• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conformations and Metal Ion Affinities of Glutamine Binding with Alkali and Alkaline Earth Metal Cations:an ab initio Study

    2014-07-18 11:51:53RuiPangZijingLin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Rui Pang,Zi-jing Lin

    Department of Physics and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China,Hefei 230026,China

    (Dated:Received on November 11,2013;Accepted on December 20,2013)

    Conformations and Metal Ion Affinities of Glutamine Binding with Alkali and Alkaline Earth Metal Cations:an ab initio Study

    Rui Pang,Zi-jing Lina?

    Department of Physics and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China,Hefei 230026,China

    (Dated:Received on November 11,2013;Accepted on December 20,2013)

    Conformations and reaction energetics are important for understanding the interactions between biomolecules and metal ions.In this work,we report a systematic ab initio study on the conformations and metal ion affinities of glutamine(Gln)binding with alkali and alkaline earth metal ions.An efficient and reliable method of searching low energy conformations of metalated Gln is proposed and applied to the complexes of Gln·M+/++(M+/++=Li+, Na+,K+,Rb+,Cs+,Be++,Mg++,Ca++,Sr++,and Ba++).In addition to all conformers known in literatures,many new important conformations are located,demonstrating the power of the new method and the necessity of the conformational search performed here. The metal coordination modes,relative energies,dipole moments,and equilibrium distributions of all important conformations of Gln·M+/++are calculated by the methods of B3LYP, BHandHLYP,and MP2.IR spectra and metalation enthalpies and free energies are also presented and compared with the available experiments.The results form an extensive database for systematic examination of the metalation properties of Gln.

    Conformational search method,Complexation structure,Conformational distribution,IR spectrum,Binding energy

    I.INTRODUCTION

    Metal ions are involved in about 40%of all proteins and enzymes in living systems.Amino acids are the basic building blocks of all natural proteins and the knowledge about amino acids interacting with metal ions is of broad interest.Metalated amino acids in gas phase that are free of the complicated solvent ef f ect are relatively easy to study,but are important basic models for understanding their counterparts in living bodies[1-3].In fact,the structures and properties of gaseous biomolecules are often closely related to their counterparts in solution[3-6].Consequently,conformations and thermo-chemical properties of metalated amino acids in gas phase are interesting research subjects and have been intensively investigated both experimentally[3-18]and theoretically[19-23].

    Glutamine(Gln)is a critically important amino acid and comprises about 50%of all free amino acids in the whole-body pool.It plays an important role in muscle growth and synthesis of enzymes and serves as fuel for many kinds of cells.The IR spectra of gaseous Gln metalated with Li+,Na+,K+,Cs+and Ba2+have been measured[17,18].Experimental and theoretical determinations of the structures and metal ion affinities(MIA)of Gln binding with Li+,Na+and K+have also been reported[7-9,13,24].Nevertheless,there is no systematic comparative study on the conformations and MIA of Gln metalated with the set of alkali and alkaline earth metal ions.Moreover,the experimental conformation assignments are indirect and rely on the candidate structures determined by theoretical studies.Furthermore,the existing theoretical results are often obtained by conformational search based on Monte Carlo sampling using molecular mechanics force fi elds that are prone to missing important conformers [25].To improve the reliability of the computational results,extensive systematic conformational searches of the potential energy surfaces are required[26].

    In this work,a conformational search method for systematically exploring the potential energy surfaces of metalated Gln is described.Conformations of Gln metalated with alkali and alkaline earth metal ions are obtained by conducting the systematic search method. The important conformations and their structural characteristics are discussed.MIAs and IR spectra of the metalated Gln are computed by several quantum chemistry methods and compared with the available experiments.

    II.COMPUTATIONAL METHOD

    In principle,the full conformational space of a biomolecule may be thoroughly searched by optimizingtrial structures generated by combinations of varying all rotational degrees of freedom.The thorough conformational search method has been successfully applied to many small biomolecules,including Gln[26].Systematic searches of the structures of protonated,hydrated and metalated amino acid complexes have also been performed[4,5,21,22].These studies show that the structures of metalated amino acid may be classi fi ed as mono-,bi-,and tri-dentate coordination between a metal ion and the electronegative atoms of amino acid. All mono-dentate coordination structures have high energies relative to the global minimum and may be ignored.These studies also indicate that it is a reliable and efficient approach to locate the low energy conformations of metalated amino acid with trial structures generated by adding the metal ion to possible binding sites of free amino acid conformations.Binding metal ion with di ff erent amino acid conformations may result in the metalated structures with an energy ordering very di ff erent from that of free amino acid conformations.Normally the change in energy ordering is expected to be limited to a few kcal/mol.To add a suffi cient safety margin to the solution,conformers of free Gln that are within 16 kcal/mol of the global minimum are used here to generate the trial structures of metalated complexes.

    However,some metalated amino acids may exhibit so called salt bridge(SB)structures as their low energy conformations[11,18,21,22,27],while SB or zwitterions structures are often absent for free amino acids. Therefore,the aforementioned trial structures are only reliable for determining low energy charge solvated(CS) structures of metalated amino acid.To locate low energy SB structures of metalated Gln,the free Gln conformers within 16 kcal/mol of the global minimum are used to generate zwitterions structures by adding the proton removed from the carboxyl group to the amino group.These zwitterions are then used to construct the trial SB structures of metalated Gln.

    The sum of the radius of oxygen atom and the radius of metal ion is used as the trial bond length between the ion and an electronegative atom of Gln.The location of metal ion is easily determined in a tridentate coordination.For a given set of three electronegative atoms, there are only two possible locations satisfying the bond length constrain,as illustrated in Fig.1(a).However, there is a circle at which all points meet the bond length constrain in bidentate coordination,as shown in Fig.1(b).The possible ion locations on the circle may be searched like a bond rotational freedom.Hence,N equally spacing points on the circle may be used to generate trial metalated Gln structures.Substantial tests have been performed and N=2 is found to be sufficient to locate the low energy conformations.

    FIG.1 Schematic for trial structure generation of metalated Gln:the distance between the metal ion(M+/++)and an electronegative atom(a,b or c)of Gln is set at a given value. (a)Two possible sites for tridentate coordination of M+/++with a,b and c.(b)For bidentate coordination between M+/++and a and b,M+/++may be at any point on the large circle.Two end points of a randomly selected diameter are used as the binding sites of M+/++in the trial structure generation.

