• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Dynamics of 3-Dimethylamino-2-methyl-propenal in S2(ππ?) State

    2014-07-18 11:51:52ShengPnJiDnXueXumingZheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Sheng Pn,Ji-Dn Xue,Xu-ming Zheng,,c?

    a.Department of Chemistry,Zhejiang Sci-Tech University,Hangzhou 310018,China

    b.Key Laboratory of Advanced Textiles Materials and Manufacture Technology of the Ministry of Education,Zhejiang Sci-Tech University,Hangzhou 310018,China

    c.Engineering Research Center for Eco-dyeing and Finishing of Textiles of the Ministry of Education, Zhejiang Sci-Tech University,Hangzhou 310018,China

    (Dated:Received on November 23,2013;Accepted on March 12,2014)

    Structural Dynamics of 3-Dimethylamino-2-methyl-propenal in S2(ππ?) State

    Sheng Pana,Jia-Dan Xueb,Xu-ming Zhenga,b,c?

    a.Department of Chemistry,Zhejiang Sci-Tech University,Hangzhou 310018,China

    b.Key Laboratory of Advanced Textiles Materials and Manufacture Technology of the Ministry of Education,Zhejiang Sci-Tech University,Hangzhou 310018,China

    c.Engineering Research Center for Eco-dyeing and Finishing of Textiles of the Ministry of Education, Zhejiang Sci-Tech University,Hangzhou 310018,China

    (Dated:Received on November 23,2013;Accepted on March 12,2014)

    The photophysics of 3-dimethylamino-2-methyl-propenal(DMAMP)after excitation to the S2(ππ?)electronic state was studied using the resonance Raman spectroscopy and complete active space self-consistent fi eld method calculations.The transition barriers of the ground state tautomerization reactions between DMAMP and its three isomers were determined at B3LYP/6-311++G(d,p)level of theory.The vibrational spectra were assigned.The A-band resonance Raman spectra were obtained in acetonitrile with excitation wavelengths in resonance with the fi rst intense absorption band to probe the structural dynamics of DMAMP.The B3LYP-TD computation was carried out to determine the relative A-band resonance Raman intensities of the fundamental modes,and the result indicated that the vibronic-coupling existed in Franck-Condon region.Complete active space self-consistent fi eld(CASSCF)calculations were carried out to determine the excitation energies of the lower-lying singlet and triplet excited states,the conical intersection points and the intersystem crossing points.The A-band short-time structural dynamics and the corresponding decay dynamics of DMAMP were obtained by analysis of the resonance Raman intensity pattern and CASSCF computations.It was found that a sudden de-conjugation between C1=O6 and C2=C3 occurred at the Franck-Condon region of the S2(ππ?)state,while the enhancement of the conjugation interaction between C3 and N(CH3)2,and between C1 and C2 evolutions shortly after the wavepacket leaves away the Franck-Condon region via the excited state charge redistribution.The de-conjugation interaction between C1=O6 and C2=C3 made the rotation of C3=N(CH3)2group around the C2-C3 bond much easier, while the enhanced conjugation between C1 and C2,and between C3 and N(CH3)2made the rotation around the C1-C2 bond and C3-N5 more difficult.It was revealed that the initial structural dynamics of DMAMP was predominantly towards the CI-1(S2/S0)point, while the opportunities towards either CI-2(S2/S0)or CI-3(S2/S0)point were negligible. Two decay channels of DMAMP from S2,FC(ππ?)to S0or T1,minvia various CIs and ISCs were proposed.

    Structural dynamics,Conical intersection,Excited state,Resonance Raman, CASSCF calculation

    I.INTRODUCTION

    The photochemistry and photophysics of α,β-enones have been the subject of many experimental and theoretical studies over the past half century years.The S1and T1excited states of acrolein were assigned as the n→π?transitions,while the S2state as the π→π?transition[1].Photoexcitation of acrolein into S1(nπ?) state resulted in f l uorescence with low yield due to fast internal conversion to S0or intersystem crossing to the T1(3ππ?)dark state that lies very close to S1(nπ?)[2]. Photolysis of acrolein in the S1(nπ?)state in the gas phase resulted in the photoproducts CO and CH2CH2, as well as the transient species CH2-CH and HCO [3].Molecular beam time-of-f l ight experiment revealed three distinct dissociation pathways for acrolein in the S2(ππ?)state:the molecular channel to CH2CH2+CO, the radical channel to CH2CH+HCO,and the hydrogen channel to CH2CHCO+H[4,5].Comparative studies indicated that the photoisomerization of acrolein to methylketene took place prior to the dissociation process:CH2-CHCHO→CH3CHCO→CH3CH+CO[6,7]. Photodissociation of acrolein,acrylic acid,and acryloylchloride(all have a C=C-C=O backbone)were all via a predissociative way leading to the f i nal dissociation channels[8].The triplet lifetime was measured to be 8 ns for methyl vinyl ketone,11 ns for cycloheptenone [9]and 185 ns for cyclopentenone[10].The shorter triplet lifetime of methyl vinyl ketone was attributed to facile intersystem crossing near the twisted minimum on the T1(3ππ?)potential energy surface to a maximum on the ground-state(S0)surface[11].

    The photochemistry and photophysics of acrolein have been studied using CASSCF/6-31G?calculations [12].Two dif f erent photochemically active relaxation paths starting from a planar S1(nπ?)state minimum were revealed.The f i rst one involves a radiationless decay to the triplet manifold via S1(nπ?)/T1(ππ?)intersystem crossing,leading to the production of a shortlived T1(3nπ?)twisted intermediate.This intermediate then decays,via a second intersystem crossing, to the ground state,leading to isomerization of the acrolein double-bond.The second one involves the singlet manifold only.Relaxation to S0occurs in a single decay channel via a S1(nπ?)/S0conical intersection.The existence of a T1(3nπ?)intermediate is supported by the observation of a 280-310 nm transient absorption in both acyclic and cyclic α,β-enones.Ab initio molecular orbital methods have been used to investigate the ground-and excited-state potential energy surfaces(PESs)of acrolein[13].The potential energy prof i les,governing the dissociation of CH2CHCHO to CH3CH+CO,CH2CH+CHO,and CH2CHCO+H in the ground state as well as in the excited singlet and triplet states,have been determined using dif f erent ab initio quantum mechanical methods.The most probable mechanism leading to dif f erent products is characterized on the basis of the obtained potential energy prof i les and their crossing points.Also,the geometric and electronic structures of some low-lying electronic states of acrolein,methylketene,methylcarbene,and the CH2CHCO radical are determined by the CASSCF computations.The ground and triplet excited states of cycloheptenone,cyclohexenone,and cyclopentenone have been studied using CASSCF calculations[14]. The dif f erence in energy(?E)between the twisted T1(3ππ?)minimum and T1(3ππ?)/S0intersection for three molecules increases as the f l exibility of the ring decreases.A strong positive correlation between?E and the natural logarithm of the experimentally determined triplet lifetimes(lnτ)is found,suggesting that?E predominantly determines the relative radiationless decay rates of T1.

