• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    N2O Decomposition over K-Ce Promoted Co-M-Al Mixed Oxide Catalysts Prepared from Hydrotalcite-like Precursors

    2014-07-18 11:51:53JinliZhngShungWuHuiHuGomingWuZhoweiZeng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Jin-li Zhng,Shung Wu,Hui Hu?,Go-ming Wu,Zho-wei Zeng

    a.School of Environmental Science and Engineering,Huazhong University of Science and Technology, Wuhan 430074,China

    b.Wuhan Iron and Steel(Group)Corp.,Wuhan 430083,China

    (Dated:Received on October 29,2013;Accepted on December 26,2013)

    N2O Decomposition over K-Ce Promoted Co-M-Al Mixed Oxide Catalysts Prepared from Hydrotalcite-like Precursors

    Jin-li Zhanga,Shuang Wua,Hui Hua?,Gao-ming Wub?,Zhao-wei Zenga

    a.School of Environmental Science and Engineering,Huazhong University of Science and Technology, Wuhan 430074,China

    b.Wuhan Iron and Steel(Group)Corp.,Wuhan 430083,China

    (Dated:Received on October 29,2013;Accepted on December 26,2013)

    A series of mixed oxide catalysts with dif f erent composition of Co-M-Al and Co-M-Ce-Al(M=Zn,Ni,Cu)were prepared by co-precipitation method from hydrotalcite-like compounds.The experimental results revealed the catalytic activity of Co-Ni-Al is slightly higher than that of Co-Zn-Al and much higher than that of Co-Cu-Al for direct decomposition of N2O.Moreover,addition of small amounts of CeO2improved the catalytic activity significantly and made the decomposition temperatures at which the N2O conversion was 50% and 90%(T50and T90)both decreased 80?C than those of Co-M-Al catalysts without CeO2added.Further,potassium-load also promoted the catalytic activity,and the decomposition temperatures of T50and T90both decreased approximately 50?C.It is signif i cant for decomposing N2O from industries and reducing carbon emission from atmosphere.

    N2O,Catalytic decomposition,Hydrotalcite-like compound,CeO2,Alkali metal

    I.INTRODUCTION

    Nitrous oxide(N2O),as one of the major greenhouse gases in Kyoto Protocol and also as the gas depleting the ozone layer,has a global warming potential (GWP)of 310 and longer atmospheric residence time (120 years).Therefore,N2O abatement has received more and more attentions recently[1].However,N2O concentration has risen continuously by 0.2%-0.3%per year[2],which emits from both natural and anthropogenic sources such as coal combustion,nitric acid plants,adipic acid plants and f l uidized bed combustors [3-6].Direct catalytic decomposition is considered as a perfect method because it can decompose directly N2O to N2and O2without accretion and the process is without secondary pollution.Various types of catalysts have been reported to decompose N2O[7-11].

    Inrecentyears,mixedoxidesderivedfrom hydrotalcite-like compounds(HTLCs)as new catalysts exhibited high catalytic activity in decomposing N2O to N2and O2[12],and transition metals such as Co[13],Ni [14],and Zn[15]were used respectively to replace Mg of hydrotalcite-like compounds and showed better decomposition activity.Kar′askov′a et al.revealed alkali metal potassium in Co-Mn-Al mixed oxide as a promoter to improve catalytic activity for N2O catalytic decomposition[16].Xue et al.found the addition of CeO2to the cobalt spinel led to an enhanced catalytic activity for the direct decomposition of N2O[17].Hu et al.investigated the ef f ect of SO2reduction over CeO2-La2O3/γ-Al2O3and also showed the rare earth metal Ce could accelerate the transfer of surface O and eventually improve catalytic activity[18].However,the ef f ect of rare earth metal Ce on hydrotalcite-like compounds for N2O decomposition was rarely investigated,and there were no reports about the synergistic ef f ect of three aspects of transition metal,rare-earth metal,and alkali metal on hydrotalcite-like compounds for direct decomposition of N2O.

    In this work,catalysts Co-M-Al and Co-M-Ce-Al (M=Zn,Ni,Cu)with dif f erent compositions were prepared by co-precipitation method,and then Co-M-Ce-Al(M=Zn,Ni)mixed oxide catalysts as the carriers of the catalysts to be loaded potassium oxide by impreasgnation method,f i nally were tested for the catalytic decomposition of N2O.X-ray powder dif f raction(XRD), Fourier-transform infrared absorption spectra(FTIR) and X-ray photoelectron spectroscopy(XPS)methods were used to characterize the catalysts.

    II.EXPERIMENTS

    A.Catalyst preparation and characterization

    The catalysts of Co-M-Al and Co-M-Ce-Al(M=Zn, Ni,Cu)were prepared by the co-precipitation method. The precursor salts were metal nitrates includingCo(NO3)2·6H2O,Zn(NO3)2·6H2O,Ni(NO3)2·6H2O, Cu(NO3)2·2H2O,and(NO3)3·9H2O(Sinopharm Chemical Reagent Co.,Ltd.,A.C.S.grade).CoxM3-xAl-HTLC(x=0,0.5,1,1.5,2,2.5,or 3,where x is the Co/M molar ratio)was added to the NaOH-Na2CO3solution drop wise under stirring at 40?C and the pH was controlled to 10.The precipitate slurry was stirred for 1 h and heated at 65?C for 24 h.The resulting products were separated and washed with distilled water until the pH reached 7,and then being dried at 100?C for 18 h. These CoxM3-x-Cey-Al-HTLCs samples with dif f erent composition were also prepared using the above method and designated as CoxM3-x-Cey-Al-HTLC,where y is expressed as the molar ratio of Ce/(Co+M).Co-M-Al-HTLC and Co-M-Ce-Al-HTLC samples were calcined at 500?C to form Co-M-Al and Co-M-Ce-Al mixed oxide catalysts.

