• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of CuAPTPP-TDI-TiO2Conjugated Microspheres and its Photocatalytic Activity

    2014-07-18 11:51:52ChoPengBinghuYoWenZhngJinfenNiuJieZho
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Cho Peng,Bing-hu Yo?,Wen Zhng,Jin-fen Niu,Jie Zho

    a.Department of Applied Chemistry,Xi’an University of Technology,Xi’an 710054,China

    b.Department of Civil Engineering,University of Arkansas,Fayetteville 72701,USA

    (Dated:Received on October 22,2013;Accepted on December 20,2013)

    Synthesis of CuAPTPP-TDI-TiO2Conjugated Microspheres and its Photocatalytic Activity

    Chao Penga,Bing-hua Yaoa?,Wen Zhangb,Jin-fen Niua,Jie Zhaoa

    a.Department of Applied Chemistry,Xi’an University of Technology,Xi’an 710054,China

    b.Department of Civil Engineering,University of Arkansas,Fayetteville 72701,USA

    (Dated:Received on October 22,2013;Accepted on December 20,2013)

    The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper(CuAPTPP)was covalently linked on the surface of TiO2microspheres by using toluene disocyanate(TDI) as a bridging bond unit.The hydroxyl group(-OH)of TiO2microspheres surface and the amino group(-NH2)of CuAPTPP reacted respectively with the active-NCO groups of TDI to form a surface conjugated microsphere CuAPTPP-TDI-TiO2that was conf i rmed by FT-IR spectra.The CuAPTPP-TDI-TiO2microspheres were characterized with UV-visible, elemental analysis,XRD,SEM,and UV-Vis dif f use ref l ectance spectra.The ef f ect of amounts of linked TDI on the performance of photocatalytic microspheres was discussed,and the optimal molar ratio of TDI:TiO2was established.The photocatalytic activity of CuAPTPPTDI-TiO2was evaluated using the photocatalytic degradation of methylene blue(MB)under visible-light irradiation.The results showed that,TDI,as a bond unit,was used to form a steady chemical brigdging bond linking CuAPTPP and the surface of TiO2microspheres,and the prepared catalyst exhibited higher photocatalytic activity under visible-light irradiation for MB degradation.The degradation rate of 20 mg/L MB could reach 98.7%under Xelamp(150 W)irradiation in 120 min.The degradation of MB followed the f i rst-order reaction model under visible light irradiation,and the rate constant of 5.1×10-2min-1and the halflife of 11.3 min were achieved.And the new photocatalyst can be recycled for 4 times, remaining 90.0%MB degradation rate.

    Conjugated microspheres,Surface modif i cation,Sensitization,Visible-light photocatalysis,Methylene blue

    I.INTRODUCTION

    Due to its excellent performance and environmentally friendly features,titanium dioxide(TiO2)has been regarded as the most promising environment-friendly photocatalytic material that can be utilized for treatment and degradation of organic pollutants in waste water[1,2].However,the drawbacks,including the wide band gap(3.2 eV),the low quantum efficiency and exhibition of excellent photocatalytic activity only when irradiated under UV light,greatly restricted its practical application.Numerous studies indicate surface modif i cation could signif i cantly improve photocatalytic activity of TiO2[3,4].Many methods have been proposed for modif i cation.In recent years,researchers have been focusing on the surface modif i cation of TiO2. TiO2was endowed with novel photo-absorption properties and physicochemical performance through surface modif i ed by active substances,such as organic dyes[5, 6],polymer[7-9],fullerene C60[10,11],graphene[12, 13],nanotube NT[14,15],metal[16,17],metal oxides[18-20].Metalloporphyrin and its derivatives are dyes with excellent performance,optical and thermal stability.As a sensitizing material,metalloporphyrin can ef f ectively broaden the photo response range of TiO2[21-23].Huang et al.reported that porphyrin and iron metalloporphyrin sensitized TiO2was used to degrade Rhodamine B under UV-light irradiation[24]. The results showed that the photocatalytic properties of TiO2sensitized by iron-porphyrin was signif i cantly improved,the degradation rate of Rhodamine B approached 86.3%in 30 min under the high-pressure mercury lamp irradiation.Lu et al.synthesized a series of tetraphenylporphyrin derivatives with dif f erent functional groups(-OH,-CO2C2H5,-COOH)which were utilized to sensitize TiO2.The photocatalytic performance of sensitized TiO2was improved[25].Chang et al.used nickel-porphyrin sensitized TiO2to degrade 2,4-dichlorophenol in waste water under visible-light irradiation,the maximum degradation rate was up to 81%in 240 min[22].Murphya et al.utilized 4-(4-carboxyphenyl)porphyrin to modify TiO2,which de-graded pharmaceutical famotidine under visible-light irradiation[6].The results showed that the obtained catalysts exhibited more optimized performance than Degussa P25.However,for the metalloporphyrin sensitized TiO2,the sensitizer existed on the surface of TiO2only through simple physical adsorption,instead of strong chemical bond[26,27].Therefore,in the process of photocatalytic degradation,sensitizer would be prone to shedding,which would a ff ect sensitization and reduce photocatalytic efficiency[28,29].

    In this work,the toluene disocyanate(TDI)was used as a“bridging bond”molecule,the reaction between the highly reactive group(-NCO)of TDI molecule and the surface hydroxyl group(-OH)of TiO2was used to fi rmly fi x TDI molecule on the surface of TiO2microspheres,another group(-NCO)of TDI molecule reacted with the amino group(-NH2)of CuAPTPP complex to obtain the stable conjugate microspheres(CuAPTPPTDI-TiO2).The structure and morphology of the conjugate microspheres were investigated.The photocatalytic activity of the CuAPTPP-TDI-TiO2was also evaluated by the degradation of methylene blue (MB),in comparison with pure TiO2,TDI-TiO2and CuAPTPP-TiO2.

    II.EXPERIMENTS

    A.Main materials

    Pyrrole,benzaldehyde,4-nitrobenzaldehyde,cupric acetate,methylene blue,titanium(IV)sulfate(AR) were purchased from Sinopharm Chemical Reagent Co.,Ltd.,toluene diisocyanate from Xi’an Chemical Reagent Factory,chloroform,methanol,N,N-dimethylformamide,ethanol(AR)from Tianli Chemical Reagent Co.,Ltd),and propanoic acid(AR)from Tianjin Fuyu Fine Chemical Co.,Ltd.Ultrapure deionized water was used throughout the experiments.