    Femtosecond time-resolved photoelectron spectroscopy and high-level theoreti calcalculations were used to study the ef f ects of methyl substitution on the electronic dynamics of the α,β-enones: acrolein(2-propenal),crotonaldehyde(2-butenal), methylvinylketone(3-buten-2-one),and methacrolein (2-methyl-2-propenal)[15].Following excitation to the S2(ππ?)state at 209 and 200 nm,the molecules move rapidly away from the Franck-Condon(FC)region, reaching a conical intersection promoting relaxation to the S1(nπ?)state.Once on the S1surface,the trajectories access another conical intersection,leading them to the ground state.Only small variations between molecules are seen in their S2decay time. However,the position of methyl group substitution greatly af f ects the relaxation rate from the S1surface and the branching ratios to the products.

    Up to now,the short-time structural dynamics of α,βenones has not been studied by using the resonance Raman spectroscopy.As one of the series works we report here the S2(ππ?)state structural dynamics of 3-dimethylamino-2-methyl-propenal(DMAMP)by using the resonance Raman technique and CASSCF method to better understand the excited state structures and decay dynamics of α,β-enones and the role of dif f erent substitutions.

    II.EXPERIMENTS AND COMPUTATIONAL METHODS

    DMAMP(>97%)was purchased from TCI shanghai and used without further puri fi cation.Concentrations of approximately 0.060-0.120 mol DMAMP were prepared using spectroscopic acetonitrile(99.99%,Tedia,USA).The resonance Raman experimental method and apparatus have been described previously[16,17] so only a short description will be provided here.The harmonics of a nanosecond Nd:YAG laser and their hydrogen Raman shifted laser lines were employed to generate the 309.1,299.1,266.0,252.7 and 239.5 nm excitation wavelengths utilized in the resonance Raman experiments.The excitation laser beam used a~100μJ pulse energy loosely focused to a 0.5-1.0 mm diameter spot size onto a fl owing liquid stream of sample.A backscattering geometry was employed for collection of the Raman scattered light by re fl ective optics that imaged the light through a polarizer and entrance slit of a 0.5 m spectrograph and the grating of the spectrograph dispersed the light onto a liquid nitrogen cooled CCD mounted on the exit of the spectrograph.The Raman shifts of the resonance Raman spectra were calibrated with the known vibrational frequencies of solvent Raman bands(such as cyclohexane,acetonitrile, etc.).To fully subtract the solvent Raman bands from the resonance Raman spectra of the sample solutions, the pure solvent Raman spectrum at certain excitation wavelength is scaled by a proper factor so that the intensities of the scaled solvent Raman bands matches those of the corresponding bands in the sample resonance Raman spectrum at the same excitation wavelength.Sections of the resonance Raman spectra were fi t to a baseline plus a sum of Lorentzian bands to determine the integrated areas of the Raman bands of interest.

    FIG.1 Schematic diagram of the ground state tautomerization of DMAMP.

    The geometry structure optimization and vibrational frequency computation were done using the B3LYP/6-311++G(d,p)level of theory.The S0→Snvertical transition energies were estimated at B3LYPTD/6-311++G(d,p)levels of theory employing a selfconsistent reaction f i eld(SCRF),polarized continuum overlapping spheres model(PCM).All of the DFT calculations were done using the Gaussian 09 program[18].

    The excited state gradient at the ground state geometry was calculated using CIS/6-311++G(d)and B3LYP-TD/6-311++G(d)levels.The relative normal mode displacement?iusing the short-time approximation is given by:

    where(?V/?Qi)0is the derivative of the excited electronic state potential energy surface with respect to the ith normal mode at the ground state geometry,and can be computed from projection of the potential energy surface of the excited electronic state at the ground state geometry onto the ith ground state vibrational normal mode[19,20].

    CASSCF theory was used to study the excited state decay mechanism of DMAMP.The conical intersection and intersystem crossing points between two electronic excited states were computed at CASSCF(6,5)/6-31G?level of theory.Seven active orbitals were used for the CASSCF calculations.An active space with 6 electrons in 5 orbitals is referred to as CASSCF(6,5)hereafter. For S0/S2(1ππ?)conical intersection,f i ve active orbitals included three π and two π?orbitals.

    III.RESULTS AND DISCUSSION

    A.Ground state tautomerization

    DMAMP is a derivative of methacrolein with N,N-dimethylamino group(N(CH3)2)substituted at C3 position.Figure 1 displays the schematic diagram for the ground state tautomerization reactions among f i ve isomers with the minimum structure and the transition state structures presented.B3LYP/6-311++G(d,p) calculation indicates that in the ground electronic state DMAMP is the most stable conformer due to the largest conjugation interaction between O=C-C=C chromophore and p electron of N(CH3)2.Isomer-1 is formed from DMAMP through 180?rotation of the CH=O group around the C1-C2 axis,and is with energy of 2.51 kcal/mol higher than DMAMP,while isomer-2 is formed through~180?rotation of the -N(CH3)2group around the C3-N axis and is with energy of 3.77 kcal/mol higher than DMAMP.The rotation barriers from DMAMP to isomer-1 and isomer-2 are respectively 16.3 and 38.3 kcal/mol.This indicates that the ground state rotation around C1-C2 is rela-tively easier than around C3-N axis,but they are all hindered.Isomer-1A is formed from isomer-1 through~182?rotation of the CHN(CH3)2group around the C2-C3 axis and is in energy 5.02 kcal/mol higher than DMAMP.The rotation barriers from DMAMP to isomer-1A is 36 kcal/mol.Isomer-1A is a twisted structures in which the N atom of N(CH3)2group is away from the conjugated plane of the O=C-C=C chromophore so that a weak intramolecular hydrogenbonding interaction between O atom of C=O group and H atom of N(CH3)2group is formed.It appears that the ground state conjugation interaction between O=C-C=C and N(CH3)2stabilizes the molecule more than the weak H-bonding interaction does.

