• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface-enhanced Raman Scattering of Af l atoxin B1on Silver by DFT Method

    2014-07-18 11:51:52SiminGaoHongyanWangYuexiaLin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Si-min Gao,Hong-yan Wang,Yue-xia Lin

    School of Physical Science and Technology,Southwest Jiao tong University,Chengdu 610031,China

    (Dated:Received on January 23,2013;Accepted on September 23,2013)

    Surface-enhanced Raman Scattering of Af l atoxin B1on Silver by DFT Method

    Si-min Gao,Hong-yan Wang?,Yue-xia Lin

    School of Physical Science and Technology,Southwest Jiao tong University,Chengdu 610031,China

    (Dated:Received on January 23,2013;Accepted on September 23,2013)

    The structure,electrostatic properties,and Raman spectra of af l atoxin B1(AFB1) andAFB1-AgcomplexarestudiedbydensityfunctionaltheorywithB3LYP/6-311G(d,p)/Lanl2dz basis set.The results show that the surface-enhanced Raman scattering (SERS)and pre-resonance Raman spectra of AFB1-Ag complex strongly depend on the adsorption site and the excitation wavelength of the incident light.The SERS factors are found to enhance 102-103order compared to normal Raman spectrum of AFB1molecule due to the larger static polarizabilities of the AFB1-Ag complex,which directly results in the stronger chemical enhancement in SERS spectra.The pre-resonance Raman spectra of AFB1-Ag complex are explored at 266,482,785,and 1064 nm incident light wavelength,in which the enhancement factors are about 102-104,mainly caused by the charge-transfer excitation resonance.The vibrational modes are analyzed to explain the relationship between the vibrational direction and the enhanced Raman intensities.

    Af l atoxin B1,Surface-enhanced Raman scattering spectrum,Pre-resonance Raman spectra,Density functional theory

    I.INTRODUCTION

    A fl atoxins(AFs)are a group of hepatoxic,carcinogenic,mutagenic,and teratogenic mycotoxins,which are mainly produced by Aspergillus fl avus,A.parastiticus,and A.anomies[1].As the most common mycotoxins detected in human food and animal feed,AFs have drawn an increasing attention because of their frequent occurrence in cereal,cotton and groundnuts[2].Among more than 20 AFs derivatives,a fl atoxin B1(AFB1)has the most powerful toxicity and carcinogenicity to animals and human,which can cause malignant tumors in various animals and primary hepatocellular carcinoma in human[3].The toxicity and carcinogenicity of AFB1are associated with its DNA binding properties,as well as its teratogenic properties to cause malformations in many organs in embryos[4].

    In order to remove or destroy the toxin,many chemical,biological,and physical methods are used to detect AFs in contaminated crops[5].Recently some novel biosensors based on surface plasmon resonance[6],for example surface enhanced Raman scattering(SERS) [7-9],have been developed to implement the rapid detection of chemical and biological samples.SERS, fi rstly observed by Fleischmann et al.in 1974,has been employed successfully for qualitative micro analyses because of the high sensitivity and selectivity[10-12]. However,it is not easy to apply SERS to quantitative microanalyses because of the intensity and a band shift of the enhancement of a Raman spectra depending on the vibrational mode[13].Dif f erent vibrational modes correspond to dif f erent intensity and band shift.The SERS is af f ected by the molecular structural changes and the conditions of a metal colloid or a substrate. Based on metallic nanostructure substrates[14],the enhancement factor induced by nanostructure can reach as much as 14 to 15 orders of magnitude,which allows the SERS technique to be sensitive enough to detect small amount of molecules,even single molecule[15, 16].AFB1is a Raman-active compound which can be detected or identif i ed by SERS microscopy after capturing.Some experiments on the SERS technique have been performed to detect and track af l atoxins toxin by our cooperation group[17].

    In order to explore the SERS mechanism of AFB1adsorbed on Ag nanoparticles,density functional theory (DFT)method is used to analyze the AFB1-Ag complex structures and properties.The SERS spectra and preresonance Raman spectra of AFB1molecule have been calculated to explore the SERS enhance efficiency of single AFB1molecule absorbed on Ag nanoparticles.

    II.COMPUTATIOANAL METHODS

    The simple microscopic active adsorption site modes are adopted to simulate the AFB1molecule adsorbed on the Ag nanoparticle.Two adsorption sites of AFB1are considered in this work.The structures of AFB1and AFB1-Ag complex are optimized using 6-311G(d,p) basis set for C,H,O atoms and Lanl2dz[18]ECP basis set for Ag atom with 1s-4p core kept frozen at the B3LYP level[19-21].The B3LYP method is a hybrid HF/DFT method using a combination of Becke’s threeparameter exchange functional(B3)with the Lee-Yang-Parr(LYP)generalized gradient correlation functional. The Berny gradient method[22]is employed in complete geometry optimization for AFB1and AFB1-Ag complexes.The SERS spectra and pre-resonance Raman spectra of AFB1molecule are calculated at the same functional and basis set.The absorption spectra and the excited state electronic structures are calculated to explore the resonance incident light wavelength by using the time-dependent density functional theory(TD-DFT)[23]at the same level.To better match experimental vibrational frequencies,the vibrational scaling factor[24]0.98 is adopted.All of the computations are performed by the Gaussian 09 program[25],in which the f i ne grid(75302)is the default for evaluating integrals numerically.