    B.Synthesis of CuAPTPP complex

    6.50 mLofbenzaldehydeand2.85g4-nitrobenzaldehyde(molarratioofbenzaldehyde to 4-nitribenzaldehyde=3:1)were dissolved in the 150 mL of propionic acid in the three-neck f l ask equipped with ref l ux condenser.The three-neck f l ask with mixture was heated at 140?C.Subsequently 4.60 mL of pyrrole was dripped into the reaction solution slowly within 60 min.The mixture solution was ref l uxed continuously for 120 min.After cooling,the mixture solution was distilled at the 70?C under vacuum and a majority of propionic acid was removed.The remaining solution was transferred to 80 mL of methanol on the ice-bath until the purple crystal precipitated.The precipitated material was 5-(4-nitro)-10,15,20-triphenylporphyrin(NPTPP).The crude product was dissolved in a small amount of CHCl3and f i ltered to remove insoluble substance.The CHCl3solution was purif i ed by the chromatography on a silica gel column with chloroform,the f i rst color band was collected,concentrated and dried,and then the purif i cation of NPTPP was complete.

    The NPTPP and copper acetate(molar ratio of NPTPP to copper acetate=1:1)were dissolved in DMF. The mixture solution were heated at 150?C under stirring and ref l uxed continuously for 180 min in the oil bath.After cooling,the mixture solution was distilled at 85?C under vacuum and the DMF was removed.The resulting sepia sticky substance was transferred into an oven and dried at 80?C for 12 h.The obtained substance was dissolved in chloroform and f i ltered to discard the insoluble substance.The chloroform extraction solution was washed by deionized water for 2-3 times.The extraction liquid was dried by MgSO4for 12 h and then f i ltered to remove MgSO4.The extraction solution was distilled at 60?C in vacuum.The 5-(4-nitro)-10,15,20-triphenylporphyrin cupper(CuNPTPP) was generated.A certain amount of SnCl2concentrated hydrochloric acid solution(0.620 g of SnCl2·H2O was dissolved in 10 mL of concentrated hydrochloric acid) reacted with CuNPTPP at 78?C for 90 min.After cooling,the mixture solution was extracted by chloroform.The extraction solution was washed by deionized water for 1-2 times and dried by MgSO4for 12 h. Then the MgSO4was removed by f i ltration.The extraction solution was distilled at 60?C in vacuum,concentrated and dried.The 5-(4-aminophenyl)-10,15,20-triphenylporphyrin cupper(CuAPTPP)was generated. The synthesis of CuAPTPP is shown in Fig.1.

    C.Synthesis of TDI-modif i ed TiO2

    TiO2was dispersed into acetone by ultrasonic dispersion in a three-neck f l ask to form a suspension.The suspension was stirred slowly on heat,while TDI(molar ratio of TiO2to TDI=1:0.5)was dripped into the f l ask. And then the mixture solution was ref l uxed 30 min at 50?C.The mixture solution was f i ltered and washed with acetone 3-4 times,and let dry naturally.Then the TDI cross-linked TiO2(TDI-modif i ed TiO2)was obtained.The synthesis of TDI-modif i ed TiO2is shown in Fig.2.

    D.Preparation of CuAPTPP-TDI-TiO2conjugate microspheres

    20 mg of CuAPTPP was dissolved in 100 mL of acetone.An appropriate amount of TDI-TiO2was added to the CuAPTPP solution with ultrasonic dispersion for 30 min.The mixture solution was transferred into a 250 mL three-necked f l ask with stirring at 50?C and ref l uxed for 120 min in oil bath.The mixture solution was distilled in vacuum to remove acetone,then the TDI-modif i ed TiO2was sensitized by using CuAPTPPto obtain the conjugate microspheres(CuAPTPP-TDITiO2).Figure 3 shows the synthetic pathway of the CuAPTPP-TDI-TiO2conjugate microspheres.

    FIG.1 Synthesis of CuAPTPP complex.

    FIG.2 Synthesis of TDI-modif i ed TiO2.

    E.Preparation of CuAPTPP-TiO2

    20 mg of CuAPTPP was dissolved in 100 mL of acetone.An appropriate amount of TiO2was added to the CuAPTPP solution with ultrasonic dispersion for 30 min.The mixture solution was transferred into a 250 mL three-necked f l ask with stirring at 50?C and ref l uxed for 120 min in oil bath.The mixture solution was distilled in vacuum to remove acetone, then the TiO2sensitized by CuAPTPP was obtained (CuAPTPP-TiO2).

    F.Characterization of conjugate microspheres

    The FT-IR spectra were obtained using a Shimadzu FT-IR 8900(Japan)with the reference of KBr.The morphology of the conjugate microspheres was observed by JSM-6700F f i eld emission scanning electron microscope(Japan).The crystalline phase analysis of sample was characterized by Shimadzu XRD-7000S X-ray dif f ractometer(Japan)at tube current of 30 mA,tube voltage of 40 kV,and scanning speed of 10?/min.Elemental analysis(N,C,H)was performed by Vario EL cube elemental analyzer instrument(Germany).The metalloporphyrin and its derivates were characterized by UV-2102 PC UV-visible spectrophotometer(China). The UV-Vis dif f use ref l ectance spectra(DRS)of obtained photocatalytic microspheres were characterized by TU-1901 double-beam UV-Vis dif f use ref l ectance spectrophotometer(China)with BaSO4as reference.

    G.Evaluation of visible-light catalytic activity

    Self-made photocatalytic reaction device was used for the evaluation of photocatalytic activity of samples. The reactor includes a light source(Xe lamp,150 W), sample tube(100 mL quartz tube:length 22.0 cm,diameter 2.0 cm,from the light source 10 cm),a cold trap, a snorkel and other accessories.0.05 g of photocatalysts and 50 mL of MB solution(20 mg/L)were added into the sample tube.The air tube was inserted into the bottom of the sample tube,maintaining a controlledair f l ow at 3 L/min to achieve the suspended catalyst in the degradation solution.Adsorption was performed in dark for 30 min,and then sampling once every 15 min with pipette.The absorbance of the supernatant from high-speed centrifugation was measured at 665 nm.According to the relationship between the absorbance and MB concentration,the degradation rate was calculated using the equation

    FIG.3 Synthesis of CuAPTPP-TDI-TiO2conjugate microspheres.

    FIG.4(a)UV-Vis and(b)Q-band adsorption spectra of samples.

    where A0is the initial absorbance of MB solution,Atis the absorbance of MB solution at dif f erent time,η is used to evaluate the photocatalytic activity of synthetic samples.

    III.RESULTS AND DISCUSSION

    A.UV-Vis analysis

    FIG.5 FT-IR spectra of TPP and CuTPP derivatives.

    Figure 4(a)shows the UV-Vis absorption spectra of the TPP,CuTPP,CuNPTPP,and CuAPTPP samples. The characteristic Soret band of TPP was captured at 419 nm.There are four weak peaks of TPP between 500-700 nm:515.7 nm(λ1),550.6 nm(λ2),590.5 nm (λ3),and 647.3 nm(λ4),which are the characteristic peaks of Q-band absorption of TPP[30].Figure 4(b) shows the Q-band absorption spectra of samples.In comparison with the absorption peaks of TPP,absorption peaks of CuTPP,CuNPTPP and CuAPTPP differed greatly.The peak position of Soret band essentially remained unchanged.Only one absorption peak (λ1)was present in the Q-band,and the other three absorption peaks disappeared.The λ1absorption peaks of metalloporphyrin spectrum exhibited red shift from 515.7 nm to 539.0 nm.

