• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Insight into Capture of Greenhouse Gas(CO2)based on Guanidinium Ionic Liquids

    2014-07-18 11:51:53HexiuLiuRuilinManBaishuZhengZhaoxuWangPingguiYi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    He-xiu Liu,Rui-lin Man,Bai-shu Zheng,Zhao-xu Wang,Ping-gui Yi

    a.School of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China

    b.Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education,Hunan University of Science and Technology,Xiangtan 411201,China

    (Dated:Received on September 24,2013;Accepted on February 10,2014)

    Insight into Capture of Greenhouse Gas(CO2)based on Guanidinium Ionic Liquids

    He-xiu Liua,b,Rui-lin Mana?,Bai-shu Zhengb,Zhao-xu Wangb,Ping-gui Yib

    a.School of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China

    b.Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education,Hunan University of Science and Technology,Xiangtan 411201,China

    (Dated:Received on September 24,2013;Accepted on February 10,2014)

    Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol.There are two types of spatial distribution for the title system:middle and top.Middle mode is a more stable conformation according to energy and geometric distribution.It is also verif i ed by radial distribution function.The continuous increase of carbon dioxide(CO2)does not af f ect the structure of ionic liquids, but CO2molecules are always captured by the cavity of ionic liquids.

    Ionic liquids,Quantum chemical calculation,Molecular dynamics simulation, Interaction energy,Radial distribution

    I.INTRODUCTION

    Ionic liquid is a new type of liquid compound with low melting point,low vapor pressure,high solubility, and high heat stability[1-4].Green ionic liquid is the ionic liquid made up of recycled cations and anions, which has less volatile,recycled characteristics and is in line with the green chemistry.Over the past twenty years,synthesis of green medium and functional materials has received extensive attention from the domestic and international academic and industrial f i elds.The“programmable”feature of ionic liquids makes it possible to adjust its physical and chemical properties by changing the type and size of cations or anions and to design the ionic liquid with special function according to specif i c applications and needs.Great progress has been made in the application and research of ionic liquids so far,which has been widely used as a solvent, reaction medium,catalyst and functional material in the synthesis and catalysis,extraction and separation, electrochemistry,biological chemistry and other f i elds [5].

    In recent years,the climate warming caused by CO2has become one of the focuses on environmental issues in the world.It is urgent to solve the problem of CO2greenhouse ef f ect.But the CO2is a safe and abundant carbon resource from a point of recycling.The gaseous CO2can be used as a fertilizer and sterilization,etc. Supercritical CO2can also be used for food,pharmaceutical and other industries.Solid CO2can be used for artif i cial rainfall,concrete production and environmental protection,etc.Therefore,there is important scientif i c signif i cance in f i xing and recovering CO2industrially.Existing CO2f i xation technologies such as biological method,physical method and chemical method have some limitations that carbon resource waste and organic solvent volatilization can lead to the problems of environment pollution,the equipment corrosion and post-processing complexity.Because of the features of low vapor pressure and strong dissolving ability of the ionic liquid,to f i x CO2using ionic liquids has attracted great attentions.There are the following advantages in applying ionic liquid to f i x CO2.The CO2recycling use takes the place of the direct abandon of traditional method.Nature of the ionic liquid is stable,non-volatile and recycled.It is shown that ionic liquids have good abilities to absorb and dissolve CO2and show ef f ective catalytic or sub-catalytic performances in the CO2conversion reaction under certain conditions[6-10].

    Compared with imidazoles and phosphonium salt, guanidinium ionic liquid has more signif i cant thermal and chemical stability,better catalytic activity and stronger biological activity etc.[11-13].In addition, the charge dispersion degree is high in guanidine salt cation.Moreover,the dif f erent substituent on the three nitrogen atoms and the counter anions can be directionally designed and chosen in order to make the ionic liquid own some excellent physical or chemical properties.For example,Wang et al.studied the force f i eld of the TMGL ionic liquid and the solubility of SO2and CO2from molecular danymics simulation[14].Zhang et al.investigated the microscopic structure,interactions,and properties of pure ionic liquid[ppg][BF4]and mixtures of[ppg][BF4]and CO2by molecular dynamics(MD)simulations and ab initio calculations [15].Zhang et al.reported the solubilities of CO2in 1-butyl-3-methylimidazolium hexaf l uorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures[16].Therefore,it is important to investigate the interaction between guanidinium ionic liquids and CO2gas molecules,study the inf l uence of the structure of ionic liquid on the absorption of such gas,and understand further the mechanism that guanidinium ionic liquids absorb CO2gas by quantum chemistry calculation and MD simulation from molecular level,which can provide theoretical basis for designing and developing new high absorptive guanidinium ionic liquids.To the best of our knowledge,there are no reported calculations involving the guanidine cation,chlorine anion and CO2systems.In the present work,we report results of the quantum mechanics and molecular dynamics on the guanidine cation and the chlorine anion systems,and guanidine cation and the chlorine anion-CO2systems and seek to develop an understanding of the capture ability of the guanidine cation and the chlorine anion ionic liquid toward the CO2gas.