    The Raman activity or Raman scattering factor Sp(in a.u.)is determined by:

    where αpand γpare isotropic and anisotropic polarizabilities.Spis directly obtained by Gaussian 09 program.

    III.RESULTS AND DISCUSSION

    A.Geometrical structure

    Due to the strong electronic negativity,atom O is much easier to interact with metal Ag than atoms C and H.Therefore two dif f erent adsorption sites of AFB1molecule,denoted as a site and b site shown in Fig.1,are selected to explore the adsorbing properties of the AFB1molecule adsorbed on the Ag nanoparticle.More signif i cant structural perturbations are found when AFB1molecule adsorbed on Ag nanoparticle through a site than b site.The O-Ag bond length(R1,R2)are 0.278 and 0.304 nm for AFB1-Agacomplex,respectively,shorter than that for complex AFB1-Agb(0.315 and 0.357 nm)in Table I.The bond lengths near the Ag surface have changed obviously,and the other bonds far away from the Ag surface have not changed signif i cantly.Compared to AFB1molecule,the bond length C12-O13 in AFB1-Agacomplex is increased obviously by 0.005?A(from 1.219?A to 1.224?A),and C23-O22 bond length is lengthened,while the bonds C8-C12,C8-C23,and C23-O21 become shorter.For the AFB1-Agbcomplex,the bonds C1-O14,C15-O19, and C18-O19 are all lengthened.The other bond lengths,bond angles,and dihedral angles agree approximately with the ones in the AFB1molecule.The optimized parameters of AFB1molecule,including bond lengths,bond angles,and dihedral angles for the ground state are in good agreement with N-V’s calculated results[26]and experimental results[27].

    FIG.1 Scheme of AFB1,AFB1-Aga(adsorption in a site) complex and AFB1-Agb(adsorption in b site)complex.

    TABLE I Binding properties between AFB1and Ag atom.

    The adsorbed energy is def i ned as:

    When the AFB1molecule is adsorbed on Ag nanoparticle through the a adsorption site,the adsorbed energy is-16.22 kJ/mol,while for AFB1-Agbcomplex,the adsorbed energy is much smaller than the AFB1-Agbcomplex(-6.37 kJ/mol,Table I).Therefore,the a adsorption site is a more appropriate site for the AFB1molecule adsorbed on the Ag nanoparticles.Only the AFB1-Agacomplex is discussed in the following section.

    Because of the coupling interaction,the charges are redistributed between the AFB1molecule and Ag atom. 0.105 e for the AFB1-Agacomplex and 0.052 e for the AFB1-Agbcomplex are transported from the AFB1molecule to Ag,which result in the static polarizability along x-axis being more increased,listed in Table II. Compared to the single AFB1molecule,the static polarizabilities of two complexes are increased obviously. The average static polarizabilities are increased from 246.11 to 323.68.The largest change is found for the AFB1-Ag complex in the xx components of the static polarizability,corresponding to C=O stretching vibrational mode.The Raman intensity is proportional to the square of the molecular induced dipole moment, while the molecular induced dipole moment is P=α·E, where α is the molecular polarizability and E is the external electric f i eld.Thus when the molecular polariz-ability is increasing,the Raman intensity is also greatly enhanced.The static polarizabilities are one of decisive factors of the ground state chemical enhancement which is not associated with any excitation of the moleculemetal system.The calculated static polariability in Table II predicts that the static chemical enhancement will be found in the surface-enhanced Raman spectra due to the static polarizability changes.

    TABLE II Calculated static polarizability in a.u.hαi=(αxx+αyy+αzz)/3.

    TABLE III Comparison of vibration modes between AFB1and AFB1-Ag complex.f is frequency and I is intensity.

    B.The Raman spectra of AFB1-Ag complex

    The surface enhanced Raman e ff ect is observed in the Raman spectra of AFB1-Ag complex compared to the normal Raman spectrum(NRS)of single AFB1molecule,shown in Fig.2.The Raman peaks frequencies,the Raman intensities and the corresponding vibration assignments are listed in Table III.The profi le of SERS for AFB1-Ag complex is consistent with the normal Raman spectrum,however,obvious enhanced Raman intensities are found at some vibrational modes.The vibration modes assignments in this work are consistent with the experimental results, which are obtained at the 785 nm excitation wavelength[17].The Raman enhanced factor(IEF)is given by IEF=ISERS/INRSat the corresponding vibrational modes.

    FIG.2 The Raman spectra of AFB1molecule and AFB1-Ag complex.