    B.FT-IR analysis

    Figure 5 shows the FT-IR spectra of TPP,CuTPP, CuNPTPP,and CuAPTPP.From the FT-IR spectrum of TPP,the peak at 3307 cm-1was a result of stretching vibration of the two N-H bonds at the center of porphyrin ring.Formation of metal ligand leads to disappearance of N-H vibration absorption peak[30].Compared with TPP,CuTPP,CuNPTPP,and CuAPTPP spectra have peaks at 1000 cm-1,due to bond stretching/bending vibration between Cu2+and porphyrin[32, 33].The FT-IR spectrum of CuNPTPP shows the peak at 1344 cm-1,which was due to the N-O bond stretching vibrations.After amination,the peak of N-O bond weaken signif i cantly at the FT-IR spectrum of CuAPTPP,and the peak of N-H bond stretching vibrations was observed clearly at 3510 cm-1.The results showed that-NO2has been transformed to-NH2in theamination reaction.

    FIG.6 FT-IR spectra of samples.(a)TDI,(b)pure TiO2, (c)TDI-TiO2,(d)CuAPTPP-TiO2,(e)CuAPTPP-TDITiO2.

    To reveal the interactions between modif i ed TiO2nanoparticles and sensitizer,the FT-IR spectra of TDI,pure TiO2,TDI-TiO2,CuAPTPP-TiO2,and CuAPTPP-TDI-TiO2samples are exhibited in Fig.6. In the FT-IR spectrum of TDI,the characteristic absorption peak at 2268 cm-1was due to isocyanate (-NCO)of TDI[34].The stronger peak of TiO2at 600 cm-1was a typical Ti-O-Ti absorption vibration. The peak of TDI-TiO2spectrum exhibited strong absorption at 2268 cm-1,it corresponds to the isocyanate (-NCO)of TDI,indicating there was still residual isocyanate on the surface of TiO2.The residual isocyanate group(-NCO)could react with amino group(-NH2)of CuAPTPP to conf i rm the CuAPTPP on the surface of TiO2.Simultaneously,the new peaks were observed at 1648 and 1228 cm-1,which could be due to the asymmetric stretching vibration and the symmetric stretching vibration of-NHCOOTi[34].The FT-IR spectrum of CuAPTPP-TDI-TiO2showed that the peak at 2268 cm-1weakened compared to the characteristic absorption peaks of-NCO for TDI-TiO2.It must be noted that the reaction between some amounts of-NCO on the surface of TDI-TiO2and-NH2of CuAPTPP led to the weakened peak at 2268 cm-1.The newly formed absorption peak at 1685 cm-1corresponded to the formation of-NHCONH-,indicating that the CuAPTPP was f i xed f i rmly on the surface of TiO2via TDI linking.

    TABLE I The elements analysis of the TPP and CuTPP derivatives.

    C.Elemental analysis

    The elemental analysis results of synthesized TPP and porphyrin derivatives are shown in Table I.The experimental element contents of NPTPP,APTPP and metalloporphyrin derivatives(CuNPTPP,CuAPTPP) matched the theoretical value.

    The experimental results show that,the synthesized NPTPP,APTPP,and metalloporphyrin derivatives were nitro-monosubstitued and amino-mono substituted derivatives.

    D.XRD analysis

    Figure 7 shows XRD patterns of pure TiO2,TDITiO2,CuAPTPP-TiO2,andCuAPTPP-TDI-TiO2samples.It is clear that the four kinds of photocatalysts were anatase phase structure.Various distinct characteristic dif f raction peaks corresponded to dif f erent crystalline surface.The synthesized pure TiO2has an anatase crystalline phase[101],25.28?corresponds to[101]plane,37.80?corresponds to[004]plane,48.04?corresponds to[200]plane,53.89?and 55.60?correspond to[105]and[211]planes,62.68?corresponds to [204]plane,76.01?corresponds to[301]plane,and 83.14?corresponds to[312]plane.After surface modif i cation and sensitization,the characteristic dif f raction peaks of CuAPTPP-TDI-TiO2in XRD patterns do not exhibit relocation or any change in the peak shapes.It was apparent that modif i cation and sensitization only occurred on the surface of TiO2and there were no signif i cant ef f ect on the crystalline phase of catalyst.CuAPTPP-TDI-TiO2crystalline anatase phase still dominated[36].

    E.SEM analysis

    FIG.7 XRD patterns of samples.(a)Pure TiO2,(b)TDITiO2,(c)CuAPTPP-TiO2,(d)CuAPTPP-TDI-TiO2.

    FIG.8 SEM image of CuAPTPP-TDI-TiO2and TiO2(inset)sample.

    As shown in Fig.8,TiO2(inset)appears smooth surface and uniform size,and the diameter average size is about 40 nm.In comparison,the microstructures of prepared CuAPTPP-TDI-TiO2appear loose and irregular spheres with rough surface.The average size of these microspheres diameter estimated from the SEM image is about 4-10μm.The loose structure of microspheres surface was due to the organic shell (CuAPTPP-TDI),which was generated from the reaction between CuAPTPP and TDI molecules on the surface of TiO2microspheres.The morphology of image implied that all the TiO2microspheres were coated by the CuAPTPP-TDI to form a organic shell.The organic shell was a compatible substrate to contact MB molecule,benef i cial to enhance adsorption of MB and play a part of sensitive efficiency.

    F.UV-Vis DRS analysis

    Figure 9 shows the UV-Vis DRS of modi fi ed TiO2with di ff erent amounts of TDI.It shows that the modifi ed TiO2exhibited visible absorption at 400-800 nm. The capability of visible absorption of modi fi ed TiO2strengthened with the increase of the modi fi ed amounts of TDI.The absorption edges of TDI0.01-0.1-TiO2(0.01-0.1 are the molar ratio of di ff erent amounts modi fi ed TDI:TiO2)moved signi fi cantly with a red shift. The TDI-TiO2showed strong UV absorption from 200 nm to 400 nm in the ultraviolet light range.This phenomenon is attributed to the TDI UV absorption property.It indicates that TDI,as sensitizer,could evidently improve the photo response activity of TiO2.When the molar ratio of TDI:TiO2is 0.5:1,the absorption intensity reaches maximum.The degradation rate of MB on TDI1-TiO2decrease signif i cantly.The agglomerate phenomenon of TDI1-TiO2in the MB solution is attributed to the modif i cation of TiO2with TDI,which lead to the photoabsorption decrease.The agglomerate phenomenon may be due to the cladding of TiO2with TDI and the formation of a small organic molecule shell, which results in the worsened dispersibility of TDI1-TiO2.