    The trail structures were fi rst optimized at the level of HF/3-21G,followed by optimization at the B3LYP/6-311++G??level.The vibrational frequencies,zero point vibrational energy(ZPVE)and thermal corrections to enthalpy(Hcoor)and free energy(Gcoor)are calculated at the B3LYP/6-311++G??level to correspond to the geometry determination method.A scaling factor of 0.985 for the frequencies is chosen to best match the published experimental results[18].Most single point energies were calculated with MP2[28], B3LYP[29-34],and BHandHLYP methods using the 6-311++G(3df,3pd)basis set.For the fourth and f i fth row elements,the basis set of LANL2DZ[35-37]was used to reduce the computational cost.The trial structures were generated using our in-house developed software.All the energy calculations and geometry optimizations were performed with Gaussian 03[38].

    The enthalpy of free Gln or metalated Gln,HA(A=Gln or Gln·M+/++),is determined by conformational ensemble averaging:

    where xiis the population fraction of conformer i determined by relative conformational free energies and summed to 1 for all conformers.All the gaseous species are assumed to be ideal gases at the pressure P of 1 atm. The enthalpy of metal ion,HM+/++,is calculated as itselectronic energy(EM+/++)plus its translational energy (3/2RT)and PV term(RT):

    In addition to the ensemble averaging,the contribution by the entropy of mixing is considered in the calculation of free energy of Gln and metalated Gln:

    Considering the term due to the translational partition function[39],the free energy of metal ion is calculated as

    where M is the mass of metal ion.MIA is def i ned as the negative of the enthalpy change of the reaction Gln+M+/++→Gln·M+/++at the room temperature,

    The negative free energy change of the reaction is also computed as follows,

    The basis set superposition error is considered in computing the enthalpy and free energy changes.

    III.RESULTS AND DISCUSSION

    For the convenience of referencing,we f i rst def i ne some nomenclature here.There are f i ve electronegative atoms in Gln,i.e.,three O atoms and two N atoms.The tridentate M+/++coordination modes may in principle include OOOs,NOOs,NOO,NsOO,NsOOs,NNsO, and NNsOs,where N(O)and Ns(Os)denote the backbond and the side-chain nitrogen(oxygen),respectively. The bidentate M+/++coordination modes may in principle include OO,OOs,NO,NOs,NNs,NsO,and NsOs. Low energy conformers are found only for the modes of OOOs,NOOs,OO,and OOs.The mode of NOOsgenerally corresponds to a canonical Gln structure.However,the modes of OOOs,OO and OOsmay correspond to either canonical or zwitterionic Gln.For easy identif i cation,the suffixes.c and.z are used to denote the canonical and zwitterionic structures,respectively. That is,a low energy conformation of Gln·M+/++may be denoted with one of the seven coordination types, NOOs.c,OOOs.c,OO.c,OOs.c,OOOs.z,OO.z,and OOs.z.Dif f erent conformations of a given coordination type are further dif f erentiated with a numeral suffix to indicate their relative stabilities ordered according to their MP2 energies,e.g.,OOOs.c1 and OOOs.c2.For simplicity,a conformer may also be denoted with the name of the metal element followed by a numeral suffi x indicating its relative stability within all conformers ordered according to its relative MP2 energy,e.g.,Na1 and Na2.

    A.Conformations of Gln binding with alkali metal ion

    Table I shows the relative electronic energies,dipole moment,ZPVE,Hcoorand Gcoorat the room temperature for all important conformations of Gln·M+.An important conformer here means that the room temperature population of the conformer is over 10%as determined by any one of the B3LYP,BHandHLYP and MP2 methods.In case there is only one dominant conformer for a metal ion,the second most abundant conformer is also shown in Table I.The equilibrium conformational distributions at T=298 and 500 K are shown in Table II. The structures of the important conformers are shown in Fig.2.

    As seen from Table I and Table II,the B3LYP, BHandHLYP,and MP2 results agree on the global minimum conformer of Gln·Li+and the global minimum is the only important conformer for Gln·Li+.The three methods also agree on the global minimum of Gln·Na+and there are two important conformers for Gln·Na+.For Gln·K+,Gln·Rb+,and Gln·Cs+,however,the global energy minima are zwitterions as predicted by B3LYP,but are canonical conformers as predicted by BHandHLYP and MP2.Based on B3LYP results,it has been concluded that the size of metal ion is the dominant factor for the global minimum to take the zwitterionic form[26].The present BHandHLYP and MP2 results indicate that the conclusion may be only a B3LYP biased claim.Experiments may be used to verify the results as there are some characteristic different features in the IR spectra of canonical and zwitterionic conformers.However,it is usually difficult to distinguish by normal temperature IR spectrum as it is a superposition of contributing conformers.Some low temperature IR measurement may be required to draw convincing conclusion.Before such measurement is performed,we tend to prefer the BHandHLYP and MP2 results.Nevertheless,the tendency is clear that zwitterionic structures are favorable for large metal ions.

    With the change in metal ion size,another trend also emerges.The coordination of NOOs.c is strongly favored over OOOs.c in Gln·Li+and Gln·Na+,but the two conf i gurations are comparable in Gln·K+.For Gln·Rb+and Gln·Cs+,OOOs.c is more favorable than NOOs.c.That is,there is a trend that the OOOs.c conf i guration is increasingly favored with the increased ion size.Therefore,assuming NOOsas the favorable canonical conf i guration may produce def i cient results. For example,the global minimum for Gln·Cs+was predicted to be Cs5 in our notation[18]and is in fact an unimportant conformer of Gln·Cs+.The global mini-mum was missed in the previous study by assuming the NOOsconf i guration.There are also other omissions in former studies.For example,OOOs.c1 for Gln·K+and NOOs.c3 for Gln·Na+are found in this work,but are missed in Refs.[7,18].It should be mentioned that all conformers located in previous studies have been found in this work.Considering the newly located important conformers,it is clear that our method of conformational search is more reliable than the ones used before [7,18].

    FIG.2 Important conformations of Gln·M+.

    TABLE I Metal ion coordination modes(coordination),relative electronic energies E,relative ZVPEs,relative thermal corrections for enthalpy Hcoorand Gibbs free energy Gcoor,and dipole moments u of important conformers(conf.)of Gln bound with alkali metal ion.B3LYP and BHandHLYP are abbreviated as B3 and BH,respectively.All energies are in kJ/mol.