    II.FUNDAMENTAL THEORIES AND COMPUTATIONS DETAILS

    The initial structure may be top,side and middle type(Fig.1)for the simple guanidinium interacting with anion because there are a variety of modes of interaction for guanidinium ion pair.The second order perturbation theory(MP2)and density functional method (X3LYP)with 6-311++G(d,p)and aug-cc-PVDZ basis set are adopted to optimize monomers and dimers for possible initial conf i guration.Two stable conf i gurations are got:top and middle type.The main anionic attack method can be initially determined as middle type through the analysis of electrostatic potential of monomer and the highest occupied orbital.The binding energy of the compound can be calculated according to the equation:

    here Emono,1,Emono,2,and Edimerrepresent the energy of cation,anion,and the dimer respectively.The basis set superposition error(BSSE)approach was incorporated into the calculations via the counterpoise(CP) method proposed by Boys and Bernardi[17].All calculations in this work were performed using the Gaussian 03 package[18].

    FIG.1 The anions attacking on three positions of the guanidinium cation and the HOMO(16)mapped with electronic potential from total SCF density of guanidinium.

    FIG.2 Methanetriamine positive ion(METM+)and Cl-in dif f erent geometries(middle,top).

    In molecular dynamics simulation,we adopted Gromacs 4.5.4 package[19,20],combined with OPLSAA/L atomic force f i eld developed by Lopes and others [21].The parameters of cationic and anionic force f i eld come from the program.The force f i eld parameters of CO2are from Ref.[22].128 cations and 128 anions are added in the initial structures randomly,followed that 0,8,18,36,and 64 CO2molecules are joined respectively.The energy minimization of 500 ps and the steepest descent method are used in the simulation.When the maximum force converges in 100 kJ·mol·nm,the NPT system simulation is adopted.Berendsen algorithm is applied in the temperature control and pressure control[23].The Newtonian motion equations are solved by leapfrog(leap-frog)algorithm in which time step is set to 2 fs.The linear constraint solver [24]are used in the restrictive algorithm of bond in which the truncation radius is 1.4 nm[25].The particle mesh Ewad algorithm is applied in long-range electrostatic interaction[26,27].The temperature and pressure are 460 K and 1.0 bar respectively.When NPT reaches the convergence criteria,the 5 ns MD simulation is carried out f i nally.The temperature and pressure are controlled by the Nose-Hoover algorithm[28] and Parrinello-Rahman algorithm[29].

    III.RESULTS AND DISCUSSION

    The geometric conf i gurations of intermolecular interactions between guanidinium cation and chlorine anion are optimized by MP2 with 6-311++G(d,p)basis set and X3LYP with 6-311++G(d,p)and aug-cc-pvdz basis set.The structures of these compounds are shown in Fig.2.The related geometry parameters and the binding energies are listed in Table I.The optimization results show that there are two dif f erent types for the intermolecular interaction between guanidinesalt cation and chlorine anion which are middle and top.Figure 2 shows hydrogen bonds are formed between chlorine anion and two side hydrogen of guanidinium cation in the middle con fi guration,while C-Cl bond is formed between C+ion of guanidine salt cation and chlorine anion for the top con fi guration.According to the structure parameters of compounds and the monomers in Table I,the bond lengths of the complexes all have certain changes compared with monomers.The bond lengths of R(N1-C1)and R(N2-C1)decrease in middle con fi gurations,while increase in the top confi guration compounds.All these bond length changes are caused by the weak interaction between the two monomers.

    TABLE I Dimer geometry and interaction energy(Eint)of guanidine ionic liquid.

    According to results listed in Table I,the distances of two hydrogen ?bond in the middle con fi guration are2.018(r1),2.037A(r2)at the X3LYP/6-311++G(d,p) computational level respectively,which indicates that the hydrogen bond formed between the guanidinium cation and chlorine anion is stronger.The distances (r1,r2)of hydrogen bonds in top con fi guration compound are slightly larger than the corresponding? datain middle complex,which are 2.674 and 2.971A respectively.Obviously,the middle mode is more stable than the top one for the intermolecular interactions between the guanidinium cation and chlorine anion.For middle con fi guration compounds,this function mode is more advantageous over the molecular space distribution.For the molecular point group of METM+is C2, it can still keep the characteristics of C2 point group after it interacts with chloride ion.When more ion pairs interact,single cation can accommodate three Cl-ions and six hydrogen atoms can all form hydrogen bonds in space.Top model is not conducive to the accumulation of many molecules because its symmetry falls.The guanidinium cation can only hold 1 or 2 Cl-ions.From the perspective of the spatial distribution characteristics of ion pairs in the interaction between guanidinium cationic ions and chlorine anionic ions,the model of the middle is more advantageous over the pattern of the top.In addition,energy variation characteristics of two kinds of patterns are analyzed in this work.It needs 12.5 kcal/mol energy barriers in the process of the middle conf i guration changing into the top structure,which makes the middle mode in the ionic liquid more stable than the top one.At the same time,we can also see middle conf i guration has larger interaction energy under dif f erent methods and basis set from Table I,which explains that the intermolecular interaction is stronger. In short,middle interaction mode is the main spatial distribution pattern in title system.