    According to the surface plasmon resonance theory [28],the vibrations along the direction perpendicular to the absorption surface are expected to occur more enhancement than the vibrations in the parallel direction.For the single AFB1molecule and the AFB1-Ag complex,the peaks with the maxima enhanced intensity are found at 1596 and 1588 cm-1,whose Raman intensities are up to 609,belonging to the C2=C4 and C=Ostretching vibrations of cyclopentene ring with O moving toward silver surface.The C=O(cyclopentene ring and pyrane ring)stretching vibrations of AFB1-Ag complex are found at 1613 and 1740 cm-1,whose Raman intensities are 103 and 101,respectively.While the two vibrational modes are found at 1693 and 1756 cm-1in experiment[17].The C17=C18 stretching vibration in the complex is found at 1636 cm-1,with the blue shift of 16 cm-1compared to the experiment.The C-C-C stretching vibration is found at 1235 cm-1,with vibrational direction along with x-axis,resulting the Raman enhancement factors up to 120.The other vibrational modes agreed approximately with the ones in the AFB1molecule.

    For AFB1-Ag complex,the static polarizabilities incensement along x-axis can result in the NRS spectrum intensity enhancement due to the static chemical enhancement.Compared to the NRS of the single AFB1molecules,the enhanced SERS ef f ects mainly result from the chemical environment modif i cation when the AFB1molecule is adsorbed on Ag-nanoparticle.The charge redistribution and the structural perturbation lead to greater increases of the static polarizabilities in the complex.Therefore,the enhancement mechanism of SERS for AFB1molecule can be ascribed to the ground state chemical enhancement.

    C.Pre-resonance Raman spectra of AFB1-Ag complex

    When the incident light wavelength is close to the molecule electronic excitation energy,the incident electronic f i eld can excite the electron transition to induce resonance,which leads to the Raman scattering signal intensity enhanced by a factor up to 104-106.This process is referred as the resonance Raman scattering, in which the enhancement is proportional to the oscillator strength of the electron transition.For the AFB1-Ag complex,the metal-molecule charge transfer(CT)is found due to the interaction between the molecule and the metal when the molecule is adsorbed on the metal nanoparticle surface.

    According to the absorption spectra of the AFB1-Ag complex,266 and 482 nm incident wavelengths,in the proximity of the two absorption maxima of AFB1-Ag complex,are chosen to explore the pre-resonance spectrum of AFB1-Ag complex.Meanwhile 785 and 1064 nm incident wavelength,which are away from resonance absorption of the AFB1-Ag complex but correspond to the S5and S3electron excitation states,are selected to compare the pre-resonance Raman spectra. The total enhancement factors are up to 102-103in pre-resonance Raman spectra of the AFB1-Ag complex at four chosen incident wavelengths.The pre-resonance Raman spectra and molecular orbital corresponding to charge transfer between AFB1molecule and Ag atom are shown in Fig.4.Due to the charge transfer resonances between the molecule and the atom Ag,the most enhancement factor of C=O stretching vibration is up to 102at 1740 cm-1at the 266 nm incident light,the stretching vibration of C-C and C=O at 1588 cm-1, the enhancement factor is only 63.But for 482 nm incident wavelength,the most enhancement factor 104is found at 1531 cm-1,corresponding to C-C stretching and stretching vibration of C-C-C with the wiggle of C-H.The C-C and C=O stretching vibration at 1588 cm-1along x-axis,the enhancement factor is up to 102.The stretching vibration of the bonds near the Ag atom(C-C,C-O-C)and C=O stretching are also obviously enhanced up to 10.

    Compared to incident wavelength 266 and 482 nm, the maximum enhancement factor is up to 103at 785 nm incident wavelength,which is C-C stretching vibration with the wiggle of C-H at 1531 cm-1along x-axis,because of electric transfer between HOMO and LUMO of AFB1-Ag complex.The C=C and C=O stretching vibration is enhanced up to 102at 1588 cm-1,the C=O stretching vibration modes are found at 1740 cm-1,their enhancement factor are only up to 10.For 1064 nm excitation energy,the most enhancement factor is 102,corresponding to C-C stretching vibration and ring(s)skeleton vibration at 1531 cm-1.The enhancement Raman intensities at 892,1031,1461,1588,and 1593 cm-1are also up to 102,corresponding to the pyrane ring breath vibration and C-C,C-C-C,C-O-C stretching vibration mode with ring deformation,ring(s)skeleton vibration,and the C=O stretch peaks,respectively.Therefore,when the incident light is away from resonance absorption of excitation energy,the more vibratioanal modes enhanced simultaneously.

    Compared to the SERS intensities of isolated AFB1, the enhancement due to the charge transfer resonance contributes an additional 2-4 orders of magnitude to the chemical enhancement at four chosen incident wavelengths.It is proven that the CT mechanism signif icantly contributes to the enhancement of pre-resonance Raman intensity,which is also used to explain the dependence of the certain bands in SERS experiments on the electrode potential[29,30].

    IV.CONCLUSION

    The SERS and pre-resonance spectra of the AFB1molecule are studied by DFT method.Raman scattering intensity not only depends strongly on the local chemical environment of adsorption site but also depends on the incident excitation wavelength.The geometry structure and the adsorption energy show that a site of AFB1molecule is a more favorable adsorption site than b site.When AFB1molecule is adsorbed on silver nanoparticle by a site,the enhancement factor of AFB1-Ag complex is up to 103compared to normal Raman spectrum of the isolated AFB1molecule,which results from a great change of the perpendicular polar-izabilities due to the chemical environment modif i cation in AFB1-Ag complex.