    FIG.9 UV-Vis DRS of TiO2with dif f erent amounts of TDI surface modif i cation and pure TiO2.The inset is plots of(αhν)2vs.hν.(a)Pure TiO2,(b)TDI0.01-TiO2, (c)TDI0.05-TiO2,(d)TDI0.1-TiO2,(e)TDI0.5-TiO2,(f) TDI1-TiO2.

    According to the relationship between semiconductor band gap and UV-Vis absorption coefficient:

    where hν is the photo energy,α is the absorption coeffi cient,K is the semiconductor constant and Egis the band energy gap.The(αhν)2vs.hν curves of di ff erent samples are shown in inset of Fig.9.According to the value from tangent of curve intersects the axis abscissa,the band gap values were calculated.Figure 9 shows that the band gap of pure TiO2is 3.19 eV,the band gap of TiO2modi fi ed with TDI decreased in varying degree:Eg(TDI0.01-TiO2)=3.09 eV,Eg(TDI0.05-TiO2)=3.06 eV,Eg(TDI0.1-TiO2)=3.13 eV,Eg(TDI0.5-TiO2)=3.08 eV,Eg(TDI1-TiO2)=3.12 eV.The narrow of band energy gap indicated that the modi fi cation of TDI can extend the range of TiO2light absorption.The decrease of transition energy of photogenerated electrons is caused by the UV-absorption property of TDI.

    Figure 10 is UV-Vis DRS spectra for TDI,TiO2, and a series of catalysts.It shows that the spectra of CuAPTPP-TiO2and CuAPTPP-TDI-TiO2exhibited strong characteristic absorption peaks of prophyrin at 420 nm,indicating that TDI-TiO2has been sensitized by CuAPTPP.The surface modif i ed TiO2with TDI showed more intensive characteristic absorption peaks of prophyrin at the same amount of sensitizer,indicating the surface of TDI-TiO2could be f i xed with more CuAPTPP via-NCO band.The results showed thatsensitization of CuAPTPP improved the photoresponse activity of TDI-TiO2greatly.

    FIG.10 UV-Vis DRS of(a)pure TiO2,(b)TDI,(c)TDITiO2,(d)CuAPTPP-TiO2,and(e)CuAPTPP-TDI-TiO2.

    G.Evaluation of photocatalytic activity

    1.Degradation experiments of MB by CuAPTPP-TDI-TiO2

    MB is a chromogenic agent of diltiazem benzene.In the process of photocatalytic degradation,the-(CH3)2within molecules accepted the photo-generated electron and then demethylation occurred.The degradation process was indicated by the reduction of characteristic absorption peak(λ=664 nm).After formation of phenyl thioridazine,the small organic were degraded and mineralized to inorganic molecules gradually[37].

    As shown in Fig.11,the absorption peaks of MB solution are gradually reduced during the photocatalytic degradation by a series of samples under Xe lamp(150 W)irradiation.In Fig.12(a),the degradation rate of 10 mL MB solution by CuAPTPP-TDI-TiO2was up to 98.7%within 120 min.It was signif i cantly higher than the degradation rates of CuAPTPP-TiO2(Fig.11(b),65.1%),TDI-TiO2(Fig.11(c),62.0%)and pure TiO2(Fig.11(d),33.7%).It can be apparently seen that the absorbance of the characteristic peaks at 290 and 664 nm both decline continually and nearly disappear f i nally in Fig.11(a).It implies that MB not only decolorized but also mineralized under visible light irradiation.The unique and excellent photocatalytic activity of sample may be due to the role of CuAPTPPTDI,which has increased the hydrophobicity of TiO2and favored samples adsorption.Before bridging bond linked by CuAPTPP-TDI,only a small amount of MB is adsorbed on TiO2surface and then degraded,the hydrophobic attractions between CuAPTPP-TDI and MB are increased,leading to enhancement of the surface coverage of MB on CuAPTPP-TDI-TiO2powders. In addition,for the CuAPTPP-TDI-TiO2composite, the complex structure established the conjugated interaction between TiO2and CuAPTPP molecules,the sensitization efficiency was improved.As mentionedabove,CuAPTPP-TDI-TiO2shows stronger adsorption and higher degradation capability than others.

    TABLE II Kinetic equation and parameter of photocatalytic degradation reaction(t1/2in min and k in min-1).

    2.MB degradation kinetics analysis

    Figure 12 shows the relationship between ln(c0/ct) and reaction time t for MB degradation by pure TiO2and a series of synthesized photocatalysts.From the Fig.12,the CuAPTPP-TDI-TiO2microspheres possess the optimal photocatalytic performance.Furthermore, its degradation rate was higher than the either sensitized or modif i ed TiO2.The results show,the isocyanate groups of TDI on the surface of TiO2are able to f i x f i rmly the CuAPTPP molecules and inhibit the generation of inactive CuAPTPP dimer[38].As a result,the sensitization efficiency of CuAPTPP was improved signif i cantly.The dye molecules were able to inject the photo-generated electrons to the conduction band of TiO2as the dye molecules was irradiated.TDI molecule between CuAPTPP and TiO2,as a conjugated tunnel,could control the amounts of injected electrons, prohibit recombination of e--h+and enhance the coefficient of utilization for photo-generated electrons.Since the organic molecules on the surface of TiO2strengthened the compatibility with MB molecules,the adsorption rate increased greatly.

    Table II shows the initial reaction rate of MB degradation kinetic equation,the linear correlation coefficient k,and the half-life t1/2.The reaction rate kinetics constant k of MB degradation by CuAPTPP-TDI-TiO2is 5.12×10-2min-1,which was seven times bigger than that of the pure TiO2.The degradation half-life t1/2is 11.3 min,which is the shortest degradation half-life among all catalysts tested.

    3.Stability of the catalyst

    FIG.11 The UV-Vis absorption curves of MB in the degradation process by(a)CuAPTPP-TDI-TiO2,(b)CuAPTPP-TiO2, (c)TDI-TiO2,and(d)pure TiO2.

    FIG.12 Relationship curves between ln(c0/ct)and time t.

    In order to investigate the stability of CuAPTPPTDI-TiO2and CuAPTPP-TiO2,the samples were recovered after each photocatalytic degradation experiment,and then were reused in the next photocatalytic experiment.Figure 13 shows the MB degradation curves by CuAPTPP-TDI-TiO2reused for 4 times, and degradation rate remained at about 90%.In comparison with CuAPTPP-TDI-TiO2,the degradation rate of MB by CuAPTPP-TiO2decreased rapidly after reusing,this result was due to the fall of fof CuAPTPP.Because the CuAPTPP on the surface of TiO2is merely physical adsorption and not chemical bond.This shows that,TDI could form a steady chemical brigdging bond linking between CuAPTPP and the surface of TiO2microspheres and enhanced the photocatalytic performance of sample.The catalytic activity of CuAPTPP-TDI-TiO2did not reduce after repeated utilization.This implies that as-prepared photocatalyst was reusable.