    Supported catalyst Co-M-Ce-Al(M=Zn or Ni)was prepared by co-precipitation method as above and then impregnated into K2CO3(Sinopharm Chemical Reagent Co.,Ltd,A.C.S.grade)solution.The mixed liquid was treated for 1 h in ultrasonic generator and then dried in a vacuum oven at 100?C for 18 h,f inally crushed and calcined at 500?C for 1 h in a muffle furnace.The prepared catalysts were thus referred as zK/CoxM3-x-Cey(z indicates the loading in mass ratio of K2O,and z=0%,0.5%,1%,1.5%,2%).

    The samples were characterized by X-ray dif f raction (XRD,PANalytical,Netherlands,Cu Kα radiation,and 1.5418 nm)to check the crystal structure of catalysts with a 2θ range of 5?-70?in 0.01?/step.FTIR were recorded using the KBr pellet technique on the spectrometer FTIR(VERTEX 70,Germany)in the range 4000-400 cm-1and the resolution of 4 cm-1.The catalysts were analyzed using XPS(Vacuum Generators, UK,Al Kα radiation,1486.6 eV)to identify the surface nature and concentration of the active species with a constant pass energy of 50 eV and charging ef f ects were corrected by referencing C1s measurements at 284.6 eV.

    B.Catalytic activity test

    The catalytic reaction was carried out in a f i xedbed quartz f l ow reactor(?=8 mm),containing approximately 1.0 g of catalyst in all the experiments.The reactor was heated by a temperature controlled furnace with a thermocouple.The testing system consisted of of N2,f l owmeter,mixed gas chamber,reactor and gas chromatograph.Before the experiment,all samples were pretreated for 30 min in air at 500?C, and then decreased to the reaction temperature.Finally reaction mixture of N2O(4000 ppm)in N2was introduced into the reactor at a f l ow rate of 400 mL and the space velocity(W/F)was approximately 24000 h-1. For reliable N2O conversion rate,the reaction system was kept for 1 h at each reaction temperature to reach steady state and the reaction products were analyzed in of f-gases with a gas chromatographs(Agilent 6890A)equipped with HP-PLOT/Q capillary columns (30 m×0.32 mm×20μm)and ECD detector,respectively.In all tests,N2and O2were the only gaseous products we observed.The temperature range was from 200?C to 650?C,and the ef f ect of catalytic activity was expressed by the conversion rate of N2O.The conversion of reactant X was calculated using Eq.(1).

    FIG.1 XRD patterns of(a)Co-Ni-Al-HTLCs and(b)Co-Ni-Al mixed oxides.

    where X(N2O)is conversion rate of N2O,Cin(N2O)and Cout(N2O)are concentrations of N2O(ppm)in inlet and outlet,respectively.

    III.RESULTS AND DISCUSSION

    A.Structural characteristics of Co-M-Al-HTLCs and catalytic activity of derived Co-M-Al mixed oxides

    FIG.2 FTIR spectra of(a)Co-Zn-Al-HTLCs,(b)Co-Ni-Al-HTLCs,and(c)Co-Cu-Al-HTLCs.

    In this work,all Co-M-Al-HTLCs and Co-M-Al mixed oxides were characterized by XRD.The XRD spectra of Co-Ni-Al-HTLCs and Co-Ni-Al mixed oxides are shown in Fig.1.From Fig.1(a),the crystallographic indices in XRD patterns of fresh Co-M-Al-HTLCs such as(003),(006),(110),and(113)dif f raction lines exhibited the crystal characteristics of hydrotalcite-like materials,it indicated all Co-Ni-Al-HTLCs samples formed the hydrotalcite characteristic dif f raction peak [19].XRD patterns of the calcined Co-Ni-Al-HTLCs are shown in Fig.1(b).The main crystal phase of Co0Ni3and Co0.5Ni2.5was NiO,but the main crystal phase of Co2.5Ni0.5and Co3Ni0was spinel phase.It was seen that the characteristic dif f raction peaks of HTLCs disappeared,indicating the complete collapse of double layered structure after being calcined at 500?C.Compared with Co2.5Ni0.5and Co0.5Ni2.5,we found that spinel type dif f raction peak became increasingly sharp with the Co content increasing,and the peak intensity increased,f i nally the crystallinity became better.Moreover,the segregation phenomenon of NiO decreased gradually and the NiO dif f raction peak became more dispersed.

    It can be seen from Fig.2 the FTIR spectra of all the Co-M-Al-HTLCs samples also exhibited some characteristics of hydrotalcite-like materials.The broad band around 3450 cm-1was ascribed to the stretching mode of hydroxyl groups.The intense band at 1380 cm-1was due to the asymmetric stretching mode of C=O in CO32-and shifted to lower frequency in contrast to that in CaCO3,indicating the strong hydrogen bonding of water molecules with interlayer carbonate anions. The band below 800 cm-1was the skeletal vibration of metal-O bonds and hydrotalcite-like[20].

    FIG.3 Conversion of N2O as a function of reaction temperature over(a)Co-Zn-Al,(b)Co-Ni-Al,and(c)Co-Cu-Al mixed oxides.Reaction conditions:4000 ppm N2O,N2balance,GHSV=24000 h-1.