    It is worthy pointing out that the relative conformational energies and the conformational distributions determined by the B3LYP,BHandHLYP and MP2 methods are quite dif f erent for Gln binding with large cation, K+,Rb+,or Cs+,as shown in Tables I and II.As none of the methods is def i nitely superior to the others and there is a lack of strong evidence to favor one or the other,it is prudent to treat the results of dif f erent methods on an equal basis.It should also be noted that the global energy minimum may be dif f erent from the global free energy minimum(the most abundant conformer) due to the entropy ef f ect.For example,K1 is predicted by MP2 as the global energy minimum(Table I),but K9 which is 4.42 kJ/mol less favorable than K1 has a population almost twice as much as K1 at the room temperature(Table II).As the entropy ef f ect increases with temperature,K9 is over three times more abundant than K1 at 500 K.Therefore,conformers within a sufficiently large energy range of the global minimum should be thoroughly searched before one may reliably determine the most important conformers.

    TABLE II Equilibrium distributions of important conformers of Gln·M+(M+:alkali metal ion)at T=298 and 500 K as computed by the methods of B3LYP(B3),BHandHLYP(BH),and MP2.

    TABLE III Metal ion coordination modes(coordination),relative electronic energies E,relative ZVPEs,relative thermal corrections for enthalpy Hcorand free energy Gcor,and dipole moments u of important conformers(Conf.)of Gln bound with alkaline earth metal ion.B3LYP and BHandHLYP are abbreviated as B3 and BH,respectively.All energies are in kJ/mol.

    B.Conformations of Gln binding with alkaline earth metal ion

    Table III shows the relative electronic energies,dipole moment,ZPVE,Hcoorand Gcoorat the room temperature for all important conformations of Gln·M++,where M++denotes divalent alkaline earth metal ion.The equilibrium conformational distributions at T=298 and 500 K are shown in Table IV.The structures of the important conformers are shown in Fig.3.

    AsshowninTablesIIIandIV,theB3LYP, BHandHLYP,and MP2 results all agree on that the global energy minimum is the only important conformer for Gln·Be++and Gln·Mg++.The structures of Gln·Be++and Gln·Mg++look almost the same,with the ion chelated by O,N and Os(Fig.3).For Gln·Ca++, zwitterions are predicted by B3LYP and MP2 to be the global energy minimum,while the global energy minimum is a canonical conformer as determined by BHandHLYP.As NOOs.c1 has a favorable ZPVE in comparison with OOOs.z1 and OOOs.z2,the conformational distribution of Gln·Ca++is dominated by NOOs.c1 as predicted by BHandHLYP at most temperature.The population of NOOs.c1 is comparable tothat of OOOs.z1 and OOOs.z2 as determined by the B3LYP results,except for very low temperature when only the global minimum conformer is dominant.However,the population of NOOs.c1 predicted by the MP2 method is very low at most temperature.IR spectrum measured at low to medium temperature may be used to verify which method provides the best description of the Gln·Ca++conformations.

    TABLE IV Equilibrium distributions of important conformers of Gln·M++(M++:alkaline earth metal ion)at T=298 and 500 K as computed by B3LYP(B3),BHandHLYP(BH)and MP2.

    FIG.3 Important conformations of Gln·M++.

    The B3LYP and MP2 methods show clearly that the global minimum of Gln·Sr++is a zwitterionic conformer with the OOOscoordination.Considering ZPVE that is ef f ective at any temperature,the global minimum of Gln·Sr++is predicted by BHandHLYP to be a canonical conformer,NOOs.c1.As predicted by BHandHLYP,NOOs.c1 is the most abundant conformer at any temperature.However,the MP2 method shows that OOOs.z1 is basically the only conformer in the equilibrium ensemble,with a population of over 95% for T≤500 K.The B3LYP results are intermediate to the BHandHLYP and MP2 results.Again,some experimental IR spectrum,especially that measured at low temperature,may provide a clear test of the theoretical results.Moreover,the dipole moment of OOOs.z1 and NOOs.c1 is quite dif f erent(Table III).The theoretical results may be unambiguously tested by the dipole moment measurement at low temperature[39].

    As shown in Table III,all the B3LYP,BHandHLYP, and MP2 results show that the global minimum of Gln·Ba++is zwitterionic with a metal ion coordination of OOOs,also agreeing with the result of Ref.[18]. Nevertheless,the tendency of favoring canonical conformation by BHandHLYP is still quite obvious.The BHandHLYP method shows that the canonical conformer of NOOs.c1 is an important conformer with a population of over 20%for T>298 K,while NOOs.c1 is predicted by B3LYP and MP2 to be unimportant at any temperature(Table IV).However,the above difference is relatively small in comparison with that for Gln·Ca++and Gln·Sr++and may not be easily distinguishable by IR or dipole moment measurement.

    Overall,the NOOscoordination of metal ion is the most favorable canonical conformation and the OOOscoordination mode is the most favorable zwitterionic form for alkali and alkaline earth metal ions binding with Gln.The NOOs mode is strongly favored by small ions,Li+,Na+,Be++,and Mg++.The OOOsmode is increasingly favored with the increased size and charge of metal ion.All three methods show that the global minimum of Gln·Ba++is a salt bridged conformation with the ion coordination mode of OOOs.

    FIG.4 IR spectra for complexes of Gln·M+/++.The dotted lines are the theoretical results based on the MP2 conformational energies.The solid lines are experimental results obtained by re-plotting curves from Refs.[17,18].

    In terms of the computational methods,B3LYP is most inclined to predict a SB form for the global minimum,while BHandHLYP tends to favor a CS structure.MP2 is intermediate to B3LYP and BHandHLYP in predicting a SB structure for the global minimum. However,when MP2 does predict a SB form for the global minimum,the energy dif f erence between the SB and CS forms is larger for MP2 than for B3LYP.

    C.Infrared spectra

    Figure4showsthetheoreticalIRspectraof Gln·M+/++at the room temperature using the conformational distribution determined by the MP2 method. The theoretical IR spectra are compared with the available experimental results that are obtained by replotting the data in Refs.[17,18]and are only approximate.The theoretical spectra shown here are substantially more reliable than that in Ref.[17]as numerous important conformers are missed in Ref.[17],while all conformers in Ref.[17]are located in this work.In fact, some of the discussion in Ref.[17]may be incorrect.For example,the IR spectrum for Gln·Cs+in Ref.[17]is based on its global minimum that corresponds to Cs5 here and accounts for only 5%in the equilibrium population.