    FIG.3 Conformations of the guanidinium cation and the chlorine anion by capturing CO2molecule.

    FIG.4 Radial distribution functions graph between the carbocation and chlorine anion in the dif f erent number of CO2.

    In order to further investigate the capacity of guanidinium ionic capturing CO2,density functional method X3LYP/6-311++G(d,p)and molecular dynamics simulations are used to investigate the microstructure characteristics of weak interactions between guanidinium ionic pairs and CO2molecules.The computational results are shown in Fig.3 and Fig.4.Obviously,it is not difficult to f i nd from the Fig.3 that CO2can not only form intermolecular interaction with METM+,but also form intermolecular interaction with the ionic pairs of cation and anion according to the spatial distribution characteristics from A1 to B4.But there isn’t intermolecular interaction between CO2and anion.For example,it can be seen from the electrostatic potential chart of the B2 conf i guration that the negatively charged center of CO2located at the two oxygen atoms, while the electrostatic potential of Cl-is a red area which indicates that the potential is negative.It is consistent with electrostatic distribution of the two oxygen atoms of CO2which hinders the interaction between CO2and Cl-.Similarly,the same conclusions can also be drawn for other conf i guration analysis.It is worth mentioning that the introduction of CO2gas molecules has no larger inf l uence on middle and top conf i gurations of cationic and anionic pairs from the structure of the interaction between guanidinium ion pair and CO2gas molecules.

    FIG.5 The cumulative particle number of Cl-changing with the distance.

    In order to better illustrate the space characteristics of intermolecular interaction between guanidinium ionic pair and CO2gas molecular,the radial distribution functions of the mixed system are analyzed by the molecular dynamics simulation in this work.The inf l uences of CO2on the microscopic structures and dynamics properties of guanidinium ionic liquids is also investigated.Radial distribution function g(r)is the physical quantities of reaction f l uid microstructure characteristics[30,31].As can be seen from the distribution characteristics,Cl-mainly distributes in the largest peak (0.40,4.511)(see Fig.4).The cumulative particle number of Cl-changes with the distance,as shown in Fig.5. About 2.02 Cl-ions appear around the location(r=0.4) which is consistent with the cationic space f i lled with three Cl-ions.With the increase of the distance of cation and anion,Cl-ion number is increased to about 18.41 when the distance arrives at 0.85 nm.The curve fl attens out with the distance from 1.0 nm to 2.0 nm which explains that the emergence probability of anion has a logarithmic growth trend.The maximum location(0.40,4.?511)of radial distribution function is veryclose to 3.39A,which can also be concluded that middle model in the research system is the main way of spatial distributio?n.It is worth?noting that the 0.4 nm is largerabout 0.6A than 3.39A,which is caused by more than one counter charge ion in a large number of ionic liquids, leading to the weakened interaction between cation and anion.Currently,Bern group and Cadena team found that the cavities are closely associated with the capture process of CO2.Moreover,Bern et al.also drew the conclusion that the addition of CO2molecules didn’t in fl uence the imidazoles structure of ionic liquids obviously when they simulated the system of imidazoles ionic liquids and CO2.They think there are some cavities in the ionic liquid,which enable the CO2molecules not to destroy the microscopic structure of the ionic liquid when they enter into the cavities[32,33].It can be seen from Fig.4 that there is no apparent di ff erence in radial distribution function in the ionic liquid system with 8,16,32,and 64 CO2molecules which further indicates that the addition of CO2molecules has no big impact on the microstructure between cation and anion in the guanidinium ionic liquid system.

    According to the above results of quantum chemical calculation and molecular dynamics simulation,it can be seen that the interaction distance of METM+and Cl-is 0.40 nm when the cation and the anion are in the condition of 8,16,32,and 64 CO2molecule which is almost consistent with the distance of 0.4 nm when there are no CO2molecules.It further illustrates that there may be some cavities in guanidinium ionic liquid which is similar to imidazoles ionic liquids.These cavities of guanidiniun ionic pairs play a major maintenance role in the process of capturing CO2molecules.

    IV.CONCLUSION

    The structure characteristics of guanidinium ionic liquids and the mechanism of guanidinium ionic liquids capturing CO2molecular are investigated by quantum chemical calculation and molecular dynamics simulation theoretically.There is stronger interaction between guanidine cation and chlorine anion.Their interaction model is given priority to middle mode.The dissolution of CO2gas molecules in the guanidinium ionic liquid hasn’t obvious inf l uence on the structure of the ionic pair.The conclusions state that the guanidinium ionic liquid is similar to the imidazole ionic liquid.It may have some cavities in which CO2gas molecules mainly exist.This project can provide theoretical basis for designing and developing new high absorptive guanidinium ionic liquids.