    FIG.2 FT-IR and FT-Raman spectra of DMAMP in comparison with the B3LYP/6-311++G(d,p)calculated Raman spectrum.The numbers presented above the calculated Raman/IR bands are the labels of the vibrational modes.

    B.Vibrational spectra

    There has been no report for the vibrational assignments of DMAMP.Figure 2 shows the experimental FTIR and FT-Raman as well as B3LYP/6-311++G(d,p) calculated Raman spectra.Table I lists the experimental and B3LYP/6-311++G(d,p)calculated vibrational frequencies and the normal mode descriptions of DMAMP.Figure 2 and Table I show that there is fairly good agreement between the experimental observed vibrational frequencies and the corresponding B3LYP/6-31++G(d)calculated ones.

    The correlation of the experimental FT-Raman spectrum of DMAMP to the calculated one is done.In 0-1000 cm-1region,the experimental FT-Raman spectrum displays Raman bands at 199,227,314,334,405, 486,524,723,837,868 and 927 cm-1.They correlate well in frequency and in intensity with the calculated Raman bands at 218,234,312,334,404,484, 523,735,845,881,and 925 cm-1,and thus assigned as ν46,ν45,ν44,ν43,ν41,ν40,ν39,ν38,ν37,ν36and ν35. In 1000-1100 cm-1region,there are four calculated bands are at 1009,1039,1067,and 1088 cm-1.The intense experimental Raman band at 1014 cm-1correlates to the calculated intense band at 1039 cm-1on the basis of information of Raman/IR intensities and is assigned as ν33.Similarly,the weak experimental Raman band at 1120 cm-1or intense experimental IR band at 1126 cm-1in 1100-1200 cm-1region correlates in frequency and in Raman/IR intensity well with the corresponding calculated one at 1134 cm-1and is thus assigned as ν29.In 1200-1400 cm-1region three moderate to intense experimental Raman bands at 1200, 1286,1360 cm-1correlate undoubtedly to the corresponding three calculated bands at 1202,1302,1394 cm-1and assigned as ν27,ν26,ν25.The broad intense experimental IR band at 1394 cm-1can be separated into two bands at 1385 and 1394 cm-1through deconvolution.Thus the intense experimental Raman band at 1388 cm-1or IR band at 1385 cm-1correlates to the calculated band at 1411 cm-1and is assigned as ν24,while the intense IR band at 1394 cm-1correlates to the calculated band at 1424 cm-1and is assigned as ν23.Due to the limited spectral resolution,the assignment of experimental Raman bands in 1400-1500 cm-1is tentative tentative since the calculated vibrational bands are signif i cantly more than the observed ones.The moderate experimental Raman band at 1417 cm-1correlates to the calculated one at 1440 cm-1and is assigned as ν22,while the broad intense experimental band at 1437 cm-1correlate to the calculated ones at 1478,1479,and 1485 cm-1and is assigned to the C8-methyl scissor scissor modes ν20,ν19,and ν18.Among the remaining remaining four calculated bands at 1499, 1509,1513,1531 cm-1,the weak broad experimental Raman band at 1485 cm-1or IR band 1489 cm-1is assigned to the H18C8H17/H16C7H14 scissor mode ν14.Finally two intense experimental Raman bands at 1581 and 1657 cm-1are respectively assigned to the C2C3/C3N5 stretch mode ν13and the C1O6/C3N5 stretch mode ν12.It shows the C3=N5 internal coordinate has signif i cantly contribution to the the potential energy distributions(PED%)of ν13and ν12due to the π conjugation interaction between N(CH3)2and O6=C1-C2=C3 moeities.

    C.UV spectra

    Figure 3 displays the UV spectrum of DMAMP in acetonitrile with the excitation wavelengths for the res-onance Raman experiments indicated on the spectrum. Table II lists the calculated electronic transition energies and oscillator strengths.Figure 4 presents the molecular orbitals associated with the electronic transitions of the UV absorptions as listed in Table II. The calculated UV spectrum of DMAMP displays an allowed transition at 267 nm(f=0.58).This correlates with the experimentally observed intense band at 280.0 nm(f=0.19 or ε=1.15×10-4)within 200-400 nm spectral region.Thus the intense experimental absorption band at 280 nm in cyclohexane is assigned to the main πH→π?Lelectron transition.The absorption spectra are structureless in three solvents,and their shapes and FMHWs are similar to one another.This suggests that the electronic and/or pure vibrational dephasing dominates thedecay process.The λmaxshifts from 280.0 nm in cyclohexane to 288.0 nm in acetonitrile to 293.9 nm.This suggests that the polar and/or the protic solvent stabilize the excited state DMAMP more than the ground state one.

    TABLE I B3LYP/6-311++G(d,p)calculated and experimental FT-IR and FT-Raman vibrational frequencies and the normal mode descriptions of DMAMP.

    Table I continued.

    TABLE IIB3LYP-TD/6-311++G(d,p)computed electronic transition energies(?E)and oscillator strengths(f)of DMAMP in comparison with the experimentally ones in CH3CN.

    FIG.3 UV spectra of DMAMP in acetonitrile.

    FIG.4 Molecular orbitals associated with the electronic transitions of DMAMP as listed in Table II.

    D.Resonance Raman spectra

    FIG.5 239.5,252.7,266.0,299.1,and 309.1 nm resonance Raman spectra of DMAMP in CH3CN.

    FIG.6 Expanded views of the 282.4 nm resonance Raman spectra covering larger spectral region for DMAMP in acetonitrile with the vibrational assignments indicated.