    As shown in Fig.4,even though there are overall agreement between the theory and the experiment, there are clear dif f erences in the details of the theoretical and experimental vibrational peak positions and intensities.The IR spectra of MP2,B3LYP, and BHandHLYP are the same for Gln·Li+,Gln·Na+, Gln·Be++,and Gln·Mg++due to their essentially mono conformational feature.The B3LYP and BHandHLYP IR spectra for Gln·K+,Gln·Cs+,and Gln·Ba++are somewhat dif f erent from that of MP2,but the dif f erences are relatively small compared to that with the experiments.That is,using the B3LYP or BHandHLYP spectra does not substantially af f ect the agreement with the experiments.

    There are several factors that may cause the difference between the theoretical and experimental results.One is about the data treatment.The theoretical spectra are generally obtained by Gaussian or Lorentz broadening of discrete vibrational modes and are af f ected by the broadening parameter.The experimental spectra implicitly involve interpolations and are af f ected by the resolution and response of the measuring instrument.Closely neighboring peaks often appear as a broadening peak and it is difficult to see sharp features in experiment.Another factor is the ef f ective temperature for the conformational distribution.Even though IR spectra are often measured at about the room temperature,the conformational ensemble may correspond to a dif f erent ef f ective temperature as the sample needs to be heated f i rst to evaporate the amino acid.The ef f ective temperature is almost always higher than the room temperature,and may be as high as 600 K[41]. In fact,the conformational ensemble may sometime be not in equilibrium yet[40].Meaningful theoretical and experimental comparison may be made only when the equilibrium is reached and the ef f ective temperature is determined experimentally.There are also additional error sources from the theoretical side,e.g.,an averaged empirical scaling factor for vibrational frequencies due to the neglect of anharmonic ef f ect,inaccurate distribution due to unknown inaccuracy in relative conformational energies,inaccurate IR intensity due to inaccurate charge distributions and the use of pesudopotentials for heavy elements(the fourth and f i fth row metal ions).

    Due to the above mentioned reasons,a comprehensive comparison between the theoretical and experimental IR spectra is unrealistic at the present.We also defera detailed comparison of the theoretical IR spectra to a future study.However,the above analysis does point out the best situation for comparing the theory with the experiment.That is,the experimental IR spectrum for single conformer,namely measured at adequately low temperature with the equilibrium carefully assured, may be used to test the qualities of the predictions by B3LYP,BHandHLYP and MP2.Moreover,the IR spectra shown here are the f i rst systematical results to show the trend of spectral variation in Gln metalated with alkali and alkaline earth metal ions.For example,there are feature peaks in the range of 800-1200 cm-1for light elements such as Li+and Be++,but these peaks weaken with the increased size of the metal ion and disappear for Ba++.These feature peaks may be used to determine the type of metal ion involved.

    TABLE V Reaction enthalpies?H and free energies?G for Gln metalated with alkali and alkaline earth metal ions as calculated by the methods of B3LYP(B3),BHandHLYP(BH),and MP2.

    D.Metal ion affinities

    Table V shows the reaction enthalpies and free energies of Gln binding with alkali and alkaline earth metal ions as calculated by the methods of B3LYP, BHandHLYP and MP2.The conformations of Gln reported in Ref.[26]are used here.To our knowledge,only the MIAs of Gln with Na+and K+have been published [7,9,10,13].Data in Table V are the f i rst comprehensive compilation on MIAs of Gln with alkali and alkaline earth metal ions.

    As shown in Table V,there is a general trend regarding the results computed by the three methods: the MIAs and the negative free energy changes are the largest as predicted by BHandHLYP,followed by the B3LYP results,and the smallest as predicted by MP2. The dif f erences among the results of the three methods are smaller for alkali metal ions than that for alkaline earth metal ions,due mainly to the larger MIAs of the latter.For a given series of monovalent or divalent metal ions,the dif f erence tends to decrease with the increase of the ion size,though the trend may be disturbed by the use of pseudopotential for the fourth and f i fth row elements.

    There are experimental reports on MIAs of Gln with Na+and K+,as shown in Table V.The MP2 results are in very good agreement with these available experiments.It is natural for one to favor the MP2 results. However,one should be cautious about this conclusion as all the existing experimental data are obtained by the simple kinetic method(SKM)that ignores the relative entropy changes[41-44].As shown in Table V, the reaction free energy changes are quite dif f erent at T=298 and 500 K,indicating a strong entropic ef f ect. Since the free energy change is probed more directly than the enthalpy change in experiments and the ef f ective experimental temperature is often close to 500 K, deducing the enthalpy change at T=298 K from the experiment may sometime cause signif i cant error.In fact, it has been shown that the SKM result underestimates the protonation energy of Gln by about 30 kJ/mol[26, 41].Due to the similarity in the metalation and protonation processes,some underestimation of SKM on MIA is expected.Therefore,one should not jump into the conclusion that the MP2 results provide the best estimate of MIAs of Gln.To truly resolve the theoretical dispute,measurements of MIAs of Gln by the more rigorous method of the extended kinetic method[41]are highly desirable and urged.

    IV.CONCLUSION

    A simple and reliable method of systematically searching low energy conformations of metalated Gln is described.The method is used to f i nd the low energy conformations of Gln binding with alkali and alkaline earth metal ions.In addition to all conformersknown in literatures,many new important conformations are found,demonstrating the power of the new search method and the necessity of the conformational search performed here.

    The metal coordination modes,relative energies, dipole moments and equilibrium distributions of all important conformations of Gln metalated with alkali and alkaline earth metal ions as calculated by the methods of B3LYP,BHandHLYP and MP2 are presented.Most of the results are reported for the f i rst time and form an extensive database useful for systematic examination of the metalation properties of Gln.

    The tridentate charge solvation coordination mode of NOOsis the dominant conformation for Gln·Li+, Gln·Na+,Gln·Be++,and Gln·Mg++.The global minimum of Gln·Ba++adopts a tridentate SB coordination mode of OOOs.The global minima of Gln·K+, Gln·Rb+,Gln·Cs+,Gln·Ca++,and Gln·Sr++are dependent on the computational method and may take either the CS or SB form.Overall,B3LYP tends to favor the SB form,while BHandHLYP tends to favor the CS conformation.

    IR spectra at the room temperature for Gln bound with alkali and alkaline earth metal ions are presented and compared with the available experiments. It is noted that the feature peaks in the range of 800-1200 cm-1may be useful for identifying the metal ion bound with Gln.

    MIAs and reaction free energies of Gln binding with alkali and alkaline earth metal ions are computed by the methods of B3LYP,BHandHLYP and MP2.The BHandHLYP MIA values are the largest,while the MP2 values are the smallest.The MP2 results are in good agreement with the available SKM experiments.However,large entropic ef f ects on the reaction free energies are observed.As SKM tends to underestimate MIAs when large entropy changes are involved,MIAs measured by the extended kinetic method are urged to provide more def i nite answers.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11074233 and No.11374272)andtheSpecializedResearchFund fortheDoctoralProgramofHigherEducation (No.20113402110038 and No.20123402110064)

    [1]T.Marino,N.Russo,and M.Toscano,Inorg.Chem. 40,6439(2001).