    V.ACKNOWLEDGMENTS

    This work was supported by the Open Project Program of Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology,China (No.E21104),the National Natural Science Foundation of China(No.21201062 and No.21172066),and the International Cooperation Project(No.2013DFG60060).

    [1]Y.Wang,H.Li,and S.Han,J.Phys.Chem.B 110, 24646(2006).

    [2]M.Yizhak,J.Chem.Thermodyn.48,70(2012).

    [3]Y.Xu,J.Yao,C.Wang,and H.Li,J.Chem.Eng.Data 57,298(2012).

    [4]A.Suvitha and P.Murugakoothan,Spectrochim.Acta Part A 86,266(2012).

    [5]H.Sun,Theoretical Studies on Structure and Catalytic Mechanism of Several Ionic Liquid,Ji’nan:Shandong University,(2010).

    [6]H.B.Chen and J.Yu,Chem.Thchno-Econo.21,11 (2003).

    [7]Y.L.Pang,Chem.Ind.Eng.Process 27,1363(2008).

    [8]S.M.Yao,X.G.Wang,H.Zhang,and Z.Y.Liu,Chem. Ind.Eng.Process 27,640(2008).

    [9]C.M.Wang,G.K.Cui,X.Y.Luo,Y.J.Xu,H.R.Li, and S.Dai,J.Am.Chem.Soc.133,11916(2011).

    [10]A.F.Ghobadi,V.Taghikhani,and J.R.Elliott,J. Phys.Chem.B 115,13599(2011).

    [11]S.Li,Z.L.Li,Y.L.Hu,X.F.Gao,and X.R.Huang, Chem.J.Chin.Univ.6,1339(2011).

    [12]H.L.Rust,C.I.Zurita-Lopez,S.Clarke,and P.R. Thompsom,Biochemistry 50,3332(2011).

    [13]A.K.Choudhury,S.Y.Golovine,and L.M.Dedkova, S.M.Hecht,Biochemistry 46,4066(2007).

    [14]Y.Wang,H.H.Pan,H.R.Li,and C.M.Wang,J. Phys.Chem.B 111,10461(2007).

    [15]X.C.Zhang,X.M.Liu,X.Q.Yao,and S.J.Zhang, Ind.Eng.Chem.Res.50,8323(2011).

    [16]S.J.Zhang,X.L.Yuan,Y.H.Chen,and X.P.Zhang, J.Chem.Eng.Data 50,1582(2005).

    [17]S.F.Boys and F.Bernardi,Mol.Phys.19,553(1970).

    [18]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Jr.Montgomery,T.Vreven,K.N.Kudin,J.C.Burant,J.M. Millan,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota, R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y. Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox, H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R. Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin, R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M. C.Strain,¨O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A. G.Baboul,S.Clif f ord,J.Cioslowski,B.B.Stefanov,G. Liu,A.Liashenko.P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng, A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J. A.Pople,Gaussian 03,Revision D.03.Pittsburgh,PA: Gaussian,Inc.,(2003).

    [19]H.J.C.Berendsen,D.van der Spoel,and R.van Drunen,Comput.Phys.Commun.91,43(1995).

    [20]E.Lindahl,B.Hess,and D.Van Der Spoel,J.Mol. Model.7,306(2001).

    [21]J.N.Canongia Lopes,J.Deschamps,and A.A.H. P′adua,J.Phys.Chem.B 108,11250(2004).

    [22]W.Shi and E.J.Maginn,J.Phys.Chem.B 112,2045 (2008).

    [23]H.J.C.Berendsen,J.P.M.Postma,W.F.van Gunsteren,A.DiNola,and J.R.Haak,J.Chem.Phys.81, 3684(1984).

    [24]B.Hess,H.Bekker,H.J.C.Berendsen,and J.G.E. M.Fraaije,J.Comput.Chem.18,1463(1997).

    [25]M.Levitt,M.Hirshberg,R.Sharon,and V.Daggett, Comput.Phys.Commun.91,215(1995).

    [26]U.Essmann,L.Perera,M.L.Berkowitz,T.Darden, H.Lee,and L.G.Pedersen,J.Chem.Phys.103,8577 (1995).

    [27]T.Darden,D.York,and L.Pedersen,J.Chem.Phys. 98,10089(1993).

    [28]W.G.Hoover,Phys.Rev.A 31,1695(1985).

    [29]M.Parrinello and A.Rahman,J.Appl.Phys.52,7182 (1981).

    [30]M.Winter,Webelements Periodic Table,Sheffield:The University of Sheffield and WebElements Ltd.(2004).

    [31]E.Lindahl and O.Edholm,J.Chem.Phys.115,4938 (2001).

    [32]X.Huang,C.J.Margulis,Y.Li,and B.J.Berne,J. Am.Chem.Soc.127,17842(2005).

    [33]C.Cadena,J.L.Anthony,J.K.Shah,T.I.Morrow, J.F.Brennecke,and E.J.Maginn,J.Am.Chem.Soc. 126,5300(2004).