    FIG.13 The MB degradation rate of CuAPTPP-TDI-TiO2photocatalytic microspheres repeatedly used.

    IV.CONCLUSION

    CuAPTPP-TDI-TiO2conjugated photocatalyst was successfully synthesized.The characterizations of the conjugated structure of the composite catalyst indicate that the bridging bond linking was formed to immobilize the dye sensitizer on the surface of TiO2.Two isocyanate groups-NCO of TDI molecules reacted with -NH2of CuAPTPP molecule and-OH of TiO2surface respectively.The immobilization of dye sensitizers overcame ef f ectively the fall of fof CuAPTPP,the utiliza-tion rate of dye sensitizer was improved.The size of CuAPTPP-TDI-TiO2photocatalytic microspheres was in the range of 4-10μm with loosen surface and exhibited excellent photocatalytic activity on the degradation of MB under visible-light irradation.The degradation rate of MB on CuAPTPP-TDI-TiO2was up to 98.7%under Xe lamp irradation within 120 min.The TDI linking on the surface of TiO2enhanced the compatibility of TiO2with MB,the adsorption properties of photocatalysts were strengthened considerably.The higher photo-response activity of CuAPTPP-TDI-TiO2may be due to the establishment of bridging bond linking between dye molecules and TiO2substrate.The kinetics of photocatalytic degradation of MB was investigated,suggesting a pseudo f i rst-order kinetics model. The CuAPTPP-TDI-TiO2sample was robust and able to use at least for four runs without obvious loss.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21276208),the Doctor Fundation of Education Ministry of China (No.20096118110008),the Special Research Fund of Shaanxi Provincial Department of Education of China (No.12JK0606),and the Research Fund for Excellent Doctoral Thesis of Xi’an University of Technology (No.207-002J1304).

    [1]H.A.Le,L.T.Linh,S.Chin,and J.Jurng,Powder. Technol.225,2(2012).

    [2]R.Ramakrishnan,S.Kalaivani,A.I.Joice,and T. Sivakumar,Appl.Surf.Sci.258,7(2012).

    [3]H.X.Guo,K.L.Lin,Z.S.Zheng,F.B.Xiao,and S. X.Li,Dyes Pigments 92,3(2012).

    [4]X.Y.Li,D.S.Wang,G.X.Cheng,Q.Z.Luo,J.An, and Y.H.Wang,Appl.Catal.B 81,2(2008).

    [5]W.J.Sun,J.Li,M.Giuseppe,Z.Q.Zhang,and F.X. Zhang,J.Mol.Catal.A 366,4(2013).

    [6]S.Murphya,C.Saurela,A.Morrissey,J.Tobin,M. Oelgemoller,and K.Nolan,Appl.Catal.B 119-120,3 (2012).

    [7]L.H.Lin,H.J.Liu,J.J.Hwang,K.M.Chen,and J. C.Chao,Mater.Chem.Phys.127,1(2011).

    [8]N.Hassan and A.Hossein,J.Power Sources 196,5 (2011).

    [9]K.N.Pandiyarasj,V.Selvarajan,Y.H.Rhee,H.W. Kim,and M.Pavese,Colloids Surf.B 79,1(2010).

    [10]S.Mu,Y.Z.Long,S.Z.Kang,and J.Mu,Catal.Commun.11,741(2010).

    [11]J.Q.Yu,T.T.Ma,G.Liu,and B.Cheng,Dalton Trans.40,25(2011).

    [12]P.N.Zhu,A.S.Nair,S.J.Peng,S.Y.Yang,and S. Ramakrishna,ACS Appl.Mater.Interface 4,2(2012).

    [13]N.P.Thuy-Duong,V.H.Pham,H.Kweon,J.S. Chung,E.J.Kim,S.H.Hur,and E.W.Shin,J.Colloid Interface Sci.367,1(2012).

    [14]Y.J.Li,L.Y.Li,C.W.Li,W,Chen,and M.X.Zeng, Appl.Catal.A 427-428,15(2012).

    [15]W.D.Wang,P.Serp,P.Kalck,and J.L.Faria,J.Mol. Catal.A 235,1(2005).

    [16]R.Zhao,R.F.Ding,S.J.Yuan,W.Jiang,and B. Liang,Int.J.Hydrogen Energy 36,1(2011)

    [17]W.Zhao,L.L.Feng,R.Yang,J.Zheng,and X.G.Li, Appl.Catal.B 103,1(2011).

    [18]Y.Muramatsu,Q.L.Jin,M.Fujishima,and H.Tada, Appl.Catal.B 119-120,3(2012).

    [19]Y.Li,C.H.Pei,and S.M.Chen,Sens.Actuators B 174,2(2012).

    [20]M.Q.Yuan,J.Zhang,S.Yan,G.X.Luo,Q.Xu,X. Wang,and C.Li,J.Alloys Compd.509,21(2011).

    [21]N.G.Giri and M.S.S.Chauhan,Catal.Commun.10, 4(2009).

    [22]M.Y.Chang,Y,H,Hsieh,T.C.Cheng,K.S.Yao, M.C.Wei,and C.Y.Chang,Thin Solid Films 517,14 (2009)

    [23]G.S.Machado,F.Wypych,and S.Nakagaki,Appl. Catal.A 413-414,3(2012).

    [24]H.Y.Huang,X.T.Gu,J.H.Zhou,K.Ji,H.L.Liu, and Y.Y.Feng,Catal.Commun.11,58(2009).

    [25]X.F.Lu,W.J.Sun,J.Li,W.X.Xu,and F.X.Zhang, Spectrochim.Acta Part A 111,2(2013).

    [26]T.Hasobe,S.Hattori,P.V.Kamat,and S.Fukuzumi, Tetrahedron Lett.62,9(2006).

    [27]J.A.Mikroyannidis,G.Charalambidis,A.G.Coutsolelos,P.Balraju,and G.D.Sharma,J.Power Sources 196,15(2011).

    [28]W.J.Sun,J.Li,G.P.Yao,F.X.Zhang,and J.L. Wang,Appl.Surf.Sci.258,2(2011).

    [29]A.Kathiravan and R.Renganathan,J.Colloid Interface Sci.331,2(2009).

    [30]A.Singh,A.Agarwala,K.Kamaraj,and D.Bandyopadhyay,Inorg.Chim.Acta 372,1(2011).

    [31]G,Huang,Z.C.Luo,Y.D.Hu,Y.A.Guo,Y.X.Jiang, and S.J.Wei,Chem.Eng.J.195-196,1(2012).

    [32]J.T.Aldajaei and S.Gronert,Int.J.Mass Spectrom. 316-318,15(2012).

    [33]G.S.Machado,F.Wypych,and S.Nakagaki,J.Colloid Interface Sci.377,1(2012).

    [34]D.Jiang,Y.Xu,D.Wu,and Y.H.Sun,J.Solid State Chem.181,3(2008).

    [35]D.Jiang,Y.Xu,B.Hou,D.Wu,and Y.H.Sun,J. Solid State Chem.180,5(2007).