    FIG.3 The pre-resonance Raman spectra of AFB1-Ag complex at four dif f erent incident light wavelengths of 266,482,785, and 1064 nm.The molecular orbitals corresponding to charge transfer between AFB1molecule and Ag atom are also shown.

    For the pre-resonance Raman spectra at the incident wavelength 266,482,785,and 1064 nm,the enhancement factors at some specif i c vibration modes are up to 103,which are mainly attributed to the charge-transfer excitation resonance enhancement but not the plasmon resonance of the nanoparticle because Ag atom or cluster is too small to have a real plasmon resonance.The SERS enhancement mechanism of AFB1-Ag complex can be ascribed to the chemical enhancement in which the static chemical enhancement of ground state and the charge transfer resonance enhancement of excitation state work is together due to the chemical interaction between the AFB1molecule and the Ag nanoparticle.The stronger SERS enhancements ef f ects should be predicted for the real nanoparticles because of the combination of the chemical enhancement and the electromagnetic enhancement.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11174237),the National Basic Research Program of China(No.2013CB328904), and the Application Basic program of Sichuan Province (No.2013JY0035).

    [1]C.P.Kurtzman,B.W.Horn,C.W.Hesseltine,and A. V.Leeuwenhoek,J.Microbiol.53,147(1987).

    [2]H.van Egmond,R.Schothorst,and M.Jonker,Anal. Bioanal.Chem.389,147(2007).

    [3]J.M.Essigmann,R.G.Croy,A.M.Nadzan,W.F. Busby,V.N.Reinhold,G.Buchi,and G.N.Wogan, Proc.Nati.Acad.Sci.USA 74,1870(1977).

    [4]M.Benasutti,S.Ejadi,M.D.Whitlow,and E.L. Loechler,Biochemistry 27,472(1988).

    [5]C.J.Mercado,M.P.N.Real,and R.R.Del Rosario, J.Food Sci.56,733(1991).

    [6]S.J.Daly,G.J.Keating,P.P.Dillon,B.M.Manning, R.O’Kennedy,and H.A.Lee,J.Agric.Food Chem. 48,5097(2000).

    [7]M.Fleischmann,P.J.Hendra,and A.McQuillan,J. Chem.Phys.Lett.26,163(1974).

    [8]D.L.Jeanmaire and R.P.Van Duyne,J.Electroanal. Chem.84,1(1977).

    [9]M.G.Albrecht and J.A.Creighton,J.Am.Chem.Soc. 99,5215(1977).

    [10]M.Moskovits,Rev.Mod.Phys.57,783(1985).

    [11]J.Creighton,Surf.Sci.124,209(1983).

    [12]Y.F.Wang,J.H.Zhang,H.Y.Jia,M.J.Li,J.B.Zeng, B.Yang,B.Zhao,W.Q.Xu,and J.R.Lombardi,J. Phys.Chem.C 112,996(2008).

    [13]L.Jensen,C.M.Aikens,and G.C.Schatz,Chem.Soc. Rev.37,1061(2008).

    [14]K.Hering,D.Cialla,K.Ackermann,T.D¨orfer,R. M¨oller,H.Schneidewind,R.Mattheis,W.Fritzsche, P.R¨osch,and J.Popp,Anal.Bioanal.Chem.390,113 (2008).

    [15]K.Kneipp,Y.Wang,H.Kneipp,L.T.Perelman,I. Itzkan,R.R.Dasari,and M.S.Feld,Phy.Rev.Lett. 78,1667(1997).

    [16]S.M.Nie and S.R.Emery,Science 275,1102(1997). [17]X.M.Wu,S.M.Gao,J.S.Wang,H.Y.Wang,Y.W. Huang,and Y.P.Zhao,Analyst 137,4226(2012).

    [18]E.Mata,M.J.Quintana,and G.O.S?rensen,J.Mol. Struct.42,1(1997).

    [19]A.D.Becke,Phys.Rev.A 38,3098(1988).

    [20]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [21]C.Lee,W.Yang,and R.G.Parr,Phys.Rev.B 37,785 (1988).

    [22]A.Ulman,C.S.Willand,W.K¨ohler,D.R.Robello,D. J.Williams,and L.Handley,J.Am.Chem.Soc.112, 7083(1990).

    [23]E.K.U.Gross and W.Kohn,J.Phys.Chem.B 108, 6164(2004).

    [24]H.B.Schlegel,J.Velkovski,and M.D.Halls,Theor. Chem.Acc.105,413(2001).

    [25]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Jr.Montgomery,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A.1, Wallingford CT:Gaussian Inc.,(2009).

    [26]I.Nicol′as-V′azquez,A.M′endez-Albores,E.Moreno-Mart′?nez,R.Miranda,and M.Castro,Arch Environ. Contam.Toxicol.59,393(2010).

    [27]T.C.van Soest and A.F.Peerdeman,Acta Cryst.B 26,1947(1970).

    [28]M.Moskovits,Rev.Mod.Phys.57,783(1985).