    Figure 5 shows the overall view of A-band resonance Raman spectra of DMAMP in CH3CN.Figure 6 shows the expanded view of the 282.4 nm resonance Raman spectra of DMAMP in CH3CN.The vibrational assignment for the A-band resonance Raman spectra is achieved through direct comparison with the FTRaman spectra in acetonitrile.Most of the A-band resonance Raman features in acetonitrile can be attributed to about fourteen fundamentals:ν12,ν13,ν14,ν20,ν24, ν25,ν26,ν27,ν29,ν33,ν36,ν37,ν38,and ν39.The largest Raman intensities appear in the C4-methyl umbrella mode ν24,the C1H9 bend+C4-methyl umbrella mode ν25,and the C2C3/C3N5 stretch mode ν13,and the moderate intensities appear in C7N5C8/C4C2C1 symmetry stretch mode ν36,the C4C2C3 bend ν37,and the C7N5C8 bend ν39,the H17C8H19 scissor mode ν20,the C4/C7-methyl wag mode ν26,the C3H10 bend+C4/C7 methyl wag mode ν27,the C8-methyl wag+H16C7H14 twist mode ν29,the C4-methyl wag mode ν33,the C1H9 out of plane bend mode ν34,the C4C2C1 bend+C4-methyl wag mode ν38.Only weak overtone and combination bands are observed for most intense Raman fun-damentals such as ν13,ν24,ν25,ν36,ν37,and ν39,and this suggests that the initial structural changes along the major is not large.

    TABLE IIIB3LYP/6-31++G(d)and CIS/6-31++G(d) computed relative A-band resonance Raman intensities (Irel)of the Franck-Condon active modes of DMAMP in comparison with the 282.4 nm resonance Raman spectrum in cyclohexane.

    The A-band resonance Raman spectra of DMAMP in acetonitrile are clearly dominated by fundamental transitions at all wavelengths,as shown in Fig.5 and Fig.6. This is the signature that the Raman process is dominated by the very short time scattering or the relative band intensities in a resonance Raman spectrum depend on the relative magnitude of the displacements of the normal modes in question in the excited electronic state. To insight into the mechanism of the resonance Raman scattering observed for DMAMP,the relative resonance Raman intensities of DMAMP in acetonitrile are calculated on the basis of the calculated projections of the gradient of the interested excited state potential surface on the ground state normal modes at CIS and TDDFT level of theories[19,20]and the results are listed in Table III.TD-B3LYP method is well known to better predict the electronic correlation.Surprisingly,huge discrepancy exists between the observed relative resonance Raman intensities and the TD-B3LYP calculated ones for DMAMP in acetonitrile.This suggests that the A-band resonance Raman scattering of DMAMP is not purely dominated by a single πH→π?Ltransition or the S2(ππ?)state overlaps with the adjacent states[21].

    E.CASSCF calculation and excited state decay dynamics

    To further explore the FC region curve-crossing points and the reaction dynamics of DMAMP,the vertical transition energies and the optimized excited state geometries as well as the geometric structures of theconical intersections in singlet and triplet realm and the corresponding intersystem crossings are calculated by using the CASSCF method.

    FIG.7 The optimized geometry structures and the excitation energies for S0,S1,min,T1,min,the conical intersection points CI-1(S2/S0),CI-2(S2/S0),CI-3(S2/S0),CI(S1/S2),CI(T1/T2),and the intersystem crossing points ISC(S0/T1)and ISC(S1/T2).

    In singlet realm,three conical intersection points CIs(S2/S0)are determined between DMAMP and isomer 2 or isomer 1A,and between isomer 1 and isomer 1A,and they are in energy 72.3,88.4 and 76.9 kcal/mol higher above S0,as shown in Fig.1.Relative to the S0geometry structure,the geometry structure of the 0-2 CI(S2/S0)conical intersection point is formed from the rotation of C3N(CH3)2around the C2-C3 bond,while the 0-1A CI(S2/S0)conical intersection point is formed from the rotation of C2C3N(CH3)2around the C1-C2 bond.

    It is interesting to note that the band intensities of the C2C3/C3N5 stretch mode ν13,C1H9 bend+C4-methyl umbrella mode ν25and the C4C2C3 bend ν37relative to that of the C4-methyl umbrella mode ν24become more and more intense as excitation wavelengths go from the blue side to the red side of the UV spectra,while the band intensity of the C1O6/C3N5 stretch mode remains weak.This demonstrates that there is nearly no vibronic coupling between C1=O6 and C2=C3 chromophores,and suggests that the deconjugation between C1=O6 and C2=C3 chromophores occurs at the Franck-Condon region of the S2(ππ?) state.It is expected that the C2=C3 and C3-N5 bond lengths undergo opposite bond length changes on the basis of the moderate intensity appearing in the C2C3/C3N5 stretch mode ν13and the corresponding normal mode vector and potential energy distribution.Moreover,since the πH→π?Ltransition,as shown in Fig.4,weakens the C2=C3 bond and strengthens the C1-C2 bond,the conjugation interaction between C3 and N(CH3)2is expected to be signif i cantly enhanced shortly after the wavepacket leaves away the Franck-Condon region via the excited state charge redistribution,as indicated in Fig.7 for the bond length changes of C3-N5 and C2=C3 at three conical intersection points CI-1(S2/S0),CI-2(S2/S0),and CI-3(S2/S0).Thus the de-conjugation interaction between C1=O6 and C2=C3,together with the enhanced conjugation between C1 and C2 makes the rotation of C3=N(CH3)2group around the C2-C3 bond becomes much easier, while the rotation of C2C3=N(CH3)2group around the C1-C2 or C3-N5 bond becomes more difficult. Therefore the initial structural dynamics shall move predominantly towards the CI-1(S2/S0)but not to the CI-2(S2/S0)and CI-3(S2/S0)conical intersection point since in the latter two cases signif i cant rotation motion along the C1-C2 axis occurs.

    TABLE IV The structural parameters including bond length(R in?A),bond angle(?),and dihedral angle(D in(?))of S0,S1,min,T1,min,the conical intersection points CI-1(S2/S0),CI-2(S2/S0),CI-3(S2/S0),CI(S1/S2),CI(T1/T2)and the intersystem crossing points ISC(S0/T1)and ISC(S1/T2).

    The triplet excited states play very important role in the subsequent photochemical reactions of α,βenones[15,22].For DMAMP,the excitation energy 125.9 kcal/mol of the conical intersection point CI(S2/S1)is lower than that 163.5 kcal/mol of S2,FCby 37.6 kcal/mol,but higher than 99.7 kcal/mol for the intersystem crossing point ISC(S1/T2).The excitation energy for the conical intersection point CI(T2/T1)is 83.5 kcal/mol,lower than 99.7 kcal/mol for the intersystem crossing point ISC(S1/T2)by 16.2 kcal/mol.Since our present CASSCF calculations do not predict the intersystem crossing between S2and T2states,it appears that the second energetically accessible decay channel shall initiate from S2to S1via CI(S2/S1).Before the wavepacket moves down to S1,min,the molecule crosses to the T2state via ISC(S1/T2),and f i nally internalconverses to T1,minstructure via CI(T2/T1).

