午夜久久久久精精品| 一级毛片 在线播放| 国产在视频线在精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美潮喷喷水| 搡老乐熟女国产| 人妻一区二区av| 久久综合国产亚洲精品| 少妇高潮的动态图| 一本久久精品| 欧美精品一区二区大全| 麻豆精品久久久久久蜜桃| 免费看a级黄色片| 啦啦啦啦在线视频资源| 成人国产麻豆网| 亚洲精品色激情综合| 天堂俺去俺来也www色官网 | 熟女人妻精品中文字幕| 人人妻人人澡欧美一区二区| 18禁动态无遮挡网站| 日韩不卡一区二区三区视频在线| 最近最新中文字幕大全电影3| 国产精品人妻久久久影院| 啦啦啦韩国在线观看视频| 少妇的逼好多水| 成人美女网站在线观看视频| 麻豆国产97在线/欧美| 久久这里有精品视频免费| 国产精品爽爽va在线观看网站| 在线播放无遮挡| 搡老妇女老女人老熟妇| 国产高清不卡午夜福利| 国产片特级美女逼逼视频| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 亚洲怡红院男人天堂| 丝袜喷水一区| 欧美另类一区| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 午夜福利在线观看免费完整高清在| 国产精品嫩草影院av在线观看| 国产乱人视频| 欧美丝袜亚洲另类| 亚洲欧洲国产日韩| 国产高清三级在线| 精品久久久久久久久av| 最后的刺客免费高清国语| 秋霞在线观看毛片| 永久免费av网站大全| 亚洲人与动物交配视频| 永久免费av网站大全| 99热全是精品| 国产一区二区在线观看日韩| 观看免费一级毛片| 激情五月婷婷亚洲| 搞女人的毛片| 18禁在线无遮挡免费观看视频| 在线天堂最新版资源| 国产精品嫩草影院av在线观看| 男女边摸边吃奶| 成人二区视频| 九九久久精品国产亚洲av麻豆| 国产乱人偷精品视频| 国产欧美另类精品又又久久亚洲欧美| 18+在线观看网站| 久久精品久久精品一区二区三区| 夫妻性生交免费视频一级片| 爱豆传媒免费全集在线观看| 内地一区二区视频在线| 免费不卡的大黄色大毛片视频在线观看 | 男女国产视频网站| 久久鲁丝午夜福利片| videossex国产| 两个人的视频大全免费| 亚洲一区高清亚洲精品| 亚洲精品日韩在线中文字幕| 久久久色成人| 国产午夜福利久久久久久| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| 国产淫语在线视频| 国产黄频视频在线观看| 久久久久精品性色| 欧美日韩综合久久久久久| 国产精品久久久久久av不卡| 久久久久国产网址| 亚洲熟妇中文字幕五十中出| 精品久久久久久成人av| 精品人妻偷拍中文字幕| 一二三四中文在线观看免费高清| 在线播放无遮挡| 最近视频中文字幕2019在线8| 成人美女网站在线观看视频| 亚洲一级一片aⅴ在线观看| 男人狂女人下面高潮的视频| 久久精品人妻少妇| 国产精品嫩草影院av在线观看| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| 日本爱情动作片www.在线观看| 高清视频免费观看一区二区 | 高清在线视频一区二区三区| 久久久久久久午夜电影| 日本熟妇午夜| 大香蕉97超碰在线| 蜜臀久久99精品久久宅男| 丝瓜视频免费看黄片| 高清av免费在线| 一个人看视频在线观看www免费| 青青草视频在线视频观看| 最近中文字幕2019免费版| 国产人妻一区二区三区在| 日本午夜av视频| 日日啪夜夜爽| 精品午夜福利在线看| 人妻一区二区av| 午夜老司机福利剧场| 日韩精品青青久久久久久| 蜜桃久久精品国产亚洲av| 少妇的逼好多水| 日韩,欧美,国产一区二区三区| 性色avwww在线观看| 神马国产精品三级电影在线观看| 99久久人妻综合| 国产男人的电影天堂91| 亚洲精品一二三| 一区二区三区免费毛片| 婷婷色麻豆天堂久久| 成年av动漫网址| 麻豆国产97在线/欧美| 欧美激情久久久久久爽电影| 性色avwww在线观看| 亚洲精品亚洲一区二区| 国产在线一区二区三区精| 激情五月婷婷亚洲| 夫妻性生交免费视频一级片| 久久精品夜色国产| 久久精品夜夜夜夜夜久久蜜豆| 欧美潮喷喷水| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 亚洲av免费高清在线观看| 亚洲国产精品sss在线观看| 乱码一卡2卡4卡精品| 淫秽高清视频在线观看| 人人妻人人澡人人爽人人夜夜 | 色网站视频免费| 秋霞在线观看毛片| 亚洲av.av天堂| 免费av观看视频| 精品久久久久久久末码| 汤姆久久久久久久影院中文字幕 | 欧美bdsm另类| 联通29元200g的流量卡| 一二三四中文在线观看免费高清| 大话2 男鬼变身卡| 国产亚洲一区二区精品| 七月丁香在线播放| 中文资源天堂在线| 国语对白做爰xxxⅹ性视频网站| 2021天堂中文幕一二区在线观| 国产色爽女视频免费观看| 深爱激情五月婷婷| www.av在线官网国产| 成年人午夜在线观看视频 | 麻豆乱淫一区二区| 久久久成人免费电影| 欧美日本视频| 卡戴珊不雅视频在线播放| 成人毛片60女人毛片免费| 免费看日本二区| 高清av免费在线| 国产精品.久久久| 老司机影院成人| 男人舔女人下体高潮全视频| 免费少妇av软件| 免费观看无遮挡的男女| 日韩av在线免费看完整版不卡| 欧美成人午夜免费资源| 久久久精品欧美日韩精品| 欧美日韩一区二区视频在线观看视频在线 | 高清欧美精品videossex| 国产 一区精品| 午夜久久久久精精品| 午夜亚洲福利在线播放| 日本黄大片高清| 亚洲人成网站在线播| 亚洲最大成人av| av.在线天堂| 特大巨黑吊av在线直播| 精品久久久久久久久av| 老司机影院毛片| 啦啦啦啦在线视频资源| 久久久国产一区二区| 亚洲经典国产精华液单| 午夜激情欧美在线| 尤物成人国产欧美一区二区三区| av在线天堂中文字幕| 精品一区二区三区人妻视频| 午夜福利成人在线免费观看| 淫秽高清视频在线观看| 亚洲第一区二区三区不卡| 久久久久久久国产电影| 国产精品爽爽va在线观看网站| 岛国毛片在线播放| 最后的刺客免费高清国语| 成人一区二区视频在线观看| 精品人妻偷拍中文字幕| 能在线免费观看的黄片| 蜜臀久久99精品久久宅男| 欧美 日韩 精品 国产| 我的女老师完整版在线观看| 午夜久久久久精精品| 国产一区亚洲一区在线观看| 欧美潮喷喷水| 国产精品精品国产色婷婷| 中国美白少妇内射xxxbb| 日本av手机在线免费观看| 国产精品一区二区在线观看99 | 最近中文字幕高清免费大全6| 国产成人精品福利久久| 亚洲高清免费不卡视频| 免费无遮挡裸体视频| 能在线免费看毛片的网站| 精品国产一区二区三区久久久樱花 | 自拍偷自拍亚洲精品老妇|