    [29]J.F.Arenas,M.S.Woolley,J.C.Otero,and J.I. Marcos,J.Phys.Chem.100,3199(1996).

    [30]J.F.Arenas,I.L.Toc′on,J.C.Otero,and J.I.Marcos, J.Phys.Chem.100,9254(1996).

    ?Author to whom correspondence should be addressed.E-mail:hongyanw@home.swjtu.edu.cn,Tel.:+86-28-87600963, FAX:+86-28-87601357

    x7x7x7水蜜桃| 精品午夜福利视频在线观看一区| bbb黄色大片| 香蕉国产在线看| 久久香蕉激情| 青草久久国产| 精品熟女少妇八av免费久了| 十八禁人妻一区二区| 久久99一区二区三区| 一夜夜www| 国产精品成人在线| 免费观看a级毛片全部| av福利片在线| 色综合欧美亚洲国产小说| 高清av免费在线| 可以免费在线观看a视频的电影网站| 国产区一区二久久| 99久久精品国产亚洲精品| 三级毛片av免费| 久久香蕉激情| 国产成人av教育| 老司机福利观看| 精品第一国产精品| 精品国内亚洲2022精品成人 | 成人18禁高潮啪啪吃奶动态图| 久久国产亚洲av麻豆专区| 韩国av一区二区三区四区| 一边摸一边抽搐一进一出视频| 又紧又爽又黄一区二区| 国产精品久久久久久精品古装| 免费黄频网站在线观看国产| 一二三四社区在线视频社区8| 黄片小视频在线播放| 国产精品香港三级国产av潘金莲| 久久久精品免费免费高清| videos熟女内射| 超碰97精品在线观看| 久热爱精品视频在线9| 亚洲精品久久午夜乱码| 久久久久国内视频| 国产精品成人在线| 1024香蕉在线观看| 老司机靠b影院| 国产成人免费观看mmmm| 久久久国产精品麻豆| 国产一区二区三区视频了| 亚洲成国产人片在线观看| 国产伦人伦偷精品视频| 新久久久久国产一级毛片| 岛国在线观看网站| 欧美国产精品一级二级三级| 老鸭窝网址在线观看| 亚洲精品久久成人aⅴ小说| 少妇粗大呻吟视频| 国产精品 欧美亚洲| 日本一区二区免费在线视频| 国产熟女午夜一区二区三区| 亚洲熟妇中文字幕五十中出 | 最近最新中文字幕大全电影3 | 不卡一级毛片| 成人18禁高潮啪啪吃奶动态图| 99热国产这里只有精品6| 91av网站免费观看| av欧美777| a级毛片黄视频| 三级毛片av免费| 99精国产麻豆久久婷婷| tube8黄色片| 精品福利观看| 精品久久久久久久久久免费视频 | 香蕉久久夜色| www.精华液| 黄频高清免费视频| 少妇裸体淫交视频免费看高清 | 国产免费男女视频| 丝袜美足系列| 欧美精品啪啪一区二区三区| 亚洲欧美日韩高清在线视频| 国内久久婷婷六月综合欲色啪| 夜夜躁狠狠躁天天躁| 美女福利国产在线| 老汉色∧v一级毛片| 另类亚洲欧美激情| 久久国产精品大桥未久av| 国产成人精品在线电影| 成年人免费黄色播放视频| 亚洲av日韩在线播放| 午夜福利免费观看在线| av有码第一页| 99国产综合亚洲精品| 丝袜人妻中文字幕| av福利片在线| 18禁裸乳无遮挡免费网站照片 | 亚洲成人国产一区在线观看| 国产欧美亚洲国产| 精品免费久久久久久久清纯 | 在线观看舔阴道视频| 狠狠婷婷综合久久久久久88av| 久久精品人人爽人人爽视色| 捣出白浆h1v1| 欧美日韩乱码在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧洲精品卡2卡3卡4卡5卡区| 夜夜躁狠狠躁天天躁| 国产精品久久久久成人av| 一本大道久久a久久精品| 99精品在免费线老司机午夜| 黑人欧美特级aaaaaa片| xxxhd国产人妻xxx| 精品国产乱子伦一区二区三区| 亚洲午夜理论影院| 国产成人免费无遮挡视频| 精品国内亚洲2022精品成人 | 色综合欧美亚洲国产小说| 免费在线观看亚洲国产| 欧美人与性动交α欧美精品济南到| 国产精品久久久久久人妻精品电影| 老司机亚洲免费影院| 在线观看66精品国产| 黑人巨大精品欧美一区二区蜜桃| 嫩草影视91久久| 老熟女久久久| 自线自在国产av| 精品亚洲成a人片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久av美女十八| 亚洲av美国av| 99热网站在线观看| 亚洲专区国产一区二区| 19禁男女啪啪无遮挡网站| 极品人妻少妇av视频| av不卡在线播放| 午夜福利一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲av一区麻豆| 国产99久久九九免费精品| 中文字幕av电影在线播放| 精品卡一卡二卡四卡免费| 一区二区三区激情视频| 亚洲九九香蕉| 久久国产精品人妻蜜桃| 精品亚洲成a人片在线观看| av网站免费在线观看视频| 