    [2]T.Marino,N.Russo,and M.Toscano,J.Inorg. Biochem.79,179(2000).

    [3]X.Xu,W.Yu,Z.Huang,and Z.Lin,J.Phys.Chem. B 114,1417(2010).

    [4]S.Liu,A.Hu,and Z.Lin,Chin.J.Chem.Phys.25, 409(2102).

    [5]H.Li,Z.Lin,and Y.Luo,Chin.J.Chem.Phys.25, 681(2012).

    [6]A.K.Rai,W.Fei,Z.Lu,and Z.Lin,Theo.Chem.Acc. 124,37(2009).

    [7]A.L.Heaton,R.M.Moision,and P.B.Armentrout,J. Phys.Chem.A 112,3319(2008).

    [8]A.L.Heaton,S.J.Ye,and P.B.Armentrout,J.Phys. Chem.A 112,3328(2008).

    [9]P.Wang,G.Ohanessian,and C.Wesdemiotis,Int.J. Mass spectrom.269,34(2008).

    [10]M.M.Kish,G.Ohanessian,and C.Wesdemiotis,Int. J.Mass spectrom.227,509(2003).

    [11]A.S.Lemof f,M.F.Bush,C.C.Wu,and E.R. Williams,J.Am.Chem.Soc.127,10276(2005).

    [12]W.Y.Feng,S.Gronert,and C.Lebrilla,J.Phys.Chem. A 107,405(2003).

    [13]A.L.Heaton and P.B.Armentrout,J.Phys.Chem.B 112,12056(2008).

    [14]K.K.Lehmann,G.Scoles,and B.H.Pate,Annu.Rev. Phys.Chem.45,241(1994).

    [15]D.P.Little,J.P.Speir,M.W.Senko,P.B.Oconnor, and F.W.McLaf f erty,Anal.Chem.66,2809(1994).

    [16]X.Wang and L.Wang,Annu.Rev.Phys.Chem.60, 105(2009).

    [17]M.F.Bush,J.Oomens,R.J.Saykally,and E.R. Williams,J.Am.Chem.Soc.130,6463(2008).

    [18]M.F.Bush,J.Oomens,R.J.Saykally,and E.R. Williams,J.Phys.Chem.A 112,8578(2008).

    [19]J.Wang,Chin.J.Chem.Phys.20,509(2007).

    [20]X.Yang,L.Cao,Q.Zhang,J.Chen,G.Chu,Y.Zhao, X.Shan,F.Liu,and L.Sheng,Chin.J.Chem.Phys. 25,379(2012).

    [21]W.Fei,A.K.Rai,Z.Lu,and Z.Lin,J.Mol.Struc.: THEOCHEM 895,65(2009).

    [22]L.Meng and Z.Lin,Comput.Theor.Chem.976,42 (2011).

    [23]C.Kapota,J.Lemaire,P.Maitre,and G.Ohanessian, J.Am.Chem.Soc.126,1836(2004).

    [24]A.S.Lemof f,C.C.Wu,M.F.Bush,and E.R. Williams,J.Phys.Chem.A 110,3662(2006).

    [25]S.Ling,W.Yu,Z.Huang,Z.Lin,M.Haranczyk,and M.Gutowski,J.Phys.Chem.A 110,12282(2006).

    [26]R.Pang,M.Guo,S.Ling,and Z.Lin,Comput.Theor. Chem.1020,14(2013).

    [27]S.Jang,M.J.Song,H.Kim,and S.S.Choi,J.Mass Spectrom.46,496(2011).

    [28]M.Headgordon,J.A.Pople,and M.J.Frisch,Chem. Phys.Lett.153,503(1988).

    [29]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [30]C.T.Lee,W.T.Yang,and R.G.Parr,Phys.Rev.B 37,785(1988).

    [31]P.J.Stephens,F.J.Devlin,C.F.Chabalowski,and M. J.Frisch,J.Phys.Chem.98,11623(1994).

    [32]S.H.Vosko,L.Wilk,and M.Nusair,Can.J.Phys.58, 1200(1980).

    [33]X.Song,W.Hua,Y.Ma,C.Wang,and Y.Luo,J. Phys.Chem.C 116,23938(2012).

    [34]I.Y.Zhang,J.Wu,Y.Luo,and X.Xu,J.Comput. Chem.32,1824(2011).

    [35]W.R.Wadt and P.J.Hay,J.Chem.Phys.82,284 (1985).

    [36]P.J.Hay and W.R.Wadt,J.Chem.Phys.82,299 (1985).

    [37]P.J.Hay and W.R.Wadt,J.Chem.Phys.82,270 (1985).

    [38]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Jr.Montgomery,T.Vreven,K.N.Kudin,J.C.Burant,J.M. Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota, R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y. Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox, H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R. Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin, R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M. C.Strain,¨O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A. G.Baboul,S.Clif f ord,J.Cioslowski,B.B.Stefanov,G. Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng, A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J. A.Pople,Gaussian 03,Pittsburgh PA:Gaussian,Inc., (2003).

    [39]C.J.Cramer,Essentials of Computational Chemistry: Theories and Models,John Wiley and Sons,325(2005).

    [40]I.Compagnon,F.C.Hagemeister,R.Antoine,D. Rayane,M.Broyer,P.Dugourd,R.R.Hudgins,and M.F.Jarrold,J.Am.Chem.Soc.123,8440(2001).

    [41]G.Bouchoux,D.A.Buisson,C.Colas,and M.Sablier, Eur.J.Mass Spectrom.10,977(2004).

    [42]L.Drahos and K.Vekey,J.Mass Spectrom.38,1025 (2003).

    [43]K.M.Ervin and P.B.Armentrout,J.Mass Spectrom. 39,1004(2004).

    [44]A.G.Harrison,Mass Spectrom.Rev.16,201(1997).