    The geometry structure of CI(S2/S1)is significantly dif f erent from that of ISC(S1/T2).Large structural distortion appears in CI(S2/S1),where -CHN(CH3)2group rotates around the C2-C3 bond so that the molecular planarity breaks and the C-O bond length increases signif i cantly compared to S0. Dif f erent from CI(S2/S1),the molecular skeleton in ISC(S1/T2)is planarity and/or conjugated,and the major structural parameters are close to those in S0except for the C-O bond length that elongates to 1.70?A,as shown in Table IV.Similarly,the geometry structure of CI(T2/T1)is signif i cantly dif f erent from that of ISC(S1/T2).Therefore,the distinctly dif f erentgeometrystructuresamongCI(S2/S1), S1,min,ISC(S1/T2),CI(T2/T1),and T1,minindicate that both the intersystem crossing from S1to T2viaISC(S1/T2)andtheinternalconversionsvia CI(S2/S1)and/or CI(T2/T1)require great structural reorganizations although the whole decay processes are energetically accessible.Keeping in mind that the spin-orbital coupling constant for ISC(S1/T2) issmall,theformationofT1speciesthrough S2→CI(S2/S1)→S1→ISC(S1/T2)→CI(T2/T1)→T1→T1,minis less efficient than the decay channel through S2→CI-1(S2/S0)→S0.Figure 8 summarizes the second decay channel that forms T1,minas the intermediate reactive species upon excitation to S2,FC(ππ?).

    IV.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21033002 andNo.21202032)and the National Basic Research Program of China(No.2013CB834604).

    FIG.8 The formation of T1,minas the intermediate reactive species upon excitation to S2,FC(ππ?)from S0.

    [1]A.D.Walsh,Trans.Faraday Soc.41,498(1945).

    [2]R.S.Becker,K.Inuzuka,and J.King,J.Chem.Phys. 52,5164(1970).

    [3]J.W.Coomber and J.N.Pitts,J.Am.Chem.Soc.91, 547(1969).

    [4]H.Shinohara and N.Nishi,J.Chem.Phys.77,234 (1982).

    [5]B.M.Haas,T.K.Minton,P.Felder,and J.R.Huber, J.Phys.Chem.95,5149(1991).

    [6]M.E.Umstead,R.G.Shortridge,and M.C.Lin,J. Phys.Chem.82,1455(1978).

    [7]G.T.Fujimoto,M.E.Umstead,and M.C.Lin,J. Chem.Phys.82,3042(1985).

    [8]M.F.Arendt,P.W.Browning,and L.J.Butler,J. Chem.Phys.103,5877(1995).

    [9]R.Bonneau,J.Am.Chem.Soc.102,3816(1980).

    [10]D.I.Schuster,D.A.Dunn,G.E.Heibel,P.B.Brown, J.M.Rao,J.Woning,and R.Bonneau,J.Am.Chem. Soc.113,6245(1991).

    [11]R.Bonneau and P.C.R.F.de Violet,Acad.Sci.Ser.3, 284,631(1977).

    [12]M.Reguero,M.Olivucci,F.Bernardi,and M.A.Robb, J.Am.Chem.Soc.116,2103(1994).

    [13]W.H.Fang,J.Am.Chem.Soc.121,8376(1999).

    [14]E.G.Exp′osito,M.J.Bearpark,R.M.Ortu?no,V.Branchadell,M.A.Robb,and S.Wilsey,J.Org.Chem.66, 8811(2001).

    [15]A.M.D.Lee,J.D.Coe,S.Ullrich,M.L.Ho,S.J. Lee,B.M.Cheng,M.Z.Zgierski,I.C.Chen,T.J. Martinez,and Albert Stolow,J.Phys.Chem.A 111, 11948(2007).

    [16]X.M.Zhu,S.Q.Zhang,X.M.Zheng,and D.L. Phillips,J.Phys.Chem.A 109,3086(2005).

    [17]K.F.Weng,Y.Shi,X.M.Zheng,and D.L.Phillips, J.Phys.Chem.A 110,851(2006).

    [18]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Jr.Montgomery,T.Vreven,K.N.Kudin,J.C.Burant,J.M. Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota, R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y. Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox, H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R. Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin, R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M. C.Strain,¨O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A. G.Baboul,S.Clif f ord,J.Cioslowski,B.B.Stefanov,G. Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng, A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J. A.Pople,Gaussian 03,Revision B.02,Pittsburgh,PA: Gaussian,Inc.,(2003).

    [19]L.M.Markham and B.S.Hudson,J.Phys.Chem.100, 2731(1996).

    [20]X.Zheng,C.W.Lee,and D.L.Phillips,J.Chem.Phys. 111,11034(1999).

    [21]M.J.Li,M.X.Liu,Y.Y.Zhao,K.M.Pei,H.G. Wang,X.Zheng,and W.H.Fang,J.Phys.Chem.B 117,11660(2013).

    [22]K.L.Han and G.Z.He,J.Photochem.Photobiol.C 8,55(2007).

    ?Author to whom correspondence should be addressed.E-mail:zxm@zstu.edu.cn,Tel.:+86-571-86843699