    ?Author to whom correspondence should be addressed.E-mail:rlman@mail.csu.edu.cn,hxliu12@hnust.edu.cn

    夫妻午夜视频| 欧美xxⅹ黑人| 久久久久久久国产电影| 热re99久久精品国产66热6| 精品亚洲乱码少妇综合久久| 日韩一区二区三区影片| 乱码一卡2卡4卡精品| 中文字幕久久专区| 考比视频在线观看| 久久久精品免费免费高清| 97精品久久久久久久久久精品| av女优亚洲男人天堂| 日韩欧美精品免费久久| 丝袜美足系列| 亚洲情色 制服丝袜| 在线观看一区二区三区激情| 国产精品久久久久久久久免| 国产一级毛片在线| 三级国产精品片| 高清在线视频一区二区三区| 涩涩av久久男人的天堂| tube8黄色片| 少妇被粗大的猛进出69影院 | 免费av中文字幕在线| 国产极品粉嫩免费观看在线 | 国产成人免费无遮挡视频| 成人手机av| av播播在线观看一区| 成人国产av品久久久| 国产毛片在线视频| 日本黄色日本黄色录像| 我要看黄色一级片免费的| 日本wwww免费看| 乱码一卡2卡4卡精品| 亚洲精品乱码久久久v下载方式| 18禁观看日本| 亚洲精品国产av蜜桃| 999精品在线视频| 熟女人妻精品中文字幕| 欧美 亚洲 国产 日韩一| 国产成人a∨麻豆精品| 久久国内精品自在自线图片| 一级毛片我不卡| 热re99久久国产66热| 综合色丁香网| 亚洲精品国产色婷婷电影| 国产不卡av网站在线观看| videos熟女内射| av黄色大香蕉| 新久久久久国产一级毛片| 性色av一级| 欧美 日韩 精品 国产| 高清在线视频一区二区三区| 国产精品99久久久久久久久| 免费观看在线日韩| 99热国产这里只有精品6| 亚洲av福利一区| 啦啦啦中文免费视频观看日本| 我要看黄色一级片免费的| 亚洲欧美中文字幕日韩二区| 亚洲精品av麻豆狂野| 黑人猛操日本美女一级片| 青春草亚洲视频在线观看| 日本av手机在线免费观看| av卡一久久| 国产成人a∨麻豆精品| 校园人妻丝袜中文字幕| 夫妻午夜视频| 一级二级三级毛片免费看| xxxhd国产人妻xxx| 国产成人a∨麻豆精品| 日韩亚洲欧美综合| av不卡在线播放| 久久99精品国语久久久| 麻豆精品久久久久久蜜桃| 纯流量卡能插随身wifi吗| 一个人免费看片子| 日韩精品免费视频一区二区三区 | 欧美xxⅹ黑人| 美女xxoo啪啪120秒动态图| 亚洲欧洲日产国产| 18禁裸乳无遮挡动漫免费视频| 视频区图区小说| 免费高清在线观看视频在线观看| 日韩人妻高清精品专区| 日产精品乱码卡一卡2卡三| 久久99蜜桃精品久久| 99热国产这里只有精品6| 多毛熟女@视频| 中文字幕精品免费在线观看视频 | 嫩草影院入口| 插阴视频在线观看视频| 国产老妇伦熟女老妇高清| av国产久精品久网站免费入址| 少妇熟女欧美另类| 欧美 日韩 精品 国产| 亚洲精品久久成人aⅴ小说 | 欧美日韩精品成人综合77777| 国产精品免费大片| 少妇猛男粗大的猛烈进出视频| 99热全是精品| 九九爱精品视频在线观看| 天堂俺去俺来也www色官网| 我的老师免费观看完整版| 亚洲经典国产精华液单| 国产免费福利视频在线观看| 观看av在线不卡| 国产精品三级大全| 青青草视频在线视频观看| 最近中文字幕高清免费大全6| 91久久精品国产一区二区三区| 热re99久久国产66热| 国产日韩欧美亚洲二区| 男女啪啪激烈高潮av片| 高清不卡的av网站| 国产精品麻豆人妻色哟哟久久| 中文天堂在线官网| 丰满迷人的少妇在线观看| 国产精品久久久久久精品古装| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂| 国产亚洲av片在线观看秒播厂| 成年美女黄网站色视频大全免费 | 91精品国产九色| 国产一区二区三区综合在线观看 | 亚洲高清免费不卡视频| 一级毛片aaaaaa免费看小| 亚洲av国产av综合av卡| 99九九线精品视频在线观看视频| videos熟女内射| 人妻夜夜爽99麻豆av| 黑人猛操日本美女一级片| 蜜桃国产av成人99| av.