91大片在线观看| 男人舔女人的私密视频| 欧美在线一区亚洲| 免费在线观看日本一区| 一a级毛片在线观看| 亚洲人成电影观看| 黄色毛片三级朝国网站| 精品视频人人做人人爽| 国产精品美女特级片免费视频播放器 | 人人妻人人澡人人爽人人夜夜| 亚洲第一欧美日韩一区二区三区| 久久久精品区二区三区| 一夜夜www| 最新美女视频免费是黄的| 飞空精品影院首页| 久久人妻熟女aⅴ| 国产精品欧美亚洲77777| 999久久久精品免费观看国产| 91成年电影在线观看| 婷婷丁香在线五月| 老汉色∧v一级毛片| 久久中文字幕人妻熟女| 男女高潮啪啪啪动态图| 老熟妇仑乱视频hdxx| 叶爱在线成人免费视频播放| 50天的宝宝边吃奶边哭怎么回事| 色在线成人网| 国产精品成人在线| 亚洲国产精品合色在线| 国产欧美日韩一区二区三| 欧美日韩福利视频一区二区| 无限看片的www在线观看| 80岁老熟妇乱子伦牲交| 亚洲免费av在线视频| 欧美精品啪啪一区二区三区| 国产三级黄色录像| 国产精品 欧美亚洲| 欧美日韩亚洲高清精品| 久久久久久久精品吃奶| 一级毛片精品| 午夜福利乱码中文字幕| 别揉我奶头~嗯~啊~动态视频| av电影中文网址| 1024香蕉在线观看| 亚洲综合色网址| 老汉色∧v一级毛片| 狠狠婷婷综合久久久久久88av| 久久ye,这里只有精品| 久久精品国产a三级三级三级| 中亚洲国语对白在线视频| 一级毛片女人18水好多| 久久亚洲精品不卡| 女人精品久久久久毛片| 午夜视频精品福利| 18禁裸乳无遮挡免费网站照片 | 天堂动漫精品| 欧美另类亚洲清纯唯美| 亚洲专区中文字幕在线| 十八禁人妻一区二区| 韩国av一区二区三区四区| 丰满的人妻完整版| 国产单亲对白刺激| 欧美+亚洲+日韩+国产| 高清黄色对白视频在线免费看| 欧美大码av| 日韩欧美国产一区二区入口| 99riav亚洲国产免费| 亚洲av片天天在线观看| 1024香蕉在线观看| 久久久国产一区二区| 国产精品综合久久久久久久免费 | 午夜免费成人在线视频| 久久精品91无色码中文字幕| 91九色精品人成在线观看| 久久精品国产清高在天天线| av网站在线播放免费| 国产精品综合久久久久久久免费 | 久久久精品免费免费高清| 黄色片一级片一级黄色片| 黄色成人免费大全| 少妇裸体淫交视频免费看高清 | 亚洲自偷自拍图片 自拍| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 男女午夜视频在线观看| 免费观看a级毛片全部| a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | av视频免费观看在线观看| 日本wwww免费看| 亚洲中文日韩欧美视频| 少妇被粗大的猛进出69影院| 亚洲精品乱久久久久久| 韩国精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 美国免费a级毛片| 亚洲男人天堂网一区| 可以免费在线观看a视频的电影网站| 婷婷成人精品国产| 18禁裸乳无遮挡免费网站照片 | 视频区欧美日本亚洲| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美色中文字幕在线| 后天国语完整版免费观看| 欧美国产精品va在线观看不卡| 日本黄色日本黄色录像| 亚洲情色 制服丝袜| 日韩成人在线观看一区二区三区| 日本五十路高清| 中文欧美无线码| 亚洲一区中文字幕在线| 精品国产一区二区三区久久久樱花| 欧美久久黑人一区二区| 国产蜜桃级精品一区二区三区 | 午夜福利一区二区在线看| e午夜精品久久久久久久| 国产一区二区三区视频了| 免费人成视频x8x8入口观看| 超碰成人久久| 丝袜美腿诱惑在线| 亚洲av成人一区二区三| 日韩熟女老妇一区二区性免费视频| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三卡| 久久草成人影院| 999精品在线视频| 亚洲国产欧美一区二区综合| 久久精品国产综合久久久| 日韩欧美三级三区| 多毛熟女@视频| 新久久久久国产一级毛片| 成人黄色视频免费在线看| 又黄又粗又硬又大视频| 久久精品熟女亚洲av麻豆精品| 国产亚洲精品久久久久5区| 久久这里只有精品19| 午夜免费鲁丝| 麻豆乱淫一区二区| 精品国产美女av久久久久小说| 18在线观看网站| 精品少妇久久久久久888优播| 午夜两性在线视频| 国产精品免费一区二区三区在线 | 岛国在线观看网站| 久久精品国产亚洲av高清一级| 热re99久久国产66热| 亚洲成av片中文字幕在线观看| 午夜老司机福利片| 亚洲专区字幕在线| 欧美激情 高清一区二区三区| 精品熟女少妇八av免费久了| 女性被躁到高潮视频| 美女高潮喷水抽搐中文字幕| 99久久精品国产亚洲精品| 久久香蕉精品热| 丝袜美腿诱惑在线| 国产高清videossex| 一级黄色大片毛片| 