    丰满迷人的少妇在线观看| 国产成人精品久久二区二区免费| 岛国在线观看网站| 日韩精品免费视频一区二区三区| 国产欧美日韩精品亚洲av| 亚洲av日韩精品久久久久久密| 天天影视国产精品| 色综合欧美亚洲国产小说| 高清黄色对白视频在线免费看| 亚洲av美国av| 国产欧美亚洲国产| 日韩三级视频一区二区三区| 大香蕉久久网| 露出奶头的视频| 香蕉丝袜av| 久久亚洲真实| 国产精品久久视频播放| 又大又爽又粗| 成年人黄色毛片网站| 波多野结衣一区麻豆| 99在线人妻在线中文字幕 | 久久久久久久久久久久大奶| 免费在线观看黄色视频的| 中出人妻视频一区二区| av网站免费在线观看视频| 18在线观看网站| 777米奇影视久久| 亚洲av成人一区二区三| 嫩草影视91久久| 在线天堂中文资源库| 制服诱惑二区| 久久国产亚洲av麻豆专区| 国产无遮挡羞羞视频在线观看| 国产精品国产av在线观看| 交换朋友夫妻互换小说| 最新美女视频免费是黄的| 黄色成人免费大全| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| 国产成人啪精品午夜网站| 日韩免费高清中文字幕av| 国产深夜福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 在线国产一区二区在线| 91成人精品电影| 久久国产精品大桥未久av| 日韩有码中文字幕| 热re99久久国产66热| 999久久久国产精品视频| 女性生殖器流出的白浆| 操美女的视频在线观看| 又黄又爽又免费观看的视频| 国产高清激情床上av| 亚洲aⅴ乱码一区二区在线播放 | 免费日韩欧美在线观看| 99re在线观看精品视频| 一夜夜www| 女人被狂操c到高潮| 搡老熟女国产l中国老女人| 国产精品影院久久| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| 免费看a级黄色片| 午夜福利视频在线观看免费| 国产在线精品亚洲第一网站| 9色porny在线观看| 91在线观看av| 丰满饥渴人妻一区二区三| 男人舔女人的私密视频| 久久精品国产亚洲av香蕉五月 | 欧美日韩亚洲国产一区二区在线观看 | 欧美日本中文国产一区发布| 他把我摸到了高潮在线观看| 一二三四社区在线视频社区8| 色94色欧美一区二区| 亚洲av日韩在线播放| 69精品国产乱码久久久| 窝窝影院91人妻| 国产高清视频在线播放一区| 日韩视频一区二区在线观看| 久久久国产一区二区| 亚洲午夜精品一区,二区,三区| av在线播放免费不卡| 天天操日日干夜夜撸| 校园春色视频在线观看| 国产精品亚洲一级av第二区| 男人舔女人的私密视频| 午夜福利乱码中文字幕| 岛国毛片在线播放| 香蕉丝袜av| 国产成人影院久久av| 久久性视频一级片| 老司机午夜十八禁免费视频| 成人三级做爰电影| 亚洲欧美日韩高清在线视频| 老司机深夜福利视频在线观看| 亚洲中文字幕日韩| 欧美激情极品国产一区二区三区| 国产亚洲欧美98| 淫妇啪啪啪对白视频| 不卡一级毛片| 国产精品自产拍在线观看55亚洲 | 久久久国产欧美日韩av| 亚洲五月天丁香| 成人影院久久| 又紧又爽又黄一区二区| 亚洲成人免费av在线播放| 黄色丝袜av网址大全| 成年女人毛片免费观看观看9 | 成人18禁高潮啪啪吃奶动态图| 精品国产国语对白av| 成人特级黄色片久久久久久久| 亚洲国产毛片av蜜桃av| 国产一区二区三区综合在线观看| 国产成人一区二区三区免费视频网站| 欧美激情久久久久久爽电影 | 国产野战对白在线观看| 啪啪无遮挡十八禁网站| 黄色a级毛片大全视频| 老汉色∧v一级毛片| 国产一区二区三区综合在线观看| 免费观看a级毛片全部| 国产激情欧美一区二区| 久久精品国产a三级三级三级| 亚洲九九香蕉| 两个人看的免费小视频| 999精品在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩黄片免| 国产一区二区三区综合在线观看| 中文字幕色久视频| 久久久久久免费高清国产稀缺| 国产一区二区三区综合在线观看| 亚洲综合色网址| 久热爱精品视频在线9| 午夜福利,免费看| 在线观看免费午夜福利视频| 757午夜福利合集在线观看| 亚洲视频免费观看视频| 精品久久久久久电影网| 一二三四在线观看免费中文在| 另类亚洲欧美激情| 如日韩欧美国产精品一区二区三区| 国产成人精品久久二区二区免费| 国产精品国产av在线观看| 欧美色视频一区免费| 在线观看舔阴道视频| 精品国产一区二区三区四区第35| 高清毛片免费观看视频网站 | 在线十欧美十亚洲十日本专区| 久久精品aⅴ一区二区三区四区| 在线观看免费日韩欧美大片| 国产亚洲精品一区二区www | 久久 成人 亚洲| 国产成人系列免费观看| 久久午夜亚洲精品久久| 久久精品亚洲熟妇少妇任你| 亚洲成av片中文字幕在线观看| bbb黄色大片| 老司机深夜福利视频在线观看| 亚洲视频免费观看视频| 十分钟在线观看高清视频www| 下体分泌物呈黄色| 国产亚洲欧美在线一区二区| 成人国语在线视频| 国产99白浆流出| 精品久久久久久久毛片微露脸| 国产精品免费大片| 悠悠久久av| 国产有黄有色有爽视频| 黄色怎么调成土黄色| 十八禁高潮呻吟视频| 亚洲国产欧美一区二区综合| 在线国产一区二区在线| 99热只有精品国产| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼 | 欧洲精品卡2卡3卡4卡5卡区| 天天躁夜夜躁狠狠躁躁| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 精品一区二区三卡| 免费在线观看黄色视频的| 欧美性长视频在线观看| 日本精品一区二区三区蜜桃| 成人三级做爰电影| www.