    ?Author to whom correspondence should be addressed.E-mail:zjlin@ustc.edu.cn

    国产高清三级在线| 国产黄片美女视频| 午夜精品一区二区三区免费看| 超碰97精品在线观看| av卡一久久| 免费看美女性在线毛片视频| 亚洲怡红院男人天堂| 男女啪啪激烈高潮av片| 久久久久国产网址| 欧美变态另类bdsm刘玥| 久久精品国产亚洲av天美| 久久精品夜色国产| 在线观看美女被高潮喷水网站| 久久久久久久久大av| 3wmmmm亚洲av在线观看| 精品一区二区三区人妻视频| 天堂av国产一区二区熟女人妻| 如何舔出高潮| 国产视频内射| 亚洲成人久久爱视频| 欧美xxxx黑人xx丫x性爽| 少妇的逼好多水| 久久久久精品久久久久真实原创| 国产极品天堂在线| 国产熟女欧美一区二区| 亚洲最大成人中文| 国语对白做爰xxxⅹ性视频网站| 日韩欧美三级三区| 中文在线观看免费www的网站| 欧美丝袜亚洲另类| 精华霜和精华液先用哪个| 国产黄片美女视频| 亚洲国产日韩欧美精品在线观看| 白带黄色成豆腐渣| 国产乱来视频区| 欧美色视频一区免费| 午夜福利在线观看吧| 噜噜噜噜噜久久久久久91| 亚州av有码| 婷婷六月久久综合丁香| 免费看a级黄色片| 日本免费在线观看一区| 岛国毛片在线播放| 欧美变态另类bdsm刘玥| 青春草视频在线免费观看| 天堂影院成人在线观看| 秋霞在线观看毛片| 国产麻豆成人av免费视频| 亚洲最大成人手机在线| 久久午夜福利片| 免费搜索国产男女视频| 中国国产av一级| 国产成人免费观看mmmm| 免费观看a级毛片全部| 国产精品综合久久久久久久免费| 中文亚洲av片在线观看爽| 成人高潮视频无遮挡免费网站| 尾随美女入室| 日韩在线高清观看一区二区三区| 国产一区有黄有色的免费视频 | 久久精品91蜜桃| 亚洲在久久综合| 日韩在线高清观看一区二区三区| 久久这里有精品视频免费| 日韩欧美国产在线观看| 十八禁国产超污无遮挡网站| 国产色爽女视频免费观看| 久久久精品大字幕| 精品久久久噜噜| 啦啦啦观看免费观看视频高清| 99久久成人亚洲精品观看| 国产在线一区二区三区精 | 免费av观看视频| 看黄色毛片网站| 亚洲欧美成人精品一区二区| 久久精品熟女亚洲av麻豆精品 | 噜噜噜噜噜久久久久久91| 最近最新中文字幕免费大全7| 色综合亚洲欧美另类图片| 七月丁香在线播放| 日韩制服骚丝袜av| 国产国拍精品亚洲av在线观看| 搡女人真爽免费视频火全软件| 国产三级中文精品| 国产午夜福利久久久久久| 日本-黄色视频高清免费观看| 99视频精品全部免费 在线| 波野结衣二区三区在线| 麻豆成人av视频| 搞女人的毛片| 中国美白少妇内射xxxbb| 国产亚洲精品av在线| 中文字幕av在线有码专区| 国产成人午夜福利电影在线观看| 成人一区二区视频在线观看| 又爽又黄a免费视频| 亚洲精品乱码久久久v下载方式| 国产v大片淫在线免费观看| 久久久国产成人精品二区| 99热全是精品| 国产黄色视频一区二区在线观看 | 91精品一卡2卡3卡4卡| 国产午夜精品一二区理论片| 日韩一区二区视频免费看| 国产一区有黄有色的免费视频 | 久久久久久久午夜电影| 长腿黑丝高跟| 亚洲精品乱久久久久久| 精品一区二区免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产一区二区在线av高清观看| 国产精品久久久久久精品电影| 婷婷色综合大香蕉| 村上凉子中文字幕在线| 日韩人妻高清精品专区| 久久精品91蜜桃| 色综合色国产| 国产精品国产高清国产av| 欧美激情久久久久久爽电影| 精品酒店卫生间| 精品酒店卫生间| 一个人看视频在线观看www免费| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 日本av手机在线免费观看| 国产黄色小视频在线观看| 深爱激情五月婷婷| 一级毛片久久久久久久久女| 欧美一区二区亚洲| 国产黄色小视频在线观看| 午夜亚洲福利在线播放| 久久6这里有精品| 男女视频在线观看网站免费| 丝袜美腿在线中文| 91精品伊人久久大香线蕉| 男插女下体视频免费在线播放| 一级毛片我不卡| 热99re8久久精品国产| 99热全是精品| 久热久热在线精品观看| 久久草成人影院| 中文字幕亚洲精品专区| 老女人水多毛片| 中文字幕久久专区| 91精品一卡2卡3卡4卡| 99久久九九国产精品国产免费| 身体一侧抽搐| 亚洲av中文av极速乱| 欧美日本亚洲视频在线播放| 久久精品人妻少妇| 亚洲精品久久久久久婷婷小说 | 久久久久久久久久黄片| 久久精品影院6| 搡老妇女老女人老熟妇| 欧美激情在线99| 亚洲国产精品成人综合色| 欧美成人一区二区免费高清观看| 人妻少妇偷人精品九色| 桃色一区二区三区在线观看| 亚洲国产成人一精品久久久| 乱码一卡2卡4卡精品| 黄色欧美视频在线观看| 国产又色又爽无遮挡免| av天堂中文字幕网| 成年女人看的毛片在线观看| 日本免费一区二区三区高清不卡| 三级国产精品欧美在线观看| 久久久午夜欧美精品| 亚洲欧洲国产日韩| 国产精品日韩av在线免费观看| 一夜夜www| 99久久精品国产国产毛片| 秋霞在线观看毛片| 欧美成人精品欧美一级黄| av线在线观看网站| 啦啦啦观看免费观看视频高清| 日韩在线高清观看一区二区三区| 亚洲av二区三区四区| 国产精品综合久久久久久久免费| 久久精品国产自在天天线| 免费观看人在逋| 青春草亚洲视频在线观看| 91精品伊人久久大香线蕉| 久久久久网色| 建设人人有责人人尽责人人享有的 | 精品久久久久久久久久久久久| 国产激情偷乱视频一区二区| 亚洲成av人片在线播放无| 国产精品1区2区在线观看.