    [36]C.C.Pan and J.C.S.Wu,Mater.Chem.Phys.100, 1(2006).

    [37]L.O.de B.Benetoli,B.M.Cadorin,V.Z.Baldissarelli, R.Geremias,I.G.de Souza,and N.A.Debacher,J. Hazard.Mater.237-238,3(2012).

    [38]G.G.Oliveros,E.A.P.Moza,F.M.Ortega,M.T. Piccinato,F.N.Silva,C.L.B.Guedes,E.D.Mauro, M.F.da Costa,and A.T.Ota,J.Mol.Catal.A 339, 1(2011).

    ?Author to whom correspondence should be addressed.E-mail:bhyao@xaut.edu.cn,Tel.:+86-29-82066361,FAX:+86-29-82066361

    成人18禁在线播放| 精品不卡国产一区二区三区| 不卡一级毛片| 1024香蕉在线观看| 18禁美女被吸乳视频| 久99久视频精品免费| 久久午夜综合久久蜜桃| 亚洲欧美精品综合一区二区三区| 日韩 欧美 亚洲 中文字幕| 噜噜噜噜噜久久久久久91| 久久性视频一级片| 国产综合懂色| 白带黄色成豆腐渣| 男女下面进入的视频免费午夜| 国产三级黄色录像| 最近在线观看免费完整版| 黄色丝袜av网址大全| 99国产精品一区二区三区| 精品电影一区二区在线| 变态另类丝袜制服| 麻豆成人午夜福利视频| 两个人看的免费小视频| 亚洲精品在线美女| 丰满人妻一区二区三区视频av | 亚洲精品粉嫩美女一区| 一个人观看的视频www高清免费观看 | 亚洲 欧美一区二区三区| 欧美激情久久久久久爽电影| 丁香欧美五月| 国产黄色小视频在线观看| 三级毛片av免费| 久久久精品大字幕| 色哟哟哟哟哟哟| 午夜免费观看网址| 丝袜人妻中文字幕| 观看免费一级毛片| 老汉色∧v一级毛片| 男女下面进入的视频免费午夜| 精品国产乱码久久久久久男人| 亚洲成人久久爱视频| 亚洲在线自拍视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美xxxx黑人xx丫x性爽| www国产在线视频色| 搡老熟女国产l中国老女人| 伊人久久大香线蕉亚洲五| 88av欧美| 麻豆国产av国片精品| 国产aⅴ精品一区二区三区波| 国产黄片美女视频| 男女做爰动态图高潮gif福利片| 亚洲精品中文字幕一二三四区| e午夜精品久久久久久久| 小蜜桃在线观看免费完整版高清| 大型黄色视频在线免费观看| 亚洲精品国产精品久久久不卡| 欧美xxxx黑人xx丫x性爽| 国产成人啪精品午夜网站| 亚洲国产日韩欧美精品在线观看 | 久久精品综合一区二区三区| 国内毛片毛片毛片毛片毛片| 国产一级毛片七仙女欲春2| 91老司机精品| 九色国产91popny在线| 免费在线观看视频国产中文字幕亚洲| 悠悠久久av| 久久久久亚洲av毛片大全| 国产精品av视频在线免费观看| 长腿黑丝高跟| 男女之事视频高清在线观看| 欧美乱妇无乱码| 国产97色在线日韩免费| 国产av一区在线观看免费| 国产伦精品一区二区三区四那| 99国产精品一区二区三区| 精品国产亚洲在线| 日韩成人在线观看一区二区三区| 国产精品久久久久久精品电影| 国产精品,欧美在线| 国产亚洲欧美在线一区二区| 亚洲七黄色美女视频| 禁无遮挡网站| 精品久久蜜臀av无| 看免费av毛片| 手机成人av网站| 伊人久久大香线蕉亚洲五| 九九久久精品国产亚洲av麻豆 | 国产精品日韩av在线免费观看| 91在线精品国自产拍蜜月 | 欧美性猛交黑人性爽| 国产精品 国内视频| 精品一区二区三区视频在线 | 国产精品 欧美亚洲| 久久久久久久久中文| 三级男女做爰猛烈吃奶摸视频| 精品电影一区二区在线| 18禁国产床啪视频网站| a级毛片a级免费在线| 久久天躁狠狠躁夜夜2o2o| 三级毛片av免费| 天堂影院成人在线观看| 久久草成人影院| 国产精品 欧美亚洲| 99久久精品一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲av成人一区二区三| 亚洲一区二区三区不卡视频| 黑人巨大精品欧美一区二区mp4| 18禁观看日本| 国产免费av片在线观看野外av| 亚洲精品色激情综合| 搡老妇女老女人老熟妇| 亚洲国产色片| 国产精品久久电影中文字幕| 久久久久久久久中文| 国产视频一区二区在线看| 国产男靠女视频免费网站| 老汉色av国产亚洲站长工具| 久久九九热精品免费| 国产激情欧美一区二区| 99国产极品粉嫩在线观看| 51午夜福利影视在线观看| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 一二三四社区在线视频社区8| 国产美女午夜福利| 国产亚洲精品一区二区www| 午夜福利欧美成人| 亚洲色图 男人天堂 中文字幕| 脱女人内裤的视频| 欧美日本亚洲视频在线播放| 精品免费久久久久久久清纯| 国产人伦9x9x在线观看| 午夜福利在线在线| 两个人视频免费观看高清| 欧美国产日韩亚洲一区| 悠悠久久av| 黄色视频,在线免费观看| 99久国产av精品| 免费av不卡在线播放| 男女床上黄色一级片免费看| 欧美3d第一页| 亚洲中文字幕日韩| 综合色av麻豆| 法律面前人人平等表现在哪些方面| 亚洲电影在线观看av| 五月玫瑰六月丁香| 很黄的视频免费| 免费看光身美女| 午夜免费观看网址| 久久这里只有精品19| 日本熟妇午夜| 在线免费观看的www视频| 99久久国产精品久久久| h日本视频在线播放| 亚洲av美国av| 桃色一区二区三区在线观看| 动漫黄色视频在线观看| 亚洲九九香蕉| 伦理电影免费视频| 三级国产精品欧美在线观看 | 天天一区二区日本电影三级| 久久天堂一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 欧美不卡视频在线免费观看| 九色成人免费人妻av| 在线免费观看不下载黄p国产 | 99国产精品一区二区蜜桃av| 啦啦啦韩国在线观看视频| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 中文字幕久久专区| 国产精品香港三级国产av潘金莲| 成人av在线播放网站| 91在线观看av| 久久婷婷人人爽人人干人人爱| 两个人视频免费观看高清| 可以在线观看的亚洲视频| 成人鲁丝片一二三区免费| 99久久成人亚洲精品观看| 国产亚洲精品综合一区在线观看| 