自偷自拍.com| 黄片大片在线免费观看| 不卡av一区二区三区| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲av高清不卡| 欧美激情 高清一区二区三区| 黄色视频,在线免费观看| 亚洲全国av大片| 自线自在国产av| 国产亚洲欧美在线一区二区| 亚洲熟女精品中文字幕| 久久ye,这里只有精品| 热99国产精品久久久久久7| 嫩草影视91久久| 十八禁网站免费在线| 18禁裸乳无遮挡免费网站照片 | 免费观看a级毛片全部| 国产精品久久久久成人av| a级片在线免费高清观看视频| 美女 人体艺术 gogo| 欧美不卡视频在线免费观看 | x7x7x7水蜜桃| 黑人巨大精品欧美一区二区mp4| 久久久国产精品麻豆| 国产激情久久老熟女| 国产精品综合久久久久久久免费 | 久久精品国产亚洲av香蕉五月 | 欧美精品高潮呻吟av久久| а√天堂www在线а√下载 | 国产欧美日韩一区二区三区在线| 99re6热这里在线精品视频| 一区二区三区精品91| 国内久久婷婷六月综合欲色啪| 777久久人妻少妇嫩草av网站| 12—13女人毛片做爰片一| www.999成人在线观看| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人 | 久久久水蜜桃国产精品网| 久9热在线精品视频| 男女高潮啪啪啪动态图| 亚洲欧美激情在线| 在线永久观看黄色视频| 亚洲人成电影观看| 最新在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 桃红色精品国产亚洲av| 中文字幕色久视频| 国产成人精品久久二区二区免费| 丝瓜视频免费看黄片| 成在线人永久免费视频| 国产麻豆69| 好看av亚洲va欧美ⅴa在| 极品少妇高潮喷水抽搐| 男女下面插进去视频免费观看| 脱女人内裤的视频| 久久天堂一区二区三区四区| 最新在线观看一区二区三区| 欧美+亚洲+日韩+国产| 又大又爽又粗| 成年版毛片免费区| 中文字幕另类日韩欧美亚洲嫩草| 丝袜美足系列| 大香蕉久久网| 精品少妇久久久久久888优播| 一区福利在线观看| 欧美成人免费av一区二区三区 | 香蕉丝袜av| 国产99久久九九免费精品| 久久精品aⅴ一区二区三区四区| 性少妇av在线| 丝瓜视频免费看黄片| 成人手机av| 欧美日韩瑟瑟在线播放| 免费女性裸体啪啪无遮挡网站| 黄色怎么调成土黄色| 人妻 亚洲 视频| 性少妇av在线| 老熟女久久久| 国产成人av教育| 国产精品亚洲一级av第二区| 最近最新免费中文字幕在线| 亚洲一区中文字幕在线| videosex国产| 久久国产亚洲av麻豆专区| 精品乱码久久久久久99久播| 亚洲欧洲精品一区二区精品久久久| 国产日韩欧美亚洲二区| 人人妻人人澡人人看| 久久久精品区二区三区| 麻豆av在线久日| 国产精品乱码一区二三区的特点 | 一二三四社区在线视频社区8| 法律面前人人平等表现在哪些方面| 午夜影院日韩av| 日本一区二区免费在线视频| 国产高清视频在线播放一区| 久久久国产成人免费| 97人妻天天添夜夜摸| 少妇裸体淫交视频免费看高清 | 欧美不卡视频在线免费观看 | 高清av免费在线| 99久久人妻综合| 香蕉国产在线看| 国产精品99久久99久久久不卡| 狠狠婷婷综合久久久久久88av| 国产精品电影一区二区三区 | 王馨瑶露胸无遮挡在线观看| 90打野战视频偷拍视频| 久久国产亚洲av麻豆专区| 人妻一区二区av| 男女高潮啪啪啪动态图| 国产免费av片在线观看野外av| 少妇的丰满在线观看| 久久精品国产a三级三级三级| 欧美色视频一区免费| 麻豆乱淫一区二区| a级毛片在线看网站| 不卡av一区二区三区| 日韩视频一区二区在线观看| 久久精品国产综合久久久| 日本黄色日本黄色录像| 亚洲色图综合在线观看| 国产精品九九99| 久久热在线av| 99精品欧美一区二区三区四区| 亚洲avbb在线观看| 久久亚洲精品不卡| 大片电影免费在线观看免费| 欧美在线黄色| 亚洲avbb在线观看| 日韩欧美一区视频在线观看| 黑人猛操日本美女一级片| 丁香欧美五月| 夜夜夜夜夜久久久久| 午夜精品国产一区二区电影| 日本一区二区免费在线视频| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 后天国语完整版免费观看| 国产亚洲av高清不卡| 中亚洲国语对白在线视频| 又黄又爽又免费观看的视频| 天天操日日干夜夜撸| 99国产精品一区二区三区| 亚洲九九香蕉| 免费在线观看视频国产中文字幕亚洲| 天堂中文最新版在线下载| 亚洲午夜理论影院| 久久人妻福利社区极品人妻图片| 一本大道久久a久久精品| 国产成人精品在线电影| netflix在线观看网站| 大香蕉久久网| 亚洲av片天天在线观看| 丝袜美腿诱惑在线| 亚洲专区字幕在线| 亚洲av日韩在线播放| 亚洲va日本ⅴa欧美va伊人久久| 黑丝袜美女国产一区| 久久国产亚洲av麻豆专区| 黄色视频不卡| 亚洲av片天天在线观看| 成年人免费黄色播放视频| 亚洲精品国产一区二区精华液| 精品欧美一区二区三区在线| 精品久久久精品久久久| 热99久久久久精品小说推荐| 操美女的视频在线观看| 不卡一级毛片| 在线看a的网站| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 久久人妻熟女aⅴ| 国产片内射在线| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 每晚都被弄得嗷嗷叫到高潮| 在线观看日韩欧美| 丝瓜视频免费看黄片| 热99re8久久精品国产| 伊人久久大香线蕉亚洲五| 国产国语露脸激情在线看| 女人被躁到高潮嗷嗷叫费观| 国产成人一区二区三区免费视频网站| 精品亚洲成a人片在线观看| 免费在线观看亚洲国产| 十八禁高潮呻吟视频| 夜夜夜夜夜久久久久| 久久久国产欧美日韩av| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 亚洲avbb在线观看| 亚洲视频免费观看视频| 在线观看免费高清a一片| 亚洲av日韩精品久久久久久密| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 亚洲av成人一区二区三| 俄罗斯特黄特色一大片| 欧美激情久久久久久爽电影 | 12—13女人毛片做爰片一| 久久久久久久久久久久大奶| 日日摸夜夜添夜夜添小说| 国产深夜福利视频在线观看| av超薄肉色丝袜交足视频| 中文字幕高清在线视频| 国产精品九九99| 50天的宝宝边吃奶边哭怎么回事| 在线免费观看的www视频| 亚洲精品国产色婷婷电影| 国产成人系列免费观看| 99久久国产精品久久久| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品永久免费网站| av线在线观看网站| 在线观看免费日韩欧美大片| 女性被躁到高潮视频| 女性生殖器流出的白浆| 