| 人妻夜夜爽99麻豆av| 91aial.com中文字幕在线观看| 久久久成人免费电影| 我要看日韩黄色一级片| 免费搜索国产男女视频| 国产精品一区www在线观看| 久久久久久久久久久丰满| 18+在线观看网站| 网址你懂的国产日韩在线| 22中文网久久字幕| 久久精品夜夜夜夜夜久久蜜豆| 久久精品综合一区二区三区| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 精品久久久久久成人av| 国产欧美日韩精品一区二区| 91狼人影院| 欧美日韩一区二区视频在线观看视频在线 | a级一级毛片免费在线观看| 在线播放无遮挡| 在线观看66精品国产| 只有这里有精品99| 五月伊人婷婷丁香| 国产精品三级大全| 免费看美女性在线毛片视频| 精品一区二区三区视频在线| 欧美成人免费av一区二区三区| 免费人成在线观看视频色| 亚洲色图av天堂| 神马国产精品三级电影在线观看| 日韩中字成人| 久久精品综合一区二区三区| 国模一区二区三区四区视频| 三级国产精品片| av在线老鸭窝| 日本熟妇午夜| 天堂av国产一区二区熟女人妻| 亚洲精华国产精华液的使用体验| 国产白丝娇喘喷水9色精品| 人人妻人人澡欧美一区二区| 色吧在线观看| 搡老妇女老女人老熟妇| 成人av在线播放网站| 国产 一区 欧美 日韩| 国产成人freesex在线| 欧美高清成人免费视频www| 网址你懂的国产日韩在线| 欧美+日韩+精品| 成人毛片a级毛片在线播放| 99热网站在线观看| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区国产| 观看免费一级毛片| 人妻制服诱惑在线中文字幕| 国内少妇人妻偷人精品xxx网站| 精品久久久久久电影网 | 国产精品电影一区二区三区| 最近中文字幕2019免费版| 日本色播在线视频| 九色成人免费人妻av| 1024手机看黄色片| 国产色爽女视频免费观看| 国产精品国产高清国产av| 国产亚洲5aaaaa淫片| 99在线人妻在线中文字幕| 成人无遮挡网站| 熟女人妻精品中文字幕| av在线老鸭窝| av天堂中文字幕网| 久久久久精品久久久久真实原创| 国产精品精品国产色婷婷| 少妇人妻精品综合一区二区| 老师上课跳d突然被开到最大视频| www.av在线官网国产| 国产精品无大码| 激情 狠狠 欧美| 麻豆乱淫一区二区| 秋霞伦理黄片| 日本-黄色视频高清免费观看| 婷婷六月久久综合丁香| 性插视频无遮挡在线免费观看| 日韩 亚洲 欧美在线| 午夜精品一区二区三区免费看| 三级男女做爰猛烈吃奶摸视频| 国产一区二区三区av在线| 狂野欧美激情性xxxx在线观看| 国产美女午夜福利| 一级爰片在线观看| 精品国产露脸久久av麻豆 | 国产伦精品一区二区三区四那| 欧美日韩一区二区视频在线观看视频在线 | 麻豆久久精品国产亚洲av| 亚洲成人精品中文字幕电影| 中文字幕熟女人妻在线| 乱系列少妇在线播放| 亚洲在线观看片| 国产精品久久久久久久电影| 久久久成人免费电影| 一本久久精品| 99久久人妻综合| 国产激情偷乱视频一区二区| 国产女主播在线喷水免费视频网站 | 久久亚洲国产成人精品v| 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 2021少妇久久久久久久久久久| 99久久人妻综合| 在线a可以看的网站| 九九久久精品国产亚洲av麻豆| 日本av手机在线免费观看| 晚上一个人看的免费电影| 亚洲,欧美,日韩| 亚洲乱码一区二区免费版| 欧美性感艳星| 99热6这里只有精品| 久久精品熟女亚洲av麻豆精品 | 成人亚洲精品av一区二区| 日韩国内少妇激情av| 色噜噜av男人的天堂激情| 岛国在线免费视频观看| 亚洲精品456在线播放app| 国产探花极品一区二区| 波多野结衣高清无吗| 国产精品一区二区三区四区久久| 毛片女人毛片| 天堂网av新在线| 国产精品综合久久久久久久免费| 变态另类丝袜制服| 国产黄色视频一区二区在线观看 | 长腿黑丝高跟| 在线免费十八禁| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 日本wwww免费看| 91久久精品国产一区二区成人| 国产在线一区二区三区精 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久人人爽人人片av| 国产在线男女| 久久久午夜欧美精品| 18禁在线播放成人免费| 久久草成人影院| 国产精品.久久久| 搡女人真爽免费视频火全软件| 一二三四中文在线观看免费高清| 国产精品蜜桃在线观看| 国内精品一区二区在线观看| 婷婷色综合大香蕉| 91久久精品国产一区二区成人| 久久精品国产鲁丝片午夜精品| 久久鲁丝午夜福利片| 黄片wwwwww| 两个人视频免费观看高清| 美女cb高潮喷水在线观看| 国国产精品蜜臀av免费| 日本五十路高清| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久电影中文字幕| 人妻少妇偷人精品九色| av女优亚洲男人天堂| 亚洲国产精品成人综合色| 水蜜桃什么品种好| 国产在线男女| 毛片女人毛片| 麻豆一二三区av精品| 永久免费av网站大全| 亚洲av免费在线观看| 能在线免费看毛片的网站| 一级爰片在线观看| 精品不卡国产一区二区三区| 看十八女毛片水多多多| 亚洲自拍偷在线| 深爱激情五月婷婷| 亚洲av电影不卡..在线观看| 赤兔流量卡办理| 亚洲精品久久久久久婷婷小说 | 欧美性猛交黑人性爽| 97热精品久久久久久| 十八禁国产超污无遮挡网站| 精品国产露脸久久av麻豆 | 亚洲丝袜综合中文字幕| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 国产精品美女特级片免费视频播放器| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 岛国在线免费视频观看| 日本一本二区三区精品| 成人毛片60女人毛片免费| 综合色av麻豆| 午夜激情欧美在线| 中国美白少妇内射xxxbb| 免费播放大片免费观看视频在线观看 | 人妻夜夜爽99麻豆av| 国产视频首页在线观看| 国产麻豆成人av免费视频| 欧美日韩国产亚洲二区| 草草在线视频免费看| 最近手机中文字幕大全| videos熟女内射| 男的添女的下面高潮视频| or卡值多少钱| 高清毛片免费看| 精品国产一区二区三区久久久樱花 | 精品一区二区三区视频在线| 联通29元200g的流量卡| 两性午夜刺激爽爽歪歪视频在线观看| 我的女老师完整版在线观看| 久久久色成人| 成人一区二区视频在线观看| 男女啪啪激烈高潮av片| 狠狠狠狠99中文字幕| 99久久成人亚洲精品观看| 人人妻人人澡人人爽人人夜夜 | 高清毛片免费看| 波野结衣二区三区在线| 亚洲av.av天堂| 午夜激情福利司机影院| 高清视频免费观看一区二区 | 