    The N2O conversions over Co-M-Al mixed oxides with dif f erent compositions are shown in Fig.3.Compared with Co0M3Al,it could be seen that the partial replacement of M2+(M=Zn,Ni,Cu)by Co2+with different degree led to a signif i cant improvement in the catalytic activity for the N2O decomposition.With the increasing of Co content(0<x<3),the catalytic activity was improved gradually.Especially among Co-M-Al mixed oxide catalysts,the group with Co2.5M0.5exhibited the best catalytic activity.A further increase in Co2+content caused a decrease in the N2O decomposition activity.

    B.Impact of Ce on catalytic activity of Co-M-Al samples

    Figure 4 revealed the catalytic activity of N2O over Co-M-Ce-Al mixed oxides.It can be seen that the mixed Ce in catalyst Co-M-Al gave rise to an increase of the catalytic activity and the activity decreased with increasing of the Ce amount.When the molar ratio ofmixed Ce was 0.05,the catalyst Co2.5M0.5Ce0.05mixed oxide represented the best catalytic activity for N2O decomposition and the temperatures of 50%and 90% conversion of N2O(T50and T90)were the lowest.

    FIG.4 Conversion of N2O as a function of reaction temperature over Co-M-Ce-Al mixed oxides.Reaction conditions: 4000 ppm N2O,N2balance,GHSV=24000 h-1.

    Table I shows the temperatures of 50%and 90%conversion of N2O(T50and T90)over Co-M-Ce-Al mixed oxide catalysts.The temperatures of 50%and 90% conversion of N2O over Co3M0were higher than those of the other catalysts which were partially replaced by M2+,indicating that the replacement of M2+improved the catalytic activity.Moreover,compared with Co2.5Zn0.5,T50and T90over Co2.5Zn0.5Ce0.05decreased 78 and 91?C,respectively(shown in Table I),and T50and T90over Co2.5Ni0.5Ce0.05also decreased 107 and 89?C than those of Co2.5Ni0.5,respectively,which was signif i cant in practice.However,Co2.5Cu0.5Ce0.05had the relatively poor catalytic activity,and T50and T90over Co2.5Cu0.5Ce0.05than those of Co2.5Cu0.5decreased 83 and 42?C,respectively.

    FIG.5 XRD patterns of(a)Co-Ni-Ce-Al-HTLCs and(b) Co-Ni-Ce-Al mixed oxides.

    TABLE I Temperatures of 50%and 90%conversion of N2O (T50and T90)over Co-M-Ce-Al mixed oxide catalysts Catalyst.

    In order to inspect the crystal forms and structures of Co-M-Ce-Al hydrotalcite-like catalysts before and after calcining,we chose Co-Ni-Ce-Al-HTLCs and Co-Ni-Ce-Al to be characterized by XRD.From Fig.5(a),we found that the crystallographic indices in XRD patterns of fresh Co-Ni-Ce-Al-HTLCs such as(003),(006),(110), and(113)dif f raction lines exhibited the crystal characteristics of hydrotalcite-like materials.With the Ce content increasing,the shape of dif f raction peaks became more dispersive and the peak intensity became weaker.

    FIG.6 Conversion of N2O as a function of reaction temperature over(a)K/Co-Zn-Ce-Al and(b)K/Co-Ni-Ce-Al mixed oxides.Reaction conditions:4000 ppm N2O,N2balance,GHSV=24000 h-1.

    The XRD patterns of calcined Co-Ni-Ce-Al mixed oxides are shown in Fig.5(b).From Fig.5(b),we found the main crystalline phase of Co2.5Ni0.5was spinel phase,while the crystalline phase of Co2.5Ni0.5Ce0.05and Co2.5Ni0.5Ce0.2included spinel phase and CeO2phase,however,the characteristic dif f raction peaks of HTLCs disappeared in these samples,indicating the complete collapse of double layered structure after calcination at 500?C.Compared with Co2.5Ni0.5Ce0.05and Co2.5Ni0.5Ce0.2,we found that the dif f raction peak of CeO2phase became increasingly sharp with the Co content increasing,the peak intensity increased,and the crystalline became better,however,the dif f raction peak of spinel phase was weaken gradually.

    Widmann et al.considered CeO2,as one of rare earth materials,was very easy to transform from one to the other because of two kinds of valence states and could be stored and released at the same time to possess special oxidation-reduction properties with excellent reversibility[21].Hu et al.also conf i rmed the transformation from Ce4+to Ce3+in catalytic desulfurization over rare oxide catalyst[18].Therefore,we suggested the addition of CeO2in catalysts led to support more chances for O transference,and it was related to the contribution of oxygen from CeO2to improve the catalytic activity.

    C.Ef f ect of potassium on catalytic activity of K-Ce promoted Co-M-Al mixed oxides

    Figure 6 illustrates the N2O conversions over Co-Zn/Ni-Ce-Al mixed oxide catalysts modif i ed by loadingvarious amount of potassium.From Fig.6,we found the K2CO3-doped catalysts were more active than bare Co-Zn/Ni-Ce-Al oxides.With the content increase of potassium loaded,the catalytic activities of the Co-Zn/Ni-Ce-Al mixed oxide catalysts were enhanced signif i cantly until the optimal value of potassium-loaded at 1.5%.

    TABLE II Temperatures of 50%and 90%conversion of N2O (T50and T90)over K-Co-Ni-Ce-Al mixed oxide catalysts.