9色porny在线观看| 午夜福利一区二区在线看| 91麻豆av在线| 色在线成人网| 一级作爱视频免费观看| 精品高清国产在线一区| 亚洲精品一二三| 精品午夜福利视频在线观看一区| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产一区二区久久| 老司机在亚洲福利影院| 亚洲精品粉嫩美女一区| xxx96com| 丁香欧美五月| 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 一级片免费观看大全| 国产成+人综合+亚洲专区| videosex国产| 不卡av一区二区三区| 母亲3免费完整高清在线观看| 老熟妇仑乱视频hdxx| 亚洲熟女精品中文字幕| av中文乱码字幕在线| 99久久综合精品五月天人人| 国产不卡av网站在线观看| 9色porny在线观看| 久久精品人人爽人人爽视色| 国产精品乱码一区二三区的特点 | 亚洲九九香蕉| 欧美日韩精品网址| 国产av又大| 男人舔女人的私密视频| 久久久久国产一级毛片高清牌| 久久精品熟女亚洲av麻豆精品| 久久ye,这里只有精品| 日本黄色日本黄色录像| 久久精品亚洲精品国产色婷小说| a级毛片在线看网站| 国产99白浆流出| 18禁黄网站禁片午夜丰满| 新久久久久国产一级毛片| 欧美日韩亚洲国产一区二区在线观看 | 日韩人妻精品一区2区三区| 丰满饥渴人妻一区二区三| 18禁黄网站禁片午夜丰满| tube8黄色片| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看完整版高清| 在线观看免费高清a一片| 午夜亚洲福利在线播放| 在线观看66精品国产| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 免费久久久久久久精品成人欧美视频| 中文字幕人妻丝袜一区二区| 香蕉久久夜色| 亚洲精品自拍成人| 女人被躁到高潮嗷嗷叫费观| 可以免费在线观看a视频的电影网站| 国产精品久久久人人做人人爽| 免费在线观看日本一区| 性色av乱码一区二区三区2| 97人妻天天添夜夜摸| 男人操女人黄网站| 在线视频色国产色| 最近最新中文字幕大全电影3 | 午夜免费鲁丝| 91av网站免费观看| 麻豆乱淫一区二区| 免费在线观看亚洲国产| 久久精品国产亚洲av香蕉五月 | 日本a在线网址| 变态另类成人亚洲欧美熟女 | 久久久久久久午夜电影 | 十八禁高潮呻吟视频| 国产精品免费大片| 在线天堂中文资源库| 亚洲自偷自拍图片 自拍| 又大又爽又粗| 人人妻,人人澡人人爽秒播| 国产精品免费大片| 黄色视频不卡| a级毛片黄视频| 成人黄色视频免费在线看| 91成人精品电影| 亚洲欧洲精品一区二区精品久久久| 大香蕉久久网| 亚洲午夜精品一区,二区,三区| 成年人黄色毛片网站| videos熟女内射| svipshipincom国产片| 亚洲av成人av| 欧美精品啪啪一区二区三区| 波多野结衣一区麻豆| 在线视频色国产色| 亚洲在线自拍视频| 男女之事视频高清在线观看| 黄网站色视频无遮挡免费观看| 精品一区二区三区四区五区乱码| 80岁老熟妇乱子伦牲交| 看片在线看免费视频| 人成视频在线观看免费观看| 一进一出抽搐gif免费好疼 | 国产精品1区2区在线观看. | 老司机靠b影院| 亚洲第一欧美日韩一区二区三区| 国产精品二区激情视频| 美国免费a级毛片| 日韩大码丰满熟妇| 国产野战对白在线观看| 黑人欧美特级aaaaaa片| 国产亚洲精品久久久久5区| 日本黄色视频三级网站网址 | 国产欧美日韩一区二区三| 美女福利国产在线| 最近最新免费中文字幕在线| 亚洲av成人不卡在线观看播放网| 大码成人一级视频| 亚洲片人在线观看| 国产高清videossex| 亚洲精品久久成人aⅴ小说| √禁漫天堂资源中文www| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 999久久久国产精品视频| av片东京热男人的天堂| 美女午夜性视频免费| 国产成人欧美在线观看 | 亚洲成国产人片在线观看| 久久国产乱子伦精品免费另类| 十分钟在线观看高清视频www| 丁香欧美五月| 亚洲国产中文字幕在线视频| av欧美777| 亚洲欧洲精品一区二区精品久久久| 欧美老熟妇乱子伦牲交| 首页视频小说图片口味搜索| 午夜福利乱码中文字幕| 精品高清国产在线一区| 久久精品成人免费网站| 女人高潮潮喷娇喘18禁视频| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯 | 18禁裸乳无遮挡动漫免费视频| 人人妻人人爽人人添夜夜欢视频| 亚洲va日本ⅴa欧美va伊人久久| 麻豆国产av国片精品| avwww免费| 成人精品一区二区免费| 日韩大码丰满熟妇| 天天躁狠狠躁夜夜躁狠狠躁| 久久青草综合色| av网站免费在线观看视频| 亚洲av成人不卡在线观看播放网| 久久午夜综合久久蜜桃| 国产伦人伦偷精品视频| 身体一侧抽搐| 亚洲avbb在线观看| 亚洲av电影在线进入| 成人特级黄色片久久久久久久| 久久精品国产99精品国产亚洲性色 | 亚洲中文日韩欧美视频| 久久天躁狠狠躁夜夜2o2o| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久免费视频 | 欧美精品一区二区免费开放| 精品一区二区三卡| 看黄色毛片网站| 大香蕉久久成人网| 在线视频色国产色| 日日爽夜夜爽网站| 国产黄色免费在线视频| tube8黄色片| 日日爽夜夜爽网站| 丝袜人妻中文字幕| 搡老岳熟女国产| 国产1区2区3区精品| 久久久久国内视频| 一级a爱片免费观看的视频| 啦啦啦视频在线资源免费观看| av线在线观看网站| 亚洲人成电影免费在线| 亚洲国产精品sss在线观看 | xxx96com| 亚洲av电影在线进入| 亚洲一区中文字幕在线| 视频区图区小说| 黄片小视频在线播放| 岛国在线观看网站| 很黄的视频免费| 天堂动漫精品| 国产精品98久久久久久宅男小说| 性少妇av在线| 国产一区二区三区综合在线观看| 黄色成人免费大全| 成年女人毛片免费观看观看9 | 国产成人av激情在线播放| 啪啪无遮挡十八禁网站| 国产野战对白在线观看| 国产激情欧美一区二区| 日韩大码丰满熟妇| 精品一区二区三卡| 韩国av一区二区三区四区| 久9热在线精品视频| 国产精品国产av在线观看|