在线天堂| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的| 国产探花极品一区二区| 日韩三级伦理在线观看| 婷婷色av中文字幕| 久久精品人人爽人人爽视色| 夫妻午夜视频| 久久久久久人妻| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲最大av| 成人二区视频| 成人亚洲精品一区在线观看| 亚洲美女黄色视频免费看| 精品久久蜜臀av无| 美女福利国产在线| 久久午夜福利片| 少妇人妻 视频| 国产亚洲午夜精品一区二区久久| 亚洲欧美日韩卡通动漫| 色94色欧美一区二区| 国产av精品麻豆| 18在线观看网站| 国产伦精品一区二区三区视频9| 国产成人免费无遮挡视频| 超碰97精品在线观看| 免费大片黄手机在线观看| 欧美日韩在线观看h| 九色成人免费人妻av| 18禁在线无遮挡免费观看视频| a级毛色黄片| 80岁老熟妇乱子伦牲交| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久亚洲| 国产亚洲欧美精品永久| a级毛片免费高清观看在线播放| 91成人精品电影| 久久99热6这里只有精品| 极品少妇高潮喷水抽搐| 熟女av电影| 美女脱内裤让男人舔精品视频| 亚洲精品亚洲一区二区| 这个男人来自地球电影免费观看 | 高清午夜精品一区二区三区| 亚洲激情五月婷婷啪啪| 久久久久久久久久人人人人人人| 美女xxoo啪啪120秒动态图| 久久久精品94久久精品| 久久久久久久精品精品| 久久 成人 亚洲| 麻豆精品久久久久久蜜桃| 天天影视国产精品| 亚洲性久久影院| 女人久久www免费人成看片| 亚洲欧美日韩另类电影网站| 亚洲国产精品专区欧美| 午夜激情久久久久久久| 亚洲国产精品一区三区| 老司机亚洲免费影院| 亚洲成人一二三区av| 日日啪夜夜爽| 国产成人精品一,二区| 亚洲久久久国产精品| 国产精品久久久久久久电影| 哪个播放器可以免费观看大片| 多毛熟女@视频| 日韩亚洲欧美综合| 高清毛片免费看| 亚洲在久久综合| 男女边摸边吃奶| 日本与韩国留学比较| 久久久国产一区二区| 亚洲精品国产av成人精品| 国产视频内射| 少妇的逼水好多| 国产永久视频网站| 狂野欧美激情性xxxx在线观看| 中文字幕亚洲精品专区| 男女边摸边吃奶| 好男人视频免费观看在线| 免费看不卡的av| 日日撸夜夜添| 亚洲人成网站在线播| 国产女主播在线喷水免费视频网站| 91在线精品国自产拍蜜月| 亚洲第一av免费看| 免费播放大片免费观看视频在线观看| 国产精品99久久99久久久不卡 | 99九九线精品视频在线观看视频| 日韩精品免费视频一区二区三区 | 日韩大片免费观看网站| 欧美日韩亚洲高清精品| 日产精品乱码卡一卡2卡三| 午夜福利影视在线免费观看| 欧美激情 高清一区二区三区| 最近最新中文字幕免费大全7| 国产日韩欧美视频二区| 国产成人精品无人区| 免费观看性生交大片5| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 99热6这里只有精品| 99视频精品全部免费 在线| 亚洲国产精品一区三区| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄| 欧美精品高潮呻吟av久久| av在线观看视频网站免费| 一本大道久久a久久精品| 亚洲无线观看免费| 国产片内射在线| 午夜福利视频在线观看免费| 亚洲精品日韩av片在线观看| 亚洲欧美日韩另类电影网站| 国产女主播在线喷水免费视频网站| 国产精品久久久久久av不卡| kizo精华| 国国产精品蜜臀av免费| 91成人精品电影| av免费观看日本| 水蜜桃什么品种好| 成人毛片60女人毛片免费| 91在线精品国自产拍蜜月| 精品人妻在线不人妻| 亚洲伊人久久精品综合| 女的被弄到高潮叫床怎么办| 亚洲美女黄色视频免费看| 亚洲欧美中文字幕日韩二区| 日本黄大片高清| 美女内射精品一级片tv| av有码第一页| 国产高清有码在线观看视频| 国产午夜精品一二区理论片| 国产男人的电影天堂91| 自线自在国产av| 国产黄频视频在线观看| 一本大道久久a久久精品| 免费大片黄手机在线观看| 久久ye,这里只有精品| 免费黄频网站在线观看国产| 日韩不卡一区二区三区视频在线| 999精品在线视频| 交换朋友夫妻互换小说| 国产精品嫩草影院av在线观看| 五月开心婷婷网| 在线观看国产h片| 91成人精品电影| 精品国产乱码久久久久久小说| 免费黄色在线免费观看| a级毛片在线看网站| 我要看黄色一级片免费的| 日韩熟女老妇一区二区性免费视频| 国产片内射在线| 久久国产精品男人的天堂亚洲 | 好男人视频免费观看在线| 99国产精品免费福利视频| 2018国产大陆天天弄谢| 大又大粗又爽又黄少妇毛片口| www.