    In particular,as shown in Table II,when the mass ratio of K2O on Co-Zn-Ce-Al mixed oxide was equal to 1.5%,the promotional ef f ect of K2O was so remarkable that T50and T90were lowered by 49 and 73?C in comparison with Co-Zn-Ce-Al mixed oxides,and lowered by 127 and 164?C in comparison with Co3O4,respectively. While T50and T90over 1.5%K/Co2.5Ni0.5Ce0.05Al were 261 and 346?C,respectively.T50and T90decreased by 49 and 34?C in comparison with Co-Ni-Ce-Al mixed oxide,and decreased by 156 and 123?C,in comparison with Co3O4,respectively.Such a pronounced enhancement was signif i cant for industrialization to decompose N2O and reduce carbon emission from atmosphere.

    The dominant state of surface nickel element was NiO,andfromFig.7(a)wefoundthepeaksof Ni2p1/2and Ni2p3/2of 1.5%K/Co2.5Ni0.5Ce0.05catalyst moved to lower banding energy in comparison with un-promoted catalyst,indicating the weakness of surface Ni-O bond due to the electron donation of K.In Fig.7(b),the peaks of corresponding binding energy(BE)of Co2p3/2and Co2p1/2for 1.5%K/Co2.5Ni0.5Ce0.05were 779.6 and 794.7 eV,respectively.Moreover,the?E(Co2p1/2-Co2p3/2)was 15.1 eV.BE of Co2p3/2for 1.5%K/Co2.5Ni0.5Ce0.05decreased 0.3 eV,which was same as that of Co2p1/2,in comparison with Co2.5Ni0.5Ce0.05,resulting in the further weakness of surface Co-O bond and the desorption of adsorbed oxygen species becoming easier.Eventually the catalytic activity was improved.When potassium was loaded,the banding energy decreased,which indicated the electronic state of Co moved to the lower state.Asano et al.suggested that small amount of potassium ions could be adsorbed on the particles tocompensate the negative charge of the particles[22]. Alkali cations were Lewis acids and had no electron donation ef f ects.However,oxygen anions in the coordination sphere of the cations were highly basic and therefore electron donation from highly basic oxygen anions surrounding the alkali cation toward cobalt ion increased the electron density of cobalt ions and played an important role in N2O decomposition.

    FIG.7 XPS of(a)Ni2p,(b)Co2p,and(c)Ce3d level for 1.5%K/Co2.5Ni0.5Ce0.05Al mixed oxide.

    Figure 7(c)revealed the XPS of Ce3d level for Co2.5Ni0.5Ce0.05and 1.5%K/Co2.5Ni0.5Ce0.05catalysts, including three patterns for Ce3d5/2(UI,UII,UIII)and three patterns for Ce3d3/2(VI,VII,VIII)[17]to correspond to Ce4+,which indicated the loading of alkali metal oxide on Co2.5Ni0.5Ce0.05mixed oxide did not signif i cantly inf l uence the valence state distribution of Ce.From Fig.7(c),we found that the XPS ofCe3d level for 1.5%K/Co2.5Ni0.5Ce0.05was more intensive than Co2.5Ni0.5Ce0.05and BE of Ce3d5/2and Ce 3d3/2were slightly dif f erent.It might be one reason for the dif f erence of catalytic activity.

    Figure 8 shows the O1s spectra of the catalysts.The peak at 529.0-529.5 eV was attributed to the O2-anions of the crystalline network[23].The O1s peak slightly shifted toward the lower BE side by the addition of K,indicating that the electronic density of oxygen increased,i.e.,the basicity of oxygen anion became high.

    IV.CONCLUSION

    Among the Co-M-Al(M=Zn,Ni,Cu)mixed oxide catalysts prepared from hydrotalcite-like precursors with dif f erent compositions,the series of Co2.5M0.5mixed oxides showed better catalytic activities.Moreover,the catalytic activity of Co-Ni-Al was slightly higher than that of Co-Zn-Al and much higher than that of Co-Cu-Al in decomposing N2O.

    The experiment of Co-M-Ce-Al catalyst for N2O decomposition indicated CeO2displayed a key role in improving the catalytic activity and made the decomposition temperatures of both T50and T90decreased 80?C compared with Co-M-Al catalysts without CeO2added. Furthermore,the series of Co2.5M0.5Ce0.05mixed oxides had higher catalytic activities.

    Potassium-load also had some ef f ect on promoting catalytic activity for direct decomposition of N2O. When the optimal value of potassium-load was 1.5%, the decomposition temperatures T50and T90both decreased approximately 50?C.It is signif i cant for decomposing N2O from anthropogenic source such as the nitric acid plant and reducing carbon emission from atmosphere.

    V.ACKNOWLEDGMENTS

    This work was supported by the National High-tech R&D Program of China(No.2012AA062501)and the Postgraduates Innovation Foundation of Huazhong University of Science and Technology of China(No.HF-08-11-2011-261).We also thank the analytical support from Analytical and Testing Center of Huazhong University of Science&Technology.

    [1]H.P.Wu,W.J.Li,L.Guo,Y.F.Pan,and X.F.Xu, J.Fuel Chem.Technol.39,550(2011).

    [2]G.Centi,L.Dall’Olio,and S.Perathoner,Appl.Catal. A 194,79(2000).

    [3]A.R.Ravishankara,J.S.Daniel,and R.W.Portmann, Science 326,123(2009).

    [4]F.Kapteijn,J.Rodriguez-Mirasol,and J.Moulijn, Appl.Catal.B 9,25(1996).

    [5]A.Shimizu,K.Tanaka,and M.Fujimori,Chemosphere Global Change Sci.2,425(2000).

    [6]M.Odaka,N.Koike,and H.Suzuki,Chemosphere Global Change Sci.2,413(2000).

    [7]L.Yan,T.Ren,X.Wang,D.Ji,and J.Suo,Appl. Catal.B 45,85(2003).