国产一级毛片七仙女欲春2| 五月玫瑰六月丁香| 十八禁人妻一区二区| 国产成人啪精品午夜网站| 无限看片的www在线观看| 18禁观看日本| 亚洲18禁久久av| 天天躁日日操中文字幕| 国产v大片淫在线免费观看| 黑人操中国人逼视频| 日韩欧美 国产精品| 香蕉av资源在线| 欧美日韩福利视频一区二区| 亚洲av五月六月丁香网| 成人特级av手机在线观看| 欧美成人免费av一区二区三区| 色哟哟哟哟哟哟| 男女之事视频高清在线观看| 国产1区2区3区精品| avwww免费| 久9热在线精品视频| 美女扒开内裤让男人捅视频| 熟女电影av网| 叶爱在线成人免费视频播放| 看免费av毛片| 国产精品一及| 夜夜夜夜夜久久久久| 国产亚洲av高清不卡| 最近视频中文字幕2019在线8| 天堂影院成人在线观看| 国产三级中文精品| a级毛片在线看网站| 免费一级毛片在线播放高清视频| 亚洲国产看品久久| 亚洲成人久久爱视频| 亚洲av片天天在线观看| 免费av毛片视频| 亚洲成人久久爱视频| 国产精品国产高清国产av| 亚洲精品色激情综合| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线观看免费| 免费观看人在逋| 国产又黄又爽又无遮挡在线| 啦啦啦免费观看视频1| 后天国语完整版免费观看| 国产精品亚洲美女久久久| 欧美黄色片欧美黄色片| 日本在线视频免费播放| 亚洲国产精品sss在线观看| 麻豆国产av国片精品| 老熟妇乱子伦视频在线观看| 日韩欧美免费精品| 窝窝影院91人妻| 一区福利在线观看| 色视频www国产| 日韩中文字幕欧美一区二区| av视频在线观看入口| 国产伦精品一区二区三区四那| 九九久久精品国产亚洲av麻豆 | 国产极品精品免费视频能看的| 18禁美女被吸乳视频| 亚洲 欧美一区二区三区| 热99在线观看视频| 老司机午夜福利在线观看视频| 免费在线观看影片大全网站| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 99在线人妻在线中文字幕| 亚洲国产中文字幕在线视频| 午夜影院日韩av| 1024手机看黄色片| 熟女电影av网| 91久久精品国产一区二区成人 | 久久精品亚洲精品国产色婷小说| 床上黄色一级片| 国产激情久久老熟女| 老熟妇仑乱视频hdxx| 男女视频在线观看网站免费| 超碰成人久久| 露出奶头的视频| 欧洲精品卡2卡3卡4卡5卡区| 国产乱人视频| 嫁个100分男人电影在线观看| 欧美高清成人免费视频www| 色吧在线观看| 国产久久久一区二区三区| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 日本熟妇午夜| 91av网站免费观看| 亚洲无线观看免费| 天堂动漫精品| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 国产成人av教育| 久久香蕉精品热| av视频在线观看入口| 亚洲成av人片在线播放无| 十八禁网站免费在线| 亚洲第一电影网av| 一a级毛片在线观看| 日本撒尿小便嘘嘘汇集6| 在线a可以看的网站| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频| 99精品欧美一区二区三区四区| 欧美丝袜亚洲另类 | 亚洲精品美女久久av网站| 热99re8久久精品国产| 一个人看的www免费观看视频| 国产高清视频在线观看网站| 一本精品99久久精品77| 国产一区二区在线观看日韩 | 色尼玛亚洲综合影院| 国产野战对白在线观看| 非洲黑人性xxxx精品又粗又长| 三级国产精品欧美在线观看 | 999久久久国产精品视频| 久久天躁狠狠躁夜夜2o2o| 亚洲专区字幕在线| 噜噜噜噜噜久久久久久91| 91老司机精品| 国产高清视频在线观看网站| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| 很黄的视频免费| 悠悠久久av| 午夜福利视频1000在线观看| 一个人看视频在线观看www免费 | 亚洲精品456在线播放app | 天堂影院成人在线观看| 国产欧美日韩一区二区三| 亚洲欧美精品综合久久99| 午夜福利在线在线| 欧美色欧美亚洲另类二区| 国产爱豆传媒在线观看| 别揉我奶头~嗯~啊~动态视频| 女同久久另类99精品国产91| 国产精品久久视频播放| 麻豆成人av在线观看| 欧美zozozo另类| 国产伦在线观看视频一区| 欧美日韩中文字幕国产精品一区二区三区| 欧美最黄视频在线播放免费| 国产黄a三级三级三级人| 色尼玛亚洲综合影院| 不卡一级毛片| 亚洲精品国产精品久久久不卡| 99riav亚洲国产免费| 欧美日韩亚洲国产一区二区在线观看| 亚洲乱码一区二区免费版| 国产成人一区二区三区免费视频网站| 18禁观看日本| 亚洲人成伊人成综合网2020| 国产精品影院久久| 成年免费大片在线观看| 日韩欧美精品v在线| 很黄的视频免费| 久久精品人妻少妇| 三级毛片av免费| 日本免费一区二区三区高清不卡| 熟女人妻精品中文字幕| 999久久久国产精品视频| 别揉我奶头~嗯~啊~动态视频| 亚洲中文字幕一区二区三区有码在线看 | www国产在线视频色| 波多野结衣高清无吗| 亚洲欧美日韩高清专用| 两个人的视频大全免费| 女警被强在线播放| 日韩精品青青久久久久久| 1024手机看黄色片| 精品电影一区二区在线| 精品一区二区三区四区五区乱码| 欧美日本亚洲视频在线播放| 99久国产av精品| 亚洲成人中文字幕在线播放| 亚洲男人的天堂狠狠| avwww免费| 亚洲avbb在线观看| 在线永久观看黄色视频| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 午夜久久久久精精品| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 国产免费av片在线观看野外av| 日本在线视频免费播放| 美女黄网站色视频| 国产探花在线观看一区二区| 久久久久久大精品| 好看av亚洲va欧美ⅴa在| 琪琪午夜伦伦电影理论片6080| 国产激情偷乱视频一区二区| a级毛片a级免费在线| 亚洲国产欧美网| 午夜福利免费观看在线| 搡老熟女国产l中国老女人| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 精品一区二区三区视频在线观看免费| 国产真实乱freesex| 人妻夜夜爽99麻豆av| 99精品久久久久人妻精品| 1000部很黄的大片| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 