色视频.com| 欧美 日韩 精品 国产| 蜜臀久久99精品久久宅男| 下体分泌物呈黄色| 日本黄大片高清| 99九九在线精品视频| 国产成人freesex在线| 夫妻午夜视频| 两个人免费观看高清视频| 日韩中文字幕视频在线看片| 亚洲少妇的诱惑av| 久久精品久久久久久噜噜老黄| 久久99热6这里只有精品| 22中文网久久字幕| 99久国产av精品国产电影| a级片在线免费高清观看视频| 日本wwww免费看| 99热6这里只有精品| 午夜激情av网站| 久久久国产欧美日韩av| 中文字幕人妻丝袜制服| 亚洲国产av影院在线观看| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 26uuu在线亚洲综合色| 在现免费观看毛片| 国产亚洲av片在线观看秒播厂| 啦啦啦啦在线视频资源| 亚洲久久久国产精品| 亚洲国产av新网站| 2018国产大陆天天弄谢| 国产 精品1| 国产午夜精品一二区理论片| 视频区图区小说| 亚洲国产最新在线播放| 欧美日韩亚洲高清精品| 插逼视频在线观看| 九色成人免费人妻av| 建设人人有责人人尽责人人享有的| 五月开心婷婷网| 国产 一区精品| 91精品国产国语对白视频| 国产爽快片一区二区三区| 成年美女黄网站色视频大全免费 | 九九爱精品视频在线观看| 只有这里有精品99| 曰老女人黄片| 99久久精品一区二区三区| 高清毛片免费看| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 18禁在线无遮挡免费观看视频| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 一区二区三区免费毛片| 18+在线观看网站| 精品午夜福利在线看| 麻豆精品久久久久久蜜桃| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 亚洲美女搞黄在线观看| 大香蕉久久成人网| 五月天丁香电影| 少妇高潮的动态图| 亚洲欧洲日产国产| 国产日韩欧美亚洲二区| 免费观看a级毛片全部| 亚洲欧美中文字幕日韩二区| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 免费人成在线观看视频色| 精品久久久久久电影网| 国产 精品1| 国产男女超爽视频在线观看| 9色porny在线观看| 乱码一卡2卡4卡精品| 国产精品无大码| 2021少妇久久久久久久久久久| av有码第一页| 人人妻人人添人人爽欧美一区卜| 大又大粗又爽又黄少妇毛片口| 日韩伦理黄色片| a级毛色黄片| 国产成人精品久久久久久| av在线播放精品| 亚洲人成网站在线观看播放| 有码 亚洲区| 亚洲少妇的诱惑av| 日韩中字成人| 婷婷色av中文字幕| 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 久久狼人影院| 免费观看a级毛片全部| 国产精品一二三区在线看| 亚洲av日韩在线播放| 天美传媒精品一区二区| 国产免费又黄又爽又色| 免费高清在线观看视频在线观看| 国模一区二区三区四区视频| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 日日摸夜夜添夜夜爱| 成年女人在线观看亚洲视频| 久久久久精品久久久久真实原创| 性色av一级| 最近中文字幕2019免费版| 男女高潮啪啪啪动态图| av黄色大香蕉| 免费人妻精品一区二区三区视频| 亚洲欧美清纯卡通| 人妻制服诱惑在线中文字幕| 男女国产视频网站| 在线观看人妻少妇| av免费观看日本| 超碰97精品在线观看| av免费观看日本| 内地一区二区视频在线| 日韩三级伦理在线观看| 赤兔流量卡办理| 成人漫画全彩无遮挡| 不卡视频在线观看欧美| av国产久精品久网站免费入址| 熟女电影av网| 国产片特级美女逼逼视频| 人成视频在线观看免费观看| 人妻系列 视频| 国产精品一国产av| 国产爽快片一区二区三区| 亚洲av男天堂| av专区在线播放| 精品一区在线观看国产| 免费看光身美女| 91久久精品国产一区二区成人| 国产男女超爽视频在线观看| 成年人午夜在线观看视频| 日韩av在线免费看完整版不卡| 亚洲精品成人av观看孕妇| 大香蕉久久成人网| 亚洲精品国产av蜜桃| 九九久久精品国产亚洲av麻豆| 午夜福利视频在线观看免费| 欧美另类一区| 亚洲国产日韩一区二区| 亚洲综合精品二区| 22中文网久久字幕| 美女视频免费永久观看网站| 亚洲怡红院男人天堂| 亚洲欧美色中文字幕在线| 国产亚洲欧美精品永久| 人人妻人人爽人人添夜夜欢视频| 99久久综合免费| 亚洲欧美精品自产自拍| 一级黄片播放器| 69精品国产乱码久久久| videos熟女内射| 日本猛色少妇xxxxx猛交久久| 久久久欧美国产精品| 国产黄片视频在线免费观看| 熟女电影av网| 在线免费观看不下载黄p国产| 亚洲熟女精品中文字幕| 国产亚洲精品第一综合不卡 | 午夜激情久久久久久久| 色5月婷婷丁香| 