男人舔女人的私密视频| 90打野战视频偷拍视频| 欧美日韩成人在线一区二区| xxx96com| videos熟女内射| 精品熟女少妇八av免费久了| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点 | 国产一卡二卡三卡精品| 丰满人妻熟妇乱又伦精品不卡| 国产成人系列免费观看| 夜夜夜夜夜久久久久| 91字幕亚洲| 91国产中文字幕| 手机成人av网站| 性色av乱码一区二区三区2| 精品卡一卡二卡四卡免费| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 一本一本久久a久久精品综合妖精| 法律面前人人平等表现在哪些方面| 国产在线观看jvid| 国产亚洲欧美98| 老熟女久久久| 免费不卡黄色视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品秋霞免费鲁丝片| 三上悠亚av全集在线观看| 中文欧美无线码| 国产亚洲精品久久久久久毛片 | 久久久久久免费高清国产稀缺| 久久精品成人免费网站| 久热爱精品视频在线9| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 国产成人精品久久二区二区91| 高清欧美精品videossex| 老司机影院毛片| 日日摸夜夜添夜夜添小说| 亚洲av成人av| 怎么达到女性高潮| 人人妻人人爽人人添夜夜欢视频| 人妻丰满熟妇av一区二区三区 | 高清av免费在线| 巨乳人妻的诱惑在线观看| 国产成人欧美在线观看 | 国产精品免费大片| 午夜福利乱码中文字幕| 伦理电影免费视频| 精品乱码久久久久久99久播| 久久热在线av| 国产欧美日韩精品亚洲av| 精品一区二区三区av网在线观看| 高清视频免费观看一区二区| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 日日爽夜夜爽网站| 久久久久久久午夜电影 | av天堂在线播放| 一级作爱视频免费观看| 成人国产一区最新在线观看| 三级毛片av免费| 亚洲 国产 在线| 99久久国产精品久久久| 男女午夜视频在线观看| 中出人妻视频一区二区| 国产主播在线观看一区二区| 熟女少妇亚洲综合色aaa.| 国产精品香港三级国产av潘金莲| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av香蕉五月 | 国产精品九九99| 看免费av毛片| 欧美激情极品国产一区二区三区| 国产成人免费无遮挡视频| 五月开心婷婷网| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 韩国av一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 精品国产国语对白av| 亚洲性夜色夜夜综合| 热re99久久国产66热| 亚洲av电影在线进入| 免费一级毛片在线播放高清视频 | 欧美黄色片欧美黄色片| 精品国内亚洲2022精品成人 | 丰满迷人的少妇在线观看| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩高清在线视频| 久久精品人人爽人人爽视色| 中文字幕精品免费在线观看视频| 最近最新中文字幕大全免费视频| av免费在线观看网站| 中国美女看黄片| 亚洲欧美激情在线| 中文字幕人妻熟女乱码| 日本五十路高清| 在线av久久热| 国产主播在线观看一区二区| 两个人看的免费小视频| 亚洲中文av在线| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕一二三四区| 日韩免费高清中文字幕av| а√天堂www在线а√下载 | 欧美日韩一级在线毛片| 精品人妻1区二区| 18禁裸乳无遮挡动漫免费视频| 天天影视国产精品| 黄色丝袜av网址大全| 在线免费观看的www视频| 高潮久久久久久久久久久不卡| 捣出白浆h1v1| 亚洲欧美一区二区三区久久| 国产成人精品无人区| 在线观看66精品国产| 久久精品亚洲av国产电影网| 大型黄色视频在线免费观看| 亚洲在线自拍视频| 久久天堂一区二区三区四区| 免费观看精品视频网站| 大陆偷拍与自拍| 热99国产精品久久久久久7| 电影成人av| 黄网站色视频无遮挡免费观看| 99riav亚洲国产免费| 老汉色∧v一级毛片| 三级毛片av免费| 无遮挡黄片免费观看| 亚洲综合色网址| 国产欧美日韩一区二区三| 最近最新中文字幕大全电影3 | 国产高清国产精品国产三级| 啦啦啦 在线观看视频| 久久精品国产综合久久久| 日本a在线网址| 下体分泌物呈黄色| 午夜精品在线福利| 女人高潮潮喷娇喘18禁视频| 日本vs欧美在线观看视频| 99国产精品一区二区三区| 亚洲视频免费观看视频| 狂野欧美激情性xxxx| 日韩欧美国产一区二区入口| 久9热在线精品视频| 