    [8]L.Yan,T.Ren,X.Wang,D.Ji,and J.Suo,Catal. Commun.4,505(2003).

    [9]Q.Shen,L.D.Li,J.J.Li,H.Tian,and Z.P.Hao,J. Hazard.Mater.163,1332(2009).

    [10]L.Xue,C.B.Zhang,H.He,and Y.Teraoka,Catal. Today 126,449(2007).

    [11]L.Xue and H.He,Acta Phys.Chim.Sin.23,664 (2007).

    [12]S.Kannan,Appl.Clay.Sci.13,347(1998).

    [13]Y.X.Tao,J.J.Yu,C.C.Liu,Z.P.Hao,and Z.P. Zhang,Acta Phys.Chim.Sin.23,162(2007).

    [14]H.P.Wu,Z.Y.Qian,X.L.Xu,and X.F.Xu,J.Fuel Chem.Technol.39,115(2011).

    [15]J.J.Yu,L.Zhu,B.Zhou,L.N.Shao,Y.T.Zhang,and X.W.He,Acta Phys.Chim.Sin.25,353(2009).

    [16]K.Kar′askov′a,L.Obalov′a,K.Jir′atov′a,and F.Kovanda,Chem.Eng.J.160,480(2010).

    [17]L.Xue,C.B.Zhang,H.He,and Y.Teraoka,Appl. Catal.B 75,167(2007).

    [18]H.Hu,S.L.Li,S.X.Zhang,and J.Li,Chin.J.Catal. 25,115(2004).

    [19]S.Kannan and C.S.Swamy,Catal.Today 53,725 (1999).

    [20]J.M.Fern′andez,M.A.Ulibarri,F.M.Labajos,and V. Rives,J.Mater.Chem.8,2507(1998).

    [21]D.Widmann,R.Leppelt,and R.J.Behm,J.Catal. 251,437(2007).

    [22]K.Asano,C.Ohnishi,S.Iwamoto,Y.Shioya,and M. Inoue,Appl.Catal.B 78,242(2008).

    [23]A.Miyakoshi,A.Ueno,and M.Ichikawa,Appl.Catal. A 219,249(2001).

    ?Authors to whom correspondence should be addressed.E-mail:zjlzjl@hust.edu.cn,gm-wu1031@163.com,Tel.:+86-27-87542224,FAX:+86-27-87792101