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 九色成人免费人妻av| 在线免费十八禁| 秋霞伦理黄片| 久久热精品热| 国产高清有码在线观看视频| 久久99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 97人妻精品一区二区三区麻豆| 免费大片18禁| 国产大屁股一区二区在线视频| 美女脱内裤让男人舔精品视频| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久性生活片| 天堂网av新在线| 婷婷色综合大香蕉| 99久久无色码亚洲精品果冻| 免费观看精品视频网站| 国产成人精品久久久久久| 五月玫瑰六月丁香| 免费一级毛片在线播放高清视频| 亚洲不卡免费看| 精品国产三级普通话版| 麻豆成人午夜福利视频| 国产午夜精品论理片| 国产精品人妻久久久影院| 久久精品国产亚洲网站| 可以在线观看毛片的网站| 精品久久久久久久久亚洲| 最近中文字幕高清免费大全6| 亚洲国产精品久久男人天堂| 两个人的视频大全免费| 男女边吃奶边做爰视频| 国产精品伦人一区二区| 国产成人freesex在线| 亚洲av男天堂| 成人性生交大片免费视频hd| 国产一区有黄有色的免费视频 | 成人av在线播放网站| 亚洲在久久综合| 大话2 男鬼变身卡| 男女国产视频网站| 亚洲国产色片| 日韩成人伦理影院| 高清日韩中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 免费人成在线观看视频色| 只有这里有精品99| 国语对白做爰xxxⅹ性视频网站| 亚洲丝袜综合中文字幕| 亚洲伊人久久精品综合 | 一区二区三区四区激情视频| 成人二区视频| 精品一区二区三区人妻视频| 国产高清国产精品国产三级 | 中国国产av一级| 国产69精品久久久久777片| 亚洲色图av天堂| 成人特级av手机在线观看| 国产成人aa在线观看| kizo精华| 国产成年人精品一区二区| 最近2019中文字幕mv第一页| 九九在线视频观看精品| 99在线人妻在线中文字幕| 成人av在线播放网站| 亚洲经典国产精华液单| 麻豆国产97在线/欧美| 国产亚洲一区二区精品| 国产白丝娇喘喷水9色精品| 丰满乱子伦码专区| 日韩欧美国产在线观看| 只有这里有精品99| av女优亚洲男人天堂| 色5月婷婷丁香| 亚洲精品色激情综合| 国产一级毛片在线| 九草在线视频观看| 国产精品精品国产色婷婷| 亚洲美女搞黄在线观看| 国产午夜精品久久久久久一区二区三区| av卡一久久| 亚洲人成网站在线观看播放| 精品久久久久久久久亚洲| 美女内射精品一级片tv| 日日摸夜夜添夜夜添av毛片| 成人国产麻豆网| 国产69精品久久久久777片| 欧美三级亚洲精品| 久久韩国三级中文字幕| 日韩视频在线欧美| av免费在线看不卡| 久久精品夜色国产| 熟女电影av网| 激情 狠狠 欧美| 亚洲丝袜综合中文字幕| 国产一区二区三区av在线| 非洲黑人性xxxx精品又粗又长| 精品酒店卫生间| 嫩草影院新地址| 中文字幕久久专区| 自拍偷自拍亚洲精品老妇| 亚洲五月天丁香| 小蜜桃在线观看免费完整版高清| 国产欧美另类精品又又久久亚洲欧美| 成人二区视频| 波多野结衣高清无吗| 毛片一级片免费看久久久久| 国产成人一区二区在线| 国产私拍福利视频在线观看| 亚洲av电影不卡..在线观看| 高清午夜精品一区二区三区| 国产爱豆传媒在线观看| 六月丁香七月| 国产成人a区在线观看| 亚洲av中文av极速乱| 午夜亚洲福利在线播放| 久久久久久久久中文| 国产成人91sexporn| 亚洲国产成人一精品久久久| 寂寞人妻少妇视频99o| 一个人免费在线观看电影| 久久久欧美国产精品| 日本色播在线视频| 美女高潮的动态| ponron亚洲| 国内精品宾馆在线| 黄色配什么色好看| АⅤ资源中文在线天堂| 亚洲在线观看片| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 美女xxoo啪啪120秒动态图| 国产一区有黄有色的免费视频 | 成人无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧洲综合997久久,| 又黄又爽又刺激的免费视频.| 国产三级在线视频| 韩国高清视频一区二区三区| 夜夜看夜夜爽夜夜摸| 一级毛片我不卡| 亚洲在久久综合| 视频中文字幕在线观看| 十八禁国产超污无遮挡网站| 久久久成人免费电影| 色视频www国产| 三级男女做爰猛烈吃奶摸视频| av在线天堂中文字幕| 亚洲人成网站高清观看| 日日撸夜夜添| 久久久久网色| 边亲边吃奶的免费视频| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频| 久久热精品热| 亚洲成人久久爱视频| 99视频精品全部免费 在线| 嫩草影院入口| 国产成人一区二区在线| 中文字幕熟女人妻在线| 夜夜爽夜夜爽视频| 97超视频在线观看视频| 免费看日本二区| 亚洲中文字幕一区二区三区有码在线看| 午夜免费激情av| 久久鲁丝午夜福利片| 女人十人毛片免费观看3o分钟| 国产精品国产高清国产av| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 国产av不卡久久| 久久精品久久久久久噜噜老黄 | 夜夜爽夜夜爽视频| 国产精品人妻久久久影院| 女的被弄到高潮叫床怎么办| 97人妻精品一区二区三区麻豆| 国产黄色视频一区二区在线观看 | 午夜a级毛片| 久久精品国产亚洲av天美| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产专区5o | 欧美激情在线99| 少妇的逼水好多| 亚洲av电影在线观看一区二区三区 | 欧美3d第一页| 大香蕉久久网| 69av精品久久久久久| 国产精品国产高清国产av| 青春草亚洲视频在线观看| 伦精品一区二区三区| 国产一区二区在线av高清观看| 蜜桃久久精品国产亚洲av| 黄片wwwwww| 国产69精品久久久久777片| 日韩中字成人| 三级国产精品片| 国内精品美女久久久久久| 国产精品一区二区三区四区久久| 精品久久久噜噜| 国产精品一及| 大又大粗又爽又黄少妇毛片口| 亚州av有码| kizo精华| 少妇猛男粗大的猛烈进出视频 |