日日爽夜夜爽网站| 日本-黄色视频高清免费观看| 国产一区二区在线观看av| 老司机影院成人| 一级,二级,三级黄色视频| 婷婷色av中文字幕| 久久久久久伊人网av| 免费人成在线观看视频色| 欧美性感艳星| 亚洲av二区三区四区| 久久国内精品自在自线图片| 国产精品 国内视频| 蜜桃国产av成人99| 日韩大片免费观看网站| 国产精品人妻久久久久久| 高清不卡的av网站| 国产成人精品久久久久久| 韩国av在线不卡| 精品久久久久久久久亚洲| 午夜福利视频在线观看免费| 国产高清国产精品国产三级| 国产在线视频一区二区| 欧美 亚洲 国产 日韩一| 久久久午夜欧美精品| 久久久久久人妻| 国产男人的电影天堂91| 亚洲久久久国产精品| 人妻人人澡人人爽人人| 18在线观看网站| 蜜桃久久精品国产亚洲av| 亚洲综合色网址| a级片在线免费高清观看视频| 91精品伊人久久大香线蕉| 久久99一区二区三区| 少妇人妻精品综合一区二区| 亚洲欧洲国产日韩| 久久久久久久亚洲中文字幕| 久久综合国产亚洲精品| 精品国产一区二区三区久久久樱花| 国产成人aa在线观看| 日韩中字成人| 国产淫语在线视频| 天美传媒精品一区二区| 制服丝袜香蕉在线| 蜜桃国产av成人99| 国产欧美另类精品又又久久亚洲欧美| 97超碰精品成人国产| 久久 成人 亚洲| 国产女主播在线喷水免费视频网站| 成人二区视频| 大码成人一级视频| 91精品三级在线观看| 日韩欧美精品免费久久| 日韩av在线免费看完整版不卡| 国产爽快片一区二区三区| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 免费观看的影片在线观看| 日本与韩国留学比较| 精品亚洲成a人片在线观看| 久久ye,这里只有精品| 夫妻性生交免费视频一级片| 国产精品一区www在线观看| 欧美日韩精品成人综合77777| 一级爰片在线观看| 国产综合精华液| 熟女电影av网| 热re99久久精品国产66热6| 成人国产av品久久久| 九九久久精品国产亚洲av麻豆| 午夜免费观看性视频| 国产成人免费无遮挡视频| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 国产一区二区在线观看av| 国产又色又爽无遮挡免| 亚洲高清免费不卡视频| 18在线观看网站| 十八禁高潮呻吟视频| 激情五月婷婷亚洲| 免费av不卡在线播放| 九色亚洲精品在线播放| 免费播放大片免费观看视频在线观看| 99久久精品一区二区三区| 91精品伊人久久大香线蕉| 男女啪啪激烈高潮av片| 日日啪夜夜爽| 欧美性感艳星| 制服丝袜香蕉在线| 亚洲国产成人一精品久久久| 国产亚洲午夜精品一区二区久久| 亚洲经典国产精华液单| 麻豆乱淫一区二区| 97超视频在线观看视频| 精品少妇黑人巨大在线播放| 五月天丁香电影| 欧美bdsm另类| 精品人妻在线不人妻| 18禁在线无遮挡免费观看视频| 18在线观看网站| 午夜福利视频在线观看免费| 天美传媒精品一区二区| 人成视频在线观看免费观看| 国产深夜福利视频在线观看| 狂野欧美激情性xxxx在线观看| 99视频精品全部免费 在线| 国产69精品久久久久777片| 亚洲精品色激情综合| 人妻制服诱惑在线中文字幕| 国产成人aa在线观看| 亚洲国产精品专区欧美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 又大又黄又爽视频免费| 一区二区日韩欧美中文字幕 | 99热6这里只有精品| av免费在线看不卡| 99国产精品免费福利视频| 美女国产高潮福利片在线看| 一区二区av电影网| 色5月婷婷丁香| 色婷婷久久久亚洲欧美| 少妇人妻 视频| 久久亚洲国产成人精品v| 国产精品熟女久久久久浪| 少妇丰满av| 国产午夜精品一二区理论片| 国产在视频线精品| 婷婷色综合大香蕉| 国产午夜精品一二区理论片| 高清欧美精品videossex| 最黄视频免费看| 热99久久久久精品小说推荐| 99热全是精品| 黑人高潮一二区| av有码第一页| 三级国产精品片| 啦啦啦在线观看免费高清www| 免费大片黄手机在线观看| 在线免费观看不下载黄p国产| 18禁裸乳无遮挡动漫免费视频| 看免费成人av毛片| 亚洲精品成人av观看孕妇| 国产欧美另类精品又又久久亚洲欧美| 国产在线免费精品| 最近2019中文字幕mv第一页| 99热网站在线观看| 久久鲁丝午夜福利片| 久久精品夜色国产| 日韩三级伦理在线观看| 久久久久久久久久久免费av| 久久精品久久久久久久性| 国产男女内射视频| 波野结衣二区三区在线| 蜜桃国产av成人99| 国产片内射在线| 大话2 男鬼变身卡| 精品亚洲乱码少妇综合久久|