    人人妻人人添人人爽欧美一区卜| 亚洲国产看品久久| 女人高潮潮喷娇喘18禁视频| 老汉色av国产亚洲站长工具| 美女大奶头黄色视频| 十分钟在线观看高清视频www| 亚洲精品久久午夜乱码| 狂野欧美激情性bbbbbb| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av高清一级| 国产国语露脸激情在线看| 搡老乐熟女国产| 色婷婷久久久亚洲欧美| 午夜福利视频在线观看免费| 黄频高清免费视频| 少妇的丰满在线观看| 亚洲 欧美一区二区三区| 99热全是精品| 免费在线观看完整版高清| 免费女性裸体啪啪无遮挡网站| 欧美精品一区二区大全| 国产一区二区三区综合在线观看| 一级毛片黄色毛片免费观看视频| 少妇人妻久久综合中文| 欧美在线一区亚洲| 亚洲精品一二三| 秋霞伦理黄片| 成人午夜精彩视频在线观看| 国产伦人伦偷精品视频| 久久久久视频综合| 五月天丁香电影| 亚洲成人免费av在线播放| 美女高潮到喷水免费观看| 欧美日韩成人在线一区二区| 久久久久精品国产欧美久久久 | 国产精品.久久久| 只有这里有精品99| 久久久久久久久免费视频了| 午夜精品国产一区二区电影| 亚洲成色77777| 久久久久精品久久久久真实原创| 日韩欧美精品免费久久| 老熟女久久久| 黄频高清免费视频| 黑人猛操日本美女一级片| 美女国产高潮福利片在线看| 国产一卡二卡三卡精品 | 啦啦啦中文免费视频观看日本| 一区二区三区激情视频| 亚洲国产日韩一区二区| 亚洲av成人精品一二三区| 一区二区三区四区激情视频| 极品少妇高潮喷水抽搐| 国产福利在线免费观看视频| 精品午夜福利在线看| 久久人人爽av亚洲精品天堂| 不卡视频在线观看欧美| 九色亚洲精品在线播放| 老司机在亚洲福利影院| 97精品久久久久久久久久精品| 五月天丁香电影| 毛片一级片免费看久久久久| av电影中文网址| 97人妻天天添夜夜摸| a级毛片黄视频| 咕卡用的链子| 精品亚洲成a人片在线观看| 老司机影院毛片| 国产一区二区在线观看av| 国产成人免费无遮挡视频| 曰老女人黄片| 日日摸夜夜添夜夜爱| 久久久亚洲精品成人影院| 精品一品国产午夜福利视频| 少妇猛男粗大的猛烈进出视频| 女人久久www免费人成看片| www.av在线官网国产| 国产伦人伦偷精品视频| 亚洲av日韩在线播放| 日韩av在线免费看完整版不卡| 伦理电影大哥的女人| 国产av一区二区精品久久| 亚洲国产毛片av蜜桃av| 巨乳人妻的诱惑在线观看| 久久天堂一区二区三区四区| 美女午夜性视频免费| 午夜福利乱码中文字幕| 五月开心婷婷网| 成人毛片60女人毛片免费| 91aial.com中文字幕在线观看| 日韩制服骚丝袜av| 精品午夜福利在线看| 啦啦啦中文免费视频观看日本| 热99国产精品久久久久久7| 麻豆精品久久久久久蜜桃| 国产日韩欧美亚洲二区| 久久久久久人妻| 9191精品国产免费久久| 国产 一区精品| 国产一区二区在线观看av| 日韩精品有码人妻一区| 99热网站在线观看| 人人妻人人澡人人看| 国产国语露脸激情在线看| 日本91视频免费播放| 日韩制服丝袜自拍偷拍| 亚洲熟女毛片儿| 国产日韩欧美在线精品| 赤兔流量卡办理| 中文字幕人妻丝袜一区二区 | 国产成人欧美在线观看 | 在线观看免费视频网站a站| 亚洲av欧美aⅴ国产| 亚洲精品国产色婷婷电影| 亚洲欧美激情在线| 午夜福利免费观看在线| 亚洲国产中文字幕在线视频| 最近的中文字幕免费完整| 久久久欧美国产精品| 91aial.com中文字幕在线观看| 制服人妻中文乱码| 国产片特级美女逼逼视频| 午夜福利,免费看| 日韩电影二区| 新久久久久国产一级毛片| 国产一卡二卡三卡精品 | av在线观看视频网站免费| 一本—道久久a久久精品蜜桃钙片| 国语对白做爰xxxⅹ性视频网站| 日本欧美视频一区| 日本午夜av视频| 亚洲成人手机| 考比视频在线观看| 亚洲国产av影院在线观看| 欧美 亚洲 国产 日韩一| 午夜福利乱码中文字幕| 观看av在线不卡| 日韩欧美精品免费久久| 1024香蕉在线观看| 久久这里只有精品19| 婷婷色综合www| 久久精品熟女亚洲av麻豆精品| 久久99精品国语久久久| 亚洲国产最新在线播放| 亚洲国产看品久久| 最黄视频免费看| 咕卡用的链子| 国产精品国产av在线观看| 香蕉国产在线看| av卡一久久| tube8黄色片| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| 18禁动态无遮挡网站| 久久av网站| 国产精品久久久人人做人人爽| 搡老乐熟女国产| 国产精品三级大全| √禁漫天堂资源中文www| 人人澡人人妻人| 人人澡人人妻人| 亚洲 欧美一区二区三区| 麻豆精品久久久久久蜜桃| 另类精品久久| 婷婷色av中文字幕| 国产一卡二卡三卡精品 | 午夜福利视频在线观看免费| 日韩 欧美 亚洲 中文字幕| 久久鲁丝午夜福利片| 欧美日韩亚洲综合一区二区三区_| 国产熟女午夜一区二区三区| 成人三级做爰电影| 免费在线观看视频国产中文字幕亚洲 | 一级毛片黄色毛片免费观看视频| 日韩,欧美,国产一区二区三区| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区三区在线| 青春草国产在线视频| 免费少妇av软件| 亚洲av电影在线进入| 美女大奶头黄色视频| 亚洲国产av新网站| 男男h啪啪无遮挡| 青春草国产在线视频| 亚洲精品一二三| 欧美精品人与动牲交sv欧美| 2018国产大陆天天弄谢| av国产精品久久久久影院| 成人毛片60女人毛片免费| 成人毛片60女人毛片免费| 制服诱惑二区| 视频区图区小说| 制服人妻中文乱码| 亚洲国产精品成人久久小说| 国产日韩欧美亚洲二区| www.av在线官网国产| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 日韩欧美精品免费久久| 亚洲美女搞黄在线观看| 久久久久精品人妻al黑| 久久99一区二区三区| 欧美黑人欧美精品刺激| 日韩中文字幕欧美一区二区 | 