中文亚洲av片在线观看爽 | 一本大道久久a久久精品| 黄色视频不卡| 国产在线精品亚洲第一网站| 一区福利在线观看| 欧美黄色淫秽网站| 男人舔女人的私密视频| 成人黄色视频免费在线看| 黄网站色视频无遮挡免费观看| 亚洲精华国产精华精| 亚洲一区中文字幕在线| 黄频高清免费视频| 欧美乱色亚洲激情| 99国产综合亚洲精品| 9191精品国产免费久久| 久久久国产精品麻豆| 色播在线永久视频| 国产成人精品久久二区二区91| 国产亚洲精品久久久久久毛片 | 精品国产一区二区三区四区第35| 精品第一国产精品| 成在线人永久免费视频| 亚洲欧美精品综合一区二区三区| 亚洲熟女精品中文字幕| 日韩制服丝袜自拍偷拍| 欧美一级毛片孕妇| 国产精品免费一区二区三区在线 | 男女床上黄色一级片免费看| 咕卡用的链子| 视频在线观看一区二区三区| 好男人电影高清在线观看| 首页视频小说图片口味搜索| 1024香蕉在线观看| 亚洲av成人一区二区三| 最近最新免费中文字幕在线| 亚洲专区中文字幕在线| 亚洲精品国产一区二区精华液| 亚洲久久久国产精品| 午夜91福利影院| 亚洲aⅴ乱码一区二区在线播放 | 国产精品.久久久| 久久精品亚洲熟妇少妇任你| 大香蕉久久成人网| 国产日韩欧美亚洲二区| 婷婷丁香在线五月| 精品人妻熟女毛片av久久网站| 国产成+人综合+亚洲专区| 亚洲av熟女| 黑人巨大精品欧美一区二区mp4| 中文字幕人妻熟女乱码| 国产一区在线观看成人免费| 久久久久久久久免费视频了| 免费观看人在逋| 黄色成人免费大全| 精品国产一区二区久久| 80岁老熟妇乱子伦牲交| 亚洲中文日韩欧美视频| 日韩人妻精品一区2区三区| 女人被躁到高潮嗷嗷叫费观| 色综合欧美亚洲国产小说| 亚洲成av片中文字幕在线观看| av电影中文网址| 十八禁人妻一区二区| 99国产极品粉嫩在线观看| svipshipincom国产片| 国产一区二区激情短视频| 超碰成人久久| 欧美日韩视频精品一区| 久久久国产欧美日韩av| 国产在线精品亚洲第一网站| 中文字幕人妻丝袜制服| 欧美日韩黄片免| 国产成人免费观看mmmm| 日韩欧美三级三区| 亚洲自偷自拍图片 自拍| 久久性视频一级片| 午夜影院日韩av| 国产日韩一区二区三区精品不卡| 欧美日韩亚洲综合一区二区三区_| 国产精品亚洲一级av第二区| e午夜精品久久久久久久| 国产一卡二卡三卡精品| 天天躁日日躁夜夜躁夜夜| a在线观看视频网站| 女人高潮潮喷娇喘18禁视频| 久久ye,这里只有精品| 日韩视频一区二区在线观看| 一级a爱视频在线免费观看| 日本wwww免费看| 国产欧美日韩一区二区三| 91在线观看av| 国产精品偷伦视频观看了| 无遮挡黄片免费观看| 久久人人爽av亚洲精品天堂| 午夜亚洲福利在线播放| 999久久久精品免费观看国产| 成年女人毛片免费观看观看9 | 国产精品永久免费网站| 午夜福利在线免费观看网站| 国产视频一区二区在线看| 国产成人免费观看mmmm| 99精品欧美一区二区三区四区| av电影中文网址| 如日韩欧美国产精品一区二区三区| 在线观看一区二区三区激情| 人人妻人人添人人爽欧美一区卜| 国产成人精品久久二区二区91| ponron亚洲| 国产精品 欧美亚洲| 老司机影院毛片| 天堂俺去俺来也www色官网| 少妇的丰满在线观看| 天堂√8在线中文| 色老头精品视频在线观看| 日本一区二区免费在线视频| 在线永久观看黄色视频| 女人爽到高潮嗷嗷叫在线视频| 中文欧美无线码| 美女午夜性视频免费| 真人做人爱边吃奶动态| 在线观看午夜福利视频| 午夜福利视频在线观看免费| xxxhd国产人妻xxx| 亚洲国产欧美一区二区综合| 亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区91| 亚洲全国av大片| 久久ye,这里只有精品| 狠狠婷婷综合久久久久久88av| 免费在线观看影片大全网站| 法律面前人人平等表现在哪些方面| 午夜福利在线免费观看网站| 丰满饥渴人妻一区二区三| 成人三级做爰电影| 90打野战视频偷拍视频| 精品国产亚洲在线| 高清av免费在线| 日韩视频一区二区在线观看| 超碰97精品在线观看| 国产男女内射视频| 大陆偷拍与自拍| 欧美亚洲日本最大视频资源| 亚洲avbb在线观看| 午夜福利免费观看在线| 激情视频va一区二区三区| 精品欧美一区二区三区在线| 欧美激情极品国产一区二区三区| 麻豆成人av在线观看| 久久精品国产99精品国产亚洲性色 | 99国产精品99久久久久| 高清毛片免费观看视频网站 | 亚洲久久久国产精品| 精品福利观看| 最新在线观看一区二区三区| 黄色视频不卡| 一边摸一边做爽爽视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 视频区欧美日本亚洲| 动漫黄色视频在线观看| 欧美中文综合在线视频| 香蕉丝袜av| 999久久久国产精品视频| 国产日韩一区二区三区精品不卡| 亚洲av熟女|