97超级碰碰碰精品色视频在线观看| 欧美日本亚洲视频在线播放| 成人亚洲精品av一区二区| 午夜福利欧美成人| 级片在线观看| www.999成人在线观看| 看免费av毛片| 亚洲狠狠婷婷综合久久图片| 日本熟妇午夜| 中国美女看黄片| 一区二区三区激情视频| 精品欧美国产一区二区三| 变态另类成人亚洲欧美熟女| 欧美av亚洲av综合av国产av| 国产午夜福利久久久久久| 色在线成人网| 欧美一区二区国产精品久久精品| 欧美3d第一页| 亚洲成人免费电影在线观看| 精品久久久久久久毛片微露脸| 在线播放国产精品三级| 国产爱豆传媒在线观看| 又大又爽又粗| 欧美乱色亚洲激情| 亚洲精品国产精品久久久不卡| 国产高清videossex| www日本黄色视频网| 女警被强在线播放| 全区人妻精品视频| 国产高清有码在线观看视频| 天堂av国产一区二区熟女人妻| 国产精品一及| 欧美日韩亚洲国产一区二区在线观看| 欧美又色又爽又黄视频| 亚洲欧美日韩高清专用| 亚洲精品一卡2卡三卡4卡5卡| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线播放一区| 我要搜黄色片| 国产精品野战在线观看| 国产真人三级小视频在线观看| 真人一进一出gif抽搐免费| av天堂中文字幕网| 啪啪无遮挡十八禁网站| 变态另类成人亚洲欧美熟女| 中国美女看黄片| 国产亚洲精品久久久久久毛片| 嫩草影院入口| 亚洲国产高清在线一区二区三| 国产亚洲精品久久久com| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 国产亚洲精品av在线| or卡值多少钱| 老司机深夜福利视频在线观看| 一夜夜www| 网址你懂的国产日韩在线| 日韩av在线大香蕉| 在线观看66精品国产| 午夜免费激情av| 国产极品精品免费视频能看的| 欧美色视频一区免费| 免费在线观看影片大全网站| 中文字幕精品亚洲无线码一区| 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 午夜福利在线在线| 久久草成人影院| 精品国产美女av久久久久小说| 欧美最黄视频在线播放免费| 一个人免费在线观看电影 | 日本免费a在线| 一二三四在线观看免费中文在| 亚洲欧美日韩高清专用| 亚洲美女黄片视频| 国产av一区在线观看免费| 亚洲精品美女久久av网站| 一本综合久久免费| 这个男人来自地球电影免费观看| 久久久久久九九精品二区国产| 国产亚洲欧美98| 男女做爰动态图高潮gif福利片| 精品国产乱子伦一区二区三区| 淫秽高清视频在线观看| 欧美日韩精品网址| 国产真实乱freesex| 亚洲成人精品中文字幕电影| 久久午夜综合久久蜜桃| 噜噜噜噜噜久久久久久91| 曰老女人黄片| 精品欧美国产一区二区三| 最好的美女福利视频网| 国产人伦9x9x在线观看| 国产精品爽爽va在线观看网站| 久久久久国产精品人妻aⅴ院| 美女cb高潮喷水在线观看 | 美女扒开内裤让男人捅视频| 国产欧美日韩精品亚洲av| 欧美日韩国产亚洲二区| 欧美成人一区二区免费高清观看 | 欧美一级毛片孕妇| 美女黄网站色视频| 国产熟女xx| 天天躁日日操中文字幕| 18禁观看日本| 国产激情久久老熟女| 老汉色av国产亚洲站长工具| 日本熟妇午夜| 后天国语完整版免费观看| 亚洲自拍偷在线| 最新美女视频免费是黄的| 久久久久久大精品| 黄色成人免费大全| 亚洲人成电影免费在线| 色噜噜av男人的天堂激情| 高潮久久久久久久久久久不卡| 日韩欧美免费精品| 亚洲 欧美 日韩 在线 免费| 国产日本99.免费观看| 久久久成人免费电影| 免费一级毛片在线播放高清视频| 免费人成视频x8x8入口观看| 国产高清视频在线播放一区| 少妇的丰满在线观看| 热99在线观看视频| 欧美大码av| www.999成人在线观看| 蜜桃久久精品国产亚洲av| 中文字幕av在线有码专区| 午夜福利欧美成人| 国产av一区在线观看免费| 丰满的人妻完整版| 国产精品一区二区免费欧美| 国产精品日韩av在线免费观看| 韩国av一区二区三区四区| av视频在线观看入口| 老熟妇乱子伦视频在线观看| 69av精品久久久久久| 老司机在亚洲福利影院| 免费人成视频x8x8入口观看| 网址你懂的国产日韩在线| 国产精品久久视频播放| 九九在线视频观看精品| 久久久久九九精品影院| 亚洲一区二区三区色噜噜| 麻豆国产av国片精品| 日韩免费av在线播放| xxxwww97欧美| av国产免费在线观看| 色尼玛亚洲综合影院| 亚洲av免费在线观看| 免费一级毛片在线播放高清视频| 亚洲狠狠婷婷综合久久图片| 天天一区二区日本电影三级| 91av网站免费观看| 桃色一区二区三区在线观看| 少妇人妻一区二区三区视频| 色综合欧美亚洲国产小说| 日韩欧美一区二区三区在线观看| 观看免费一级毛片| 亚洲精品粉嫩美女一区| 中文资源天堂在线| 哪里可以看免费的av片| 亚洲av中文字字幕乱码综合| aaaaa片日本免费| 国产精品影院久久| 欧美丝袜亚洲另类 | 亚洲自偷自拍图片 自拍| 18禁美女被吸乳视频| 免费av不卡在线播放| 午夜精品在线福利| 999久久久国产精品视频| 欧美色欧美亚洲另类二区| 五月伊人婷婷丁香| 午夜成年电影在线免费观看| 88av欧美| 亚洲中文日韩欧美视频| 日日干狠狠操夜夜爽| 在线观看66精品国产| 欧美色视频一区免费| 国产精品影院久久| 99久国产av精品| 国产精品久久久久久精品电影| 啦啦啦观看免费观看视频高清| 欧美日韩中文字幕国产精品一区二区三区| 亚洲无线观看免费| 99久久无色码亚洲精品果冻| 中文亚洲av片在线观看爽| 久9热在线精品视频| 亚洲真实伦在线观看| 午夜福利成人在线免费观看| 精品乱码久久久久久99久播| 成人精品一区二区免费| 国产精品女同一区二区软件 | 国产成人av教育| 18禁国产床啪视频网站| 不卡av一区二区三区| 国产美女午夜福利| 色吧在线观看| 欧美日韩瑟瑟在线播放| 99热6这里只有精品| 久久婷婷人人爽人人干人人爱| 香蕉久久夜色| 别揉我奶头~嗯~啊~动态视频| 在线永久观看黄色视频| 一个人看视频在线观看www免费 | 欧美高清成人免费视频www| 国产亚洲av嫩草精品影院| 少妇丰满av| 中文资源天堂在线| 精品一区二区三区视频在线 | 高清毛片免费观看视频网站| av国产免费在线观看| 亚洲中文日韩欧美视频| 国产亚洲精品久久久com| 黄色女人牲交| 免费观看的影片在线观看| 五月伊人婷婷丁香| 亚洲av片天天在线观看| 久久午夜亚洲精品久久| 午夜a级毛片| netflix在线观看网站|