欧美日韩福利视频一区二区| 99久久精品国产亚洲精品| 日本猛色少妇xxxxx猛交久久| 最近手机中文字幕大全| 久久久久久久国产电影| 国产精品二区激情视频| 婷婷色麻豆天堂久久| 中文字幕色久视频| 最近手机中文字幕大全| 伊人久久国产一区二区| 国产午夜精品一二区理论片| 午夜福利乱码中文字幕| 日韩欧美精品免费久久| 久久精品亚洲av国产电影网| 欧美日韩一级在线毛片| 综合色丁香网| 亚洲国产欧美日韩在线播放| 国产一卡二卡三卡精品 | 国产日韩一区二区三区精品不卡| 亚洲熟女毛片儿| 成人亚洲欧美一区二区av| 免费不卡黄色视频| av电影中文网址| 国产xxxxx性猛交| 肉色欧美久久久久久久蜜桃| 成人国产麻豆网| 精品一区二区免费观看| 中文字幕最新亚洲高清| 久久国产亚洲av麻豆专区| 男人爽女人下面视频在线观看| 精品少妇一区二区三区视频日本电影 | 亚洲精品av麻豆狂野| 丝袜在线中文字幕| 亚洲久久久国产精品| 国产女主播在线喷水免费视频网站| 七月丁香在线播放| 老司机亚洲免费影院| 国产亚洲av片在线观看秒播厂| 成人亚洲精品一区在线观看| 国产精品人妻久久久影院| 欧美国产精品va在线观看不卡| 日日啪夜夜爽| 久久久久精品人妻al黑| 色网站视频免费| 亚洲精品久久久久久婷婷小说| 777米奇影视久久| 最近手机中文字幕大全| 悠悠久久av| 飞空精品影院首页| 欧美黄色片欧美黄色片| 午夜福利免费观看在线| 精品一区在线观看国产| 美女午夜性视频免费| 又大又爽又粗| 日韩成人av中文字幕在线观看| 日韩一区二区三区影片| av线在线观看网站| 久久精品aⅴ一区二区三区四区| 女性生殖器流出的白浆| 如日韩欧美国产精品一区二区三区| 亚洲,一卡二卡三卡| 日韩一区二区三区影片| 大香蕉久久网| 国产欧美日韩综合在线一区二区| 亚洲,一卡二卡三卡| 亚洲精品一区蜜桃| 国产女主播在线喷水免费视频网站| 丰满乱子伦码专区| www日本在线高清视频| 日韩欧美精品免费久久| 精品国产国语对白av| 久久久久久久精品精品| 超碰97精品在线观看| 久久久精品免费免费高清| 大香蕉久久网| 亚洲一级一片aⅴ在线观看| 欧美人与性动交α欧美软件| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 欧美人与性动交α欧美软件| 亚洲国产看品久久| 大片电影免费在线观看免费| av国产精品久久久久影院| 中文乱码字字幕精品一区二区三区| 无遮挡黄片免费观看| 90打野战视频偷拍视频| 一区在线观看完整版| 国产1区2区3区精品| 韩国精品一区二区三区| 波野结衣二区三区在线| 各种免费的搞黄视频| 9热在线视频观看99| 国产精品二区激情视频| 9色porny在线观看| 日日啪夜夜爽| 天天躁夜夜躁狠狠久久av| 大码成人一级视频| av国产久精品久网站免费入址| 欧美国产精品va在线观看不卡| 国产日韩欧美在线精品| 日韩大码丰满熟妇| 亚洲,欧美,日韩| 大香蕉久久成人网| 中文字幕高清在线视频| 一个人免费看片子| 久久精品久久久久久噜噜老黄| 老司机在亚洲福利影院| 看免费成人av毛片| 婷婷色麻豆天堂久久| 国产人伦9x9x在线观看| 999精品在线视频| 在线亚洲精品国产二区图片欧美| 两个人免费观看高清视频| 欧美激情高清一区二区三区 | 国产在视频线精品| 午夜福利视频在线观看免费| 午夜福利网站1000一区二区三区| www.精华液| 国产精品蜜桃在线观看| 婷婷色麻豆天堂久久| 欧美日韩精品网址| 久久久亚洲精品成人影院| 久久久久网色| av网站免费在线观看视频| 超碰成人久久| 香蕉丝袜av| av国产久精品久网站免费入址| 国产成人精品福利久久| 两个人看的免费小视频| 男女午夜视频在线观看| 又大又爽又粗| 午夜免费鲁丝| 在线观看www视频免费| 国产精品麻豆人妻色哟哟久久| 十八禁网站网址无遮挡| 婷婷色综合大香蕉| 咕卡用的链子| 欧美97在线视频| 男女边摸边吃奶| 久久国产亚洲av麻豆专区| 一区福利在线观看| 一级毛片 在线播放| 自线自在国产av| 日本一区二区免费在线视频| 国产爽快片一区二区三区| 国产极品天堂在线| 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 国产伦人伦偷精品视频| www.精华液| av网站在线播放免费| 九色亚洲精品在线播放| 亚洲精华国产精华液的使用体验| 最黄视频免费看| 夜夜骑夜夜射夜夜干| 两个人免费观看高清视频| 免费在线观看黄色视频的| 精品国产国语对白av| 97在线人人人人妻| 亚洲国产精品一区二区三区在线| 免费观看性生交大片5| 成年动漫av网址| 亚洲国产欧美在线一区| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区| √禁漫天堂资源中文www| 一区二区日韩欧美中文字幕| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 国产精品香港三级国产av潘金莲 | 中文天堂在线官网| 天天操日日干夜夜撸| 免费人妻精品一区二区三区视频| 高清av免费在线| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 免费观看av网站的网址| 七月丁香在线播放| 免费黄色在线免费观看| 亚洲成人av在线免费| 日日摸夜夜添夜夜爱| 性高湖久久久久久久久免费观看| 亚洲婷婷狠狠爱综合网| av.在线天堂| 国产精品嫩草影院av在线观看| 日本黄色日本黄色录像| 精品午夜福利在线看| 国产一级毛片在线| 欧美黑人欧美精品刺激| 日韩av在线免费看完整版不卡| 久久久久精品国产欧美久久久 | 久久99热这里只频精品6学生| 成年人午夜在线观看视频| 少妇被粗大的猛进出69影院| 99热国产这里只有精品6| 午夜激情av网站| 久久99一区二区三区| 国产 精品1| 日韩av不卡免费在线播放| 亚洲五月色婷婷综合| 久久久亚洲精品成人影院| www日本在线高清视频| 成人免费观看视频高清| 成人三级做爰电影| 在线观看www视频免费| 赤兔流量卡办理| 国产精品 国内视频| 久久午夜综合久久蜜桃| 亚洲成人一二三区av| 叶爱在线成人免费视频播放| 免费观看性生交大片5| videos熟女内射| 日韩一本色道免费dvd| 久久 成人 亚洲| 国产一卡二卡三卡精品 | 精品久久久精品久久久| 在线看a的网站| 午夜激情av网站| 亚洲精品久久久久久婷婷小说| 下体分泌物呈黄色| 免费高清在线观看日韩| 啦啦啦在线免费观看视频4| 两个人看的免费小视频| 国产一级毛片在线| 亚洲成色77777| 国产麻豆69| 久久午夜综合久久蜜桃| 18禁动态无遮挡网站| 国产成人精品久久二区二区91 | 午夜日韩欧美国产| 男女无遮挡免费网站观看| 日本av免费视频播放| 久久人人爽人人片av| 美女大奶头黄色视频| 国产精品一二三区在线看| 如日韩欧美国产精品一区二区三区| 999久久久国产精品视频| 桃花免费在线播放| 80岁老熟妇乱子伦牲交| 久久青草综合色| 久久久国产精品麻豆| 人妻人人澡人人爽人人| 色精品久久人妻99蜜桃| 免费看av在线观看网站| 亚洲伊人久久精品综合| 亚洲精品久久成人aⅴ小说| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 欧美 亚洲 国产 日韩一| 男女边摸边吃奶| 国产一级毛片在线| 日韩大片免费观看网站| 两个人免费观看高清视频| 观看美女的网站| 日韩,欧美,国产一区二区三区| 深夜精品福利| 亚洲精品一区蜜桃| 国产精品成人在线| a级毛片黄视频| 香蕉丝袜av| 少妇猛男粗大的猛烈进出视频| 国产成人一区二区在线| 久久综合国产亚洲精品| 国产免费现黄频在线看| 在线 av 中文字幕| 青草久久国产| 日韩制服丝袜自拍偷拍| 色综合欧美亚洲国产小说| 欧美变态另类bdsm刘玥| av在线播放精品| 精品国产乱码久久久久久男人| 日韩 亚洲 欧美在线| 制服诱惑二区| 999久久久国产精品视频| 精品国产乱码久久久久久小说| 性色av一级| 国产黄色免费在线视频| 日韩欧美精品免费久久| 国产成人精品福利久久| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 久久99精品国语久久久| 欧美精品亚洲一区二区| 男女下面插进去视频免费观看| 亚洲国产精品成人久久小说| 亚洲国产精品一区二区三区在线| 超碰成人久久| 亚洲第一区二区三区不卡| 亚洲精品av麻豆狂野| 亚洲,欧美,日韩| 国产男女内射视频| 日本猛色少妇xxxxx猛交久久| 国产精品久久久av美女十八| 别揉我奶头~嗯~啊~动态视频 | 午夜日本视频在线| 飞空精品影院首页| 中文字幕色久视频| h视频一区二区三区| 欧美国产精品一级二级三级| 成年动漫av网址| 国产精品人妻久久久影院| 亚洲欧美精品综合一区二区三区| 制服丝袜香蕉在线| 亚洲国产欧美网| 成人午夜精彩视频在线观看| 色综合欧美亚洲国产小说| 97在线人人人人妻| 日韩一卡2卡3卡4卡2021年| 啦啦啦啦在线视频资源| 精品国产露脸久久av麻豆| 人人澡人人妻人| 亚洲少妇的诱惑av| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 国产毛片在线视频| 日韩av免费高清视频| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 超碰97精品在线观看| 日韩一卡2卡3卡4卡2021年| 欧美变态另类bdsm刘玥| 丝袜美足系列| 国产黄色免费在线视频| 伊人久久国产一区二区| 久久久久人妻精品一区果冻| 免费高清在线观看日韩| 国产亚洲av高清不卡| 日韩一卡2卡3卡4卡2021年| 久久毛片免费看一区二区三区| 丝袜美足系列| 亚洲精品日韩在线中文字幕| 精品亚洲乱码少妇综合久久| 国产高清国产精品国产三级| 精品国产一区二区三区久久久樱花| 欧美成人午夜精品| 十分钟在线观看高清视频www| 亚洲,欧美精品.| 啦啦啦视频在线资源免费观看| 久久精品人人爽人人爽视色| 嫩草影院入口| 一级毛片黄色毛片免费观看视频| 99久久综合免费| 国产一区二区激情短视频 | 日韩电影二区| 欧美日韩亚洲国产一区二区在线观看 | 国产免费又黄又爽又色| 最新的欧美精品一区二区| 女性被躁到高潮视频| 国产熟女欧美一区二区| 秋霞在线观看毛片| 日韩大片免费观看网站| 久久精品国产亚洲av涩爱| 热99国产精品久久久久久7| 欧美人与性动交α欧美精品济南到| 青春草视频在线免费观看| 黄色毛片三级朝国网站| 麻豆av在线久日| 新久久久久国产一级毛片| 人人澡人人妻人| 男女免费视频国产| 亚洲专区中文字幕在线 | 国产成人精品福利久久| 男人爽女人下面视频在线观看| 国产精品国产三级专区第一集| 悠悠久久av| 18禁裸乳无遮挡动漫免费视频| 午夜福利一区二区在线看| 观看美女的网站| 亚洲成色77777| 一本久久精品| 伦理电影大哥的女人| 国产成人a∨麻豆精品| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 久久久久精品人妻al黑| 久久精品久久精品一区二区三区| 美女主播在线视频| 老司机亚洲免费影院| 亚洲精品aⅴ在线观看| 欧美日韩精品网址| 91国产中文字幕| 久久久久久久大尺度免费视频| 少妇人妻 视频| 国产一区有黄有色的免费视频| 日本猛色少妇xxxxx猛交久久| 国产一卡二卡三卡精品 | 亚洲av综合色区一区| 在线观看三级黄色| 国产一区二区激情短视频 | 国产片特级美女逼逼视频| 一区二区av电影网| 人妻一区二区av| 欧美日韩av久久| 一级毛片 在线播放| 欧美日本中文国产一区发布| 超碰成人久久| 久久99精品国语久久久| 天天躁夜夜躁狠狠躁躁| 亚洲一级一片aⅴ在线观看| 两个人免费观看高清视频| 在线观看国产h片| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频| 波野结衣二区三区在线| 欧美人与性动交α欧美软件| 国产精品 国内视频| 一区二区三区激情视频| 